Skip to content
2000
image of Phenolic Compounds and Antioxidant Activity in Monovarietal Red Wines from Lazio Cultivars: A Chemometric Evaluation

Abstract

Background

Antioxidant activity is currently one of the most significant characteristics of red wines, mainly attributable to phenolic components, that enhance health-promoting effects. To this purpose, it is necessary to implement simple, and reliable analytical methods for evaluating such bioactive compounds in wines according to their background.

Objective

This research aims to characterize the phenolic and antioxidant activity of 48 commercial monovarietal red wines produced from eight native Lazio cultivars (“Cesanese del Piglio”, “Cesanese di Olevano Romano”, “Cesanese da Castel Franco”, “Olivella del Frusinate”, “Nostrano”, “Syrah”, “Merlot”, and “Nero Buono”), according to different wine-making techniques and vintage.

Methods

The characterization was carried out through the chromatographic determination of anthocyanins (HPLC-PDA), spectrophotometric assays for total phenolic content (TPC), total flavonoid content (TFC), total phenolic acid content (TPAC), and antioxidant activity (AA) through ABTS, and DPPH assays, coupled with chemometric tools (Principal Component Analysis and Cluster Analysis).

Results

The quantitative determination of phenolic compounds showed significant ( > 0.05) differences according to wine cultivars. Wine belonging to ‘Syrah’, ‘Nero Buono’, ‘Cesanese del Piglio’ and ‘Cesanese di Olevano Romano’ cultivars showed the highest TPC (2.673 – 4.094; 1.963 – 3.859, 2.104 – 3.794, and 2.668 – 3.549 mg GAE/L, respectively), as well as the highest TFC and TPAC.

Conclusion

In addition, wines sharing cold maceration (., COR and CP samples) resulted in the highest total anthocyanidin content with a variable malvidin and cyanidin distribution percentage; as well as younger wines (2019) showed the highest TPC and anthocyanidins content. In these regards, the natural groupings among samples obtained by chemometrics reinforce the influence of cultivar origin, the wine-making process, as well as wine aging on phenolic content and compositions, thus acting as fingerprints for specific grape cultivars.

Loading

Article metrics loading...

/content/journals/cnf/10.2174/0115734013339614241017054941
2024-12-03
2025-01-18
Loading full text...

Full text loading...

References

  1. Nemzer B. Kalita D. Yashin A.Y. Yashin Y.I. Chemical composition and polyphenolic compounds of red wines: their antioxidant activities and effects on human health—a review. Beverages 2021 8 1 1 10.3390/beverages8010001
    [Google Scholar]
  2. Mollica A. Scioli G. Della Valle A. Cichelli A. Novellino E. Bauer M. Kamysz W. Llorent-Martínez E.J. Fernández-de Córdova M.L. Castillo-López R. Ak G. Zengin G. Pieretti S. Stefanucci A. Phenolic analysis and in vitro biological activity of red wine, pomace and grape seeds oil derived from Vitis vinifera L. cv. Montepulciano d’Abruzzo. Antioxidants 2021 10 11 1704 10.3390/antiox10111704 34829574
    [Google Scholar]
  3. Yue X. Jing S. Ni X. Zhang K. Fang Y. Zhang Z. Ju Y. Anthocyanin and phenolic acids contents influence the color stability and antioxidant capacity of wine treated with mannoprotein. Front. Nutr. 2021 8 691784 10.3389/fnut.2021.691784 34222310
    [Google Scholar]
  4. Eder R. Pajović Šćepanović R. Raičević D. Popović T. Korntheuer K. Wendelin S. Forneck A. Philipp C. Study of the effects of climatic conditions on the phenolic content and antioxidant activity of Austrian and Montenegrin red wines. OENO One 2023 57 3 68 85 10.20870/oeno‑one.2023.57.3.7450
    [Google Scholar]
  5. Gutiérrez-Escobar R. Aliaño-González M.J. Cantos-Villar E. Wine polyphenol content and its influence on wine quality and properties: a review. Molecules 2021 26 3 718 10.3390/molecules26030718 33573150
    [Google Scholar]
  6. Gris E.F. Mattivi F. Ferreira E.A. Vrhovšek U. Pedrosa R.C. Bordignon-Luiz M.T. Proanthocyanidin profile and antioxidant capacity of Brazilian Vitis vinifera red wines. Food Chem. 2011 126 1 213 220 10.1016/j.foodchem.2010.10.102
    [Google Scholar]
  7. Pajovic Scepanovic R. Vuletic D. Christofi S. Kallithraka S. Maceration duration and grape variety: key factors in phenolic compound enrichment of Montenegrin red wine. OENO One 2024 58 3 10.20870/oeno‑one.2024.58.3.8099
    [Google Scholar]
  8. Guerrero R.F. Cantos-Villar E. Demonstrating the efficiency of sulphur dioxide replacements in wine: A parameter review. Trends Food Sci. Technol. 2015 42 1 27 43 10.1016/j.tifs.2014.11.004
    [Google Scholar]
  9. Arriagada-Carrazana J.P. Sáez-Navarrete C. Bordeu E. Membrane filtration effects on aromatic and phenolic quality of Cabernet Sauvignon wines. J. Food Eng. 2005 68 3 363 368 10.1016/j.jfoodeng.2004.06.011
    [Google Scholar]
  10. Monagas M. Gómezcordovés C. Bartolomé B. Evolution of the phenolic content of red wines from L. during ageing in bottle. Food Chem. 2006 95 3 405 412 10.1016/j.foodchem.2005.01.004
    [Google Scholar]
  11. Scrimgeour N. Nordestgaard S. Lloyd N.D.R. Wilkes E.N. Exploring the effect of elevated storage temperature on wine composition. Aust. J. Grape Wine Res. 2015 21 713 722 10.1111/ajgw.12196
    [Google Scholar]
  12. Goldberg D.M. Tsang E. Karumanchiri A. Diamandis E.P. Soleas G. Ng E. Method to assay the concentrations of phenolic constituents of biological interest in wines. Anal. Chem. 1996 68 10 1688 1694 10.1021/ac951083i 8651480
    [Google Scholar]
  13. Giuffrè A.M. HPLC-DAD detection of changes in phenol content of red berry skins during grape ripening. Eur. Food Res. Technol. 2013 237 4 555 564 10.1007/s00217‑013‑2033‑7
    [Google Scholar]
  14. Jin Z.M. He J.J. Bi H.Q. Cui X.Y. Duan C.Q. Phenolic compound profiles in berry skins from nine red wine grape cultivars in northwest China. Molecules 2009 14 12 4922 4935 10.3390/molecules14124922 20032869
    [Google Scholar]
  15. Rodríguez Montealegre R. Romero Peces R. Chacón Vozmediano J.L. Martínez Gascueña J. García Romero E. Phenolic compounds in skins and seeds of ten grape Vitis vinifera varieties grown in a warm climate. J. Food Compos. Anal. 2006 19 6-7 687 693 10.1016/j.jfca.2005.05.003
    [Google Scholar]
  16. Avizcuri J.M. Sáenz-Navajas M.P. Echávarri J.F. Ferreira V. Fernández-Zurbano P. Evaluation of the impact of initial red wine composition on changes in color and anthocyanin content during bottle storage. Food Chem. 2016 213 123 134 10.1016/j.foodchem.2016.06.050 27451163
    [Google Scholar]
  17. Giovinazzo G. Carluccio M.A. Grieco F. Wine Polyphenols and Health. Bioactive Molecules in Food. Reference Series in Phytochemistry. Mérillon J.M. Ramawat K. Cham Springer 2019 10.1007/978‑3‑319‑78030‑6_81
    [Google Scholar]
  18. Visioli F. Panaite S.A. Tomé-Carneiro J. Wine’s phenolic compounds and health: A pythagorean view. Molecules 2020 25 18 4105 10.3390/molecules25184105 32911765
    [Google Scholar]
  19. Brouillard R. Delaporte B. Chemistry of anthocyanin pigments. 2. Kinetic and thermodynamic study of proton transfer, hydration, and tautomeric reactions of malvidin 3-glucoside. J. Am. Chem. Soc. 1977 99 26 8461 8468 10.1021/ja00468a015
    [Google Scholar]
  20. Gambuti A. Capuano R. Lecce L. Fragasso M.G. Moio L. Extraction of phenolic compounds from “Aglianico” and “Uva Di Troia” grape skins and seeds in model solutions: Influence of ethanol and maceration time. Vitis J. Grapevine Res. 2009 48 193 200
    [Google Scholar]
  21. International Organisation of Vine and Wine (OIV) Available at: http://www.oiv.int/
  22. Abbate G. Bonacquisti S. Giovi E. Iamonico D. Iberite M. Lorenzetti R. Contribution to the vascular flora of the Castelli Romani Regional Park (Rome, Central Italy) with recent observations and early herbarium surveys. Webbia 2009 64 1 47 74 10.1080/00837792.2009.10670852
    [Google Scholar]
  23. Palombi M.A. Trotta N. Nuti R. Morassut M. Serra M.C. Cecchini F. Ampelographic evaluation of autochthonous grapevine germplasm in different areas of Lazio region. Acta Hortic. 2023 1384 113 120 [International Society for Horticultural Science.]. 10.17660/ActaHortic.2023.1384.15
    [Google Scholar]
  24. Luciano A. Picariello L. Forino M. Moio L. Gambuti A. Anthocyanins and nucleation seeds are key factors affecting quercetin precipitation in red wines. J. Sci. Food Agric. 2024 104 9 5163 5175 10.1002/jsfa.13352 38308579
    [Google Scholar]
  25. Alfieri G. Modesti M. Bellincontro A. Renzi F. Aleixandre-Tudo J.L. Feasibility assessment of a low‐cost visible spectroscopy‐based prototype for monitoring polyphenol extraction in fermenting musts. J. Sci. Food Agric. 2024 jsfa.13274 10.1002/jsfa.13274 38311879
    [Google Scholar]
  26. Perpetuini G. Rossetti A.P. Battistelli N. Zulli C. Cichelli A. Arfelli G. Tofalo R. Impact of vineyard management on grape fungal community and Montepulciano d’Abruzzo wine quality. Food Res. Int. 2022 158 111577 10.1016/j.foodres.2022.111577 35840262
    [Google Scholar]
  27. Mangiapelo L. Blasi F. Ianni F. Suvieri C. Sardella R. Volpi C. Cossignani L. Optimization of a Simple Analytical Workflow to Characterize the Phenolic Fraction from Grape Pomace. Food Bioprocess Technol. 2024 17 7 1942 1957 10.1007/s11947‑023‑03249‑0
    [Google Scholar]
  28. Available at: https://www.arsial.it/la-viticoltura-nel-lazio-2/
  29. Fabbri A. Bonifazi G. Serranti S. Micro-scale energy valorization of grape marcs in winery production plants. Waste Manag. 2015 36 156 165 10.1016/j.wasman.2014.11.022 25529134
    [Google Scholar]
  30. Biscotti N. Guidi S. Forconi B. Piotto B. Frutti dimenticati e biodiversità recuperata il germoplasma frutticolo e viticolo delle agricolture tradizionali italiane. ISPRA 2010 2010 13 23
    [Google Scholar]
  31. Onzo A. Acquavia M.A. Pascale R. Iannece P. Gaeta C. Lelario F. Ciriello R. Tesoro C. Bianco G. Di Capua A. Untargeted metabolomic analysis by ultra-high-resolution mass spectrometry for the profiling of new Italian wine varieties. Anal. Bioanal. Chem. 2022 414 27 7805 7812 10.1007/s00216‑022‑04314‑x 36121471
    [Google Scholar]
  32. Gobbi L. Maddaloni L. Prencipe S.A. Vinci G. Bioactive Compounds in Different Coffee Beverages for Quality and Sustainability Assessment. Beverages 2023 9 1 3 10.3390/beverages9010003
    [Google Scholar]
  33. Abdel-Naeem H.H.S. Sallam K.I. Malak N.M.L. Improvement of the microbial quality, antioxidant activity, phenolic and flavonoid contents, and shelf life of smoked herring (Clupea harengus) during frozen storage by using chitosan edible coating. Food Control 2021 130 108317 10.1016/j.foodcont.2021.108317
    [Google Scholar]
  34. Nalewajko-Sieliwoniuk E. Pliszko A. Nazaruk J. Barszczewska E. Pukszta W. Comparative analysis of phenolic compounds in four taxa of Erigeron acris s. l. (Asteraceae). Biologia (Bratisl.) 2019 74 12 1569 1577 10.2478/s11756‑019‑00332‑w
    [Google Scholar]
  35. Spano M. Di Matteo G. Ingallina C. Sobolev A.P. Giusti A.M. Vinci G. Cammarone S. Tortora C. Lamelza L. Prencipe S.A. Gobbi L. Botta B. Marini F. Campiglia E. Mannina L. Industrial Hemp (Cannabis sativa L.) Inflorescences as Novel Food: The Effect of Different Agronomical Practices on Chemical Profile. Foods 2022 11 22 3658 10.3390/foods11223658 36429250
    [Google Scholar]
  36. Gómez-Míguez M.J. González-Miret M.L. Hernanz D. Fernández M.Á. Vicario I.M. Heredia F.J. Effects of prefermentative skin contact conditions on colour and phenolic content of white wines. J. Food Eng. 2007 78 1 238 245 10.1016/j.jfoodeng.2005.09.021
    [Google Scholar]
  37. Pierre E.O. Nicolas N. Pierre F.D. Martine L.O. Denis O.N. Heritability of polyphenols, anthocyanins and antioxidant capacity of Cameroonian cocoa (Theobroma cacao L.) beans. Afr. J. Biotechnol. 2015 14 36 2672 2682 10.5897/AJB2015.14715
    [Google Scholar]
  38. Girelli A.M. Mele C. Salvagni L. Tarola A.M. Polyphenol content and antioxidant activity of merlot and Shiraz wine. Anal. Lett. 2015 48 12 1865 1880 10.1080/00032719.2014.1003429
    [Google Scholar]
  39. 2022 Available at: https://www.xlstat.com
  40. Garcia-Hernandez C. Salvo-Comino C. Martin-Pedrosa F. Garcia-Cabezon C. Rodriguez-Mendez M.L. Analysis of red wines using an electronic tongue and infrared spectroscopy. Correlations with phenolic content and color parameters. Lebensm. Wiss. Technol. 2020 118 108785 10.1016/j.lwt.2019.108785
    [Google Scholar]
  41. Bimpilas A. Tsimogiannis D. Balta-Brouma K. Lymperopoulou T. Oreopoulou V. Evolution of phenolic compounds and metal content of wine during alcoholic fermentation and storage. Food Chem. 2015 178 164 171 10.1016/j.foodchem.2015.01.090 25704697
    [Google Scholar]
  42. Bai S. Cui C. Liu J. Li P. Li Q. Bi K. Quantification of polyphenol composition and multiple statistical analyses of biological activity in Portuguese red wines. Eur. Food Res. Technol. 2018 244 11 2007 2017 10.1007/s00217‑018‑3112‑6
    [Google Scholar]
  43. Van Leeuw R. Kevers C. Pincemail J. Defraigne J.O. Dommes J. Antioxidant capacity and phenolic composition of red wines from various grape varieties: Specificity of Pinot Noir. J. Food Compos. Anal. 2014 36 1-2 40 50 10.1016/j.jfca.2014.07.001
    [Google Scholar]
  44. de Oliveira J.B. Egipto R. Laureano O. de Castro R. Pereira G.E. Ricardo-da-Silva J.M. Climate effects on physicochemical composition of Syrah grapes at low and high altitude sites from tropical grown regions of Brazil. Food Res. Int. 2019 121 870 879 10.1016/j.foodres.2019.01.011 31108820
    [Google Scholar]
  45. Hou X. Chen S. Pu Y. Wang T. Xu H. Li H. Ma P. Hou X. Effect of Winemaking on Phenolic Compounds and Antioxidant Activities of Msalais Wine. Molecules 2023 28 3 1250 10.3390/molecules28031250 36770915
    [Google Scholar]
  46. Mitrevska K. Grigorakis S. Loupassaki S. Calokerinos A.C. Antioxidant activity and polyphenolic content of North Macedonian wines. Appl. Sci. (Basel) 2020 10 6 2010 10.3390/app10062010
    [Google Scholar]
  47. Zargar B. Majeed D. Ganai S.A. Mir S.A. Dar B.N. Effect of different processing parameters on antioxidant activity of tea. J. Food Meas. Charact. 2018 12 1 527 534 10.1007/s11694‑017‑9664‑5
    [Google Scholar]
  48. Maletić E. Pejić I. Kontić J. K. Zdunić D. Preiner D. Šimon S. Vitis-Journal of Grapevine Research 2015 54 93 98
    [Google Scholar]
  49. Sartor S. Malinovski L.I. Caliari V. da Silva A.L. Bordignon-Luiz M.T. Particularities of Syrah wines from different growing regions of Southern Brazil: grapevine phenology and bioactive compounds. J. Food Sci. Technol. 2017 54 6 1414 1424 10.1007/s13197‑017‑2557‑0 28559600
    [Google Scholar]
  50. Garaguso I. Nardini M. Polyphenols content, phenolics profile and antioxidant activity of organic red wines produced without sulfur dioxide/sulfites addition in comparison to conventional red wines. Food Chem. 2015 179 336 342 10.1016/j.foodchem.2015.01.144 25722174
    [Google Scholar]
  51. Cheynier V. Dueñas-Paton M. Salas E. Maury C. Souquet J.M. Sarni-Manchado P. Fulcrand H. Structure and properties of wine pigments and tannins. Am. J. Enol. Vitic. 2006 57 3 298 305 10.5344/ajev.2006.57.3.298
    [Google Scholar]
  52. Gençdağ E. Özdemir E.E. Demirci K. Görgüç A. Yılmaz F.M. Copigmentation and stabilization of anthocyanins using organic molecules and encapsulation techniques. Curr. Plant Biol. 2022 29 100238 10.1016/j.cpb.2022.100238
    [Google Scholar]
  53. Zhang X. Kontoudakis N. Šuklje K. Antalick G. Blackman J.W. Rutledge D.N. Schmidtke L.M. Clark A.C. Changes in red wine composition during bottle aging: Impacts of grape variety, vineyard location, maturity, and oxygen availability during aging. J. Agric. Food Chem. 2020 68 47 13331 13343 10.1021/acs.jafc.9b07164 32066244
    [Google Scholar]
  54. Merkytė V. Longo E. Windisch G. Boselli E. Phenolic compounds as markers of wine quality and authenticity. Foods 2020 9 12 1785 10.3390/foods9121785 33271877
    [Google Scholar]
  55. Salvatore E. Cocchi M. Marchetti A. Marini F. de Juan A. Determination of phenolic compounds and authentication of PDO Lambrusco wines by HPLC-DAD and chemometric techniques. Anal. Chim. Acta 2013 761 34 45 10.1016/j.aca.2012.11.015 23312312
    [Google Scholar]
  56. He F. Liang N.N. Mu L. Pan Q.H. Wang J. Reeves M.J. Duan C.Q. Anthocyanins and their variation in red wines. II. Anthocyanin derived pigments and their color evolution. Molecules 2012 17 2 1483 1519 10.3390/molecules17021483 23442981
    [Google Scholar]
  57. Pisano P.L. Silva M.F. Olivieri A.C. Anthocyanins as markers for the classification of Argentinean wines according to botanical and geographical origin. Chemometric modeling of liquid chromatography–mass spectrometry data. Food Chem. 2015 175 174 180 10.1016/j.foodchem.2014.11.124 25577067
    [Google Scholar]
  58. Cejudo-Bastante M.J. Vicario A. Guillén D.A. Hermosín-Gutiérrez I. Pérez-Coello M.S. Phenolic characterization of minor red grape varieties grown in Castilla-La Mancha region in different vinification stages. Eur. Food Res. Technol. 2015 240 3 595 607 10.1007/s00217‑014‑2360‑3
    [Google Scholar]
  59. Longo E. Merkyte V. Rossetti F. Teissedre P.L. Jourdes M. Boselli E. Relative abundances of novel cyclic prodelphinidins in wine depending on the grape variety. J. Mass Spectrom. 2018 53 11 1116 1125 10.1002/jms.4280 30107063
    [Google Scholar]
  60. De Rosso M. Mayr C.M. Girardi G. Vedova A.D. Flamini R. High-resolution mass spectrometry metabolomics of grape chemical markers to reveal use of not-allowed varieties in the production of Amarone and Recioto wines. Metabolomics 2018 14 10 124 10.1007/s11306‑018‑1415‑z 30830408
    [Google Scholar]
  61. Martelo-Vidal M.J. Vázquez M. Determination of polyphenolic compounds of red wines by UV–VIS–NIR spectroscopy and chemometrics tools. Food Chem. 2014 158 28 34 10.1016/j.foodchem.2014.02.080 24731310
    [Google Scholar]
  62. Ragusa A. Centonze C. Grasso M.E. Latronico M.F. Mastrangelo P.F. Sparascio F. Maffia M. HPLC Analysis of Phenols in Negroamaro and Primitivo Red Wines from Salento. Foods 2019 8 2 45 10.3390/foods8020045 30717077
    [Google Scholar]
  63. Agatonovic-Kustrin S. Hettiarachchi C.G. Morton D.W. Razic S. Analysis of phenolics in wine by high performance thin-layer chromatography with gradient elution and high resolution plate imaging. J. Pharm. Biomed. Anal. 2015 102 93 99 10.1016/j.jpba.2014.08.031 25255450
    [Google Scholar]
  64. Parpinello G.P. Ricci A. Arapitsas P. Curioni A. Moio L. Segade S.R. Ugliano M. Versari A. Multivariate characterization of Italian monovarietal red wines using MIR spectroscopy. OENO One 2019 4 741 751
    [Google Scholar]
  65. Aleixandre-Tudo J.L. du Toit W. Cold maceration application in red wine production and its effects on phenolic compounds: A review. Lebensm. Wiss. Technol. 2018 95 200 208 10.1016/j.lwt.2018.04.096
    [Google Scholar]
  66. Koyama K. Goto-Yamamoto N. Hashizume K. Influence of maceration temperature in red wine vinification on extraction of phenolics from berry skins and seeds of grape (Vitis vinifera). Biosci. Biotechnol. Biochem. 2007 71 4 958 965 10.1271/bbb.60628 17420579
    [Google Scholar]
  67. De Santis D. Frangipane T. Effect of prefermentative cold maceration on the aroma and phenolic profiles of a Merlot red wine. Ital. J. Food Sci. 2010 1 47 53
    [Google Scholar]
  68. Chira K. Pacella N. Jourdes M. Teissedre P.L. Chemical and sensory evaluation of Bordeaux wines (Cabernet-Sauvignon and Merlot) and correlation with wine age. Food Chem. 2011 126 4 1971 1977 10.1016/j.foodchem.2010.12.056 25213985
    [Google Scholar]
  69. Meng J.F. Xu T.F. Qin M.Y. Zhuang X.F. Fang Y.L. Zhang Z.W. Phenolic characterization of young wines made from spine grape (Vitis davidii Foex) grown in Chongyi County (China). Food Res. Int. 2012 49 2 664 671 10.1016/j.foodres.2012.09.013
    [Google Scholar]
/content/journals/cnf/10.2174/0115734013339614241017054941
Loading
/content/journals/cnf/10.2174/0115734013339614241017054941
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Red wines ; vintage ; antioxidants ; HPLC-PDA ; wine-making techniques ; cultivar origin ; anthocyanidins
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test