Skip to content
2000
image of Impact of Polyphenol-Rich Chocolate on Microbial Diversity and Human Health: A Comprehensive Review

Abstract

Background

Compared to many other foods, cocoa and chocolate stand out for their high concentrations of polyphenols, particularly catechins, anthocyanidins, and procyanidins. These compounds possess antioxidant, anti-inflammatory, and vasodilatory properties that can confer multiple health benefits. This present study has been undertaken to assess the effects of polyphenol-rich chocolate consumption on various aspects of human health, including mood, cognition, cardiovascular health, insulin sensitivity, immune function, gut microbiota, and cancer risk. The high polyphenolic content in dark chocolates improves endothelial function, inhibits platelet aggregation, lowers blood pressure, enhances insulin sensitivity, . Cocoa polyphenols have been found to augment cognitive performance due to their ability to modulate gut microbiota. Potential antidepressant and anticarcinogenic activities were also reported.

Objective

The present study aimed to identify the impact of polyphenol-rich chocolate on human health.

Methods

Electronic searches were carried out using the databases viz. Google, Google Scholar, and PubMed for the study. The search was restricted for a period of 48 years, ranging from 1980 - 2022, to make it more systematic and concise. The obtained research and review articles were thoroughly studied and analyzed to present a comprehensive review.

Findings

The findings of the present study mainly focus on the impact of polyphenols on human health, especially cognitive status. Evidence indicates that polyphenol-rich dark chocolate might offer numerous advantages for cardiovascular and metabolic health, but its effects on cognition, mental health, gut microbiota, and cancer risk need to be studied further. More research, including animal experiments and human trials, is needed to understand the health impact and optimal dosages of dark chocolate. Understanding chocolate’s therapeutic benefits can open new avenues for human well-being.

Conclusion

The complex relationship between chocolate and emotion the gut-brain axis has been discussed. From the momentary sensory pleasures to the intriguing interplay between cravings and comfort-seeking behaviors, chocolate has a unique place in the realm of emotional indulgence.

Loading

Article metrics loading...

/content/journals/cnf/10.2174/0115734013332631250130115501
2025-02-06
2025-07-12
Loading full text...

Full text loading...

References

  1. Benton D. Nabb S. Carbohydrate, memory, and mood. Nutr Rev. 2003 61 5 Pt 2 S61 67 10.1301/nr.2003.may.S61‑S67
    [Google Scholar]
  2. Ruxton C.H.S. The impact of caffeine on mood, cognitive function, performance and hydration: A review of benefits and risks. Nutr. Bull. 2008 33 1 15 25 10.1111/j.1467‑3010.2007.00665.x
    [Google Scholar]
  3. Fredholm B.B. Smit H.J. Theobromine and the pharmacology of cocoa. Handb Exp Pharmacol. 2011 201 234
    [Google Scholar]
  4. Kelm M.A. Hammerstone J.F. Beecher G. Holden J. Haytowitz D. Gebhardt S. Gu L. Prior R.L. Concentrations of proanthocyanidins in common foods and estimations of normal consumption. J. Nutr. 2004 134 3 613 617 10.1093/jn/134.3.613 14988456
    [Google Scholar]
  5. Sies H. Schewe T. Heiss C. Kelm M. Cocoa polyphenols and inflammatory mediators. Am. J. Clin. Nutr. 2005 81 1 Suppl. 304S 312S 10.1093/ajcn/81.1.304S 15640495
    [Google Scholar]
  6. Dillinger T.L. Barriga P. Escárcega S. Jimenez M. Lowe D.S. Grivetti L.E. Food of the gods: Cure for humanity? A cultural history of the medicinal and ritual use of chocolate. J. Nutr. 2000 130 8 Suppl. 2057S 2072S 10.1093/jn/130.8.2057S 10917925
    [Google Scholar]
  7. Hollenberg N.K. Martinez G. McCullough M. Meinking T. Passan D. Preston M. Rivera A. Taplin D. Vicaria-Clement M. Aging, acculturation, salt intake, and hypertension in the Kuna of Panama. Hypertension 1997 29 1 171 176 10.1161/01.HYP.29.1.171 9039098
    [Google Scholar]
  8. McCullough M.L. Chevaux K. Jackson L. Preston M. Martinez G. Schmitz H.H. Coletti C. Campos H. Hollenberg N.K. Hypertension, the Kuna, and the epidemiology of flavanols. J. Cardiovasc. Pharmacol. 2006 47 Suppl. 2 S103 S109 10.1097/00005344‑200606001‑00003 16794446
    [Google Scholar]
  9. Montagna M.T. Diella G. Triggiano F. Caponio G.R. Giglio O.D. Caggiano G. Ciaula A.D. Portincasa P. Chocolate,“food of the gods”: History, science, and human health. Int. J. Environ. Res. Public Health 2019 16 24 4960 10.3390/ijerph16244960 31817669
    [Google Scholar]
  10. Barišić V. Kopjar M. Jozinović A. Flanjak I. Ačkar Đ. Miličević B. Šubarić D. Jokić S. Babić J. The chemistry behind chocolate production. Molecules 2019 24 17 3163 10.3390/molecules24173163 31480281
    [Google Scholar]
  11. Wollgast J. Anklam E. Review on polyphenols in Theobroma cacao: Changes in composition during the manufacture of chocolate and methodology for identification and quantification. Food Res. Int. 2000 33 6 423 447 10.1016/S0963‑9969(00)00068‑5
    [Google Scholar]
  12. Meng C.C. Jalil A.M.M. Ismail A. Phenolic and theobromine contents of commercial dark, milk and white chocolates on the Malaysian market. Molecules 2009 14 1 200 209 10.3390/molecules14010200 19127248
    [Google Scholar]
  13. McShea A. Leissle K. Smith M.A. The essence of chocolate: A rich, dark, and well-kept secret. Nutrition 2009 25 11-12 1104 1105 10.1016/j.nut.2009.05.012 19818278
    [Google Scholar]
  14. Woodside J.V. McKinley M.C. Young I.S. Saturated and trans fatty acids and coronary heart disease. Curr. Atheroscler. Rep. 2008 10 6 460 466 10.1007/s11883‑008‑0072‑5 18937892
    [Google Scholar]
  15. Bracco U. Effect of triglyceride structure on fat absorption. Am. J. Clin. Nutr. 1994 60 6 Suppl. 1002S 1009S 10.1093/ajcn/60.6.1002S 7977140
    [Google Scholar]
  16. Lecumberri E. Mateos R. Ramos S. Alía M. Rúperez P. Goya L. Izquierdo-Pulido M. Bravo L. Characterization of cocoa fiber and its effect on the antioxidant capacity of serum in rats. Nutr. Hosp. 2006 21 5 622 628 17044609
    [Google Scholar]
  17. Weickert M.O. Pfeiffer A.F.H. Metabolic effects of dietary fiber consumption and prevention of diabetes. J. Nutr. 2008 138 3 439 442 10.1093/jn/138.3.439 18287346
    [Google Scholar]
  18. Chakraborti S. Chakraborti T. Mandal M. Mandal A. Das S. Ghosh S. Protective role of magnesium in cardiovascular diseases: A review. Mol. Cell. Biochem. 2002 238 1/2 163 179 10.1023/A:1019998702946 12349904
    [Google Scholar]
  19. Ando K. Matsui H. Fujita M. Fujita T. Protective effect of dietary potassium against cardiovascular damage in salt-sensitive hypertension: Possible role of its antioxidant action. Curr. Vasc. Pharmacol. 2010 8 1 59 63 10.2174/157016110790226561 19485915
    [Google Scholar]
  20. Dinan T.G. Stanton C. Long-Smith C. Kennedy P. Cryan J.F. Cowan C.S.M. Cenit M.C. van der Kamp J.W. Sanz Y. Feeding melancholic microbes: MyNewGut recommendations on diet and mood. Clin. Nutr. 2019 38 5 1995 2001 10.1016/j.clnu.2018.11.010 30497694
    [Google Scholar]
  21. Smith D.F. Benefits of flavanol-rich cocoa-derived products for mental well-being: A review. J. Funct. Foods 2013 5 1 10 15 10.1016/j.jff.2012.09.002
    [Google Scholar]
  22. Cryan J.F. O’Mahony S.M. The microbiome-gut-brain axis: From bowel to behavior. Neurogastroenterol. Motil. 2011 23 3 187 192 10.1111/j.1365‑2982.2010.01664.x 21303428
    [Google Scholar]
  23. Cryan J.F. O’Riordan K.J. Cowan C.S.M. Sandhu K.V. Bastiaanssen T.F.S. Boehme M. Codagnone M.G. Cussotto S. Fulling C. Golubeva A.V. Guzzetta K.E. Jaggar M. Long-Smith C.M. Lyte J.M. Martin J.A. Molinero-Perez A. Moloney G. Morelli E. Morillas E. O’Connor R. Cruz-Pereira J.S. Peterson V.L. Rea K. Ritz N.L. Sherwin E. Spichak S. Teichman E.M. van de Wouw M. Ventura-Silva A.P. Wallace-Fitzsimons S.E. Hyland N. Clarke G. Dinan T.G. The microbiota-gut-brain axis. Physiol. Rev. 2019 99 4 1877 2013 10.1152/physrev.00018.2018 31460832
    [Google Scholar]
  24. Lachmansingh D.A. Lavelle A. Cryan J.F. Clarke G. Microbiota-gut-brain axis and antidepressant treatment. Curr. Top. Behav. Neurosci. 2023 66 175 216 10.1007/7854_2023_449 37962812
    [Google Scholar]
  25. Mörkl S. Butler M. I. Holl A. Cryan J. F. Dinan T. G. Probiotics and the microbiota-gut-brain axis: Focus on psychiatry. Curr Nutr Rep. 2020 9 3 171 182 10.1007/s13668‑020‑00313‑5
    [Google Scholar]
  26. Shin J.H. Kim C.S. Cha J. Kim S. Lee S. Chae S. Chun W.Y. Shin D.M. Consumption of 85% cocoa dark chocolate improves mood in association with gut microbial changes in healthy adults: A randomized controlled trial. J. Nutr. Biochem. 2022 99 108854 10.1016/j.jnutbio.2021.108854 34530112
    [Google Scholar]
  27. Pase M.P. Scholey A.B. Pipingas A. Kras M. Nolidin K. Gibbs A. Wesnes K. Stough C. Cocoa polyphenols enhance positive mood states but not cognitive performance: A randomized, placebo-controlled trial. J. Psychopharmacol. 2013 27 5 451 458 10.1177/0269881112473791 23364814
    [Google Scholar]
  28. Wong M-L. Inserra A. Lewis M.D. Mastronardi C.A. Leong L. Choo J. Kentish S. Xie P. Morrison M. Wesselingh S.L. Rogers G.B. Licinio J. Inflammasome signaling affects anxiety- and depressive-like behavior and gut microbiome composition. Mol. Psychiatry 2016 21 6 797 805 10.1038/mp.2016.46 27090302
    [Google Scholar]
  29. Luna R.A. Oezguen N. Balderas M. Venkatachalam A. Runge J.K. Versalovic J. Veenstra-VanderWeele J. Anderson G.M. Savidge T. Williams K.C. Distinct microbiome-neuroimmune signatures correlate with functional abdominal pain in children with autism spectrum disorder. Cell. Mol. Gastroenterol. Hepatol. 2017 3 2 218 230 10.1016/j.jcmgh.2016.11.008 28275689
    [Google Scholar]
  30. Serra D. Almeida L.M. Dinis T.C.P. Dietary polyphenols: A novel strategy to modulate microbiota-gut-brain axis. Trends Food Sci. Technol. 2018 78 224 233 10.1016/j.tifs.2018.06.007
    [Google Scholar]
  31. Sokolov A.N. Pavlova M.A. Klosterhalfen S. Enck P. Chocolate and the brain: Neurobiological impact of cocoa flavanols on cognition and behavior. Neurosci. Biobehav. Rev. 2013 37 10 2445 2453 10.1016/j.neubiorev.2013.06.013 23810791
    [Google Scholar]
  32. Carmody R.N. Turnbaugh P.J. Host-microbial interactions in the metabolism of therapeutic and diet-derived xenobiotics. J. Clin. Invest. 2014 124 10 4173 4181 10.1172/JCI72335 25105361
    [Google Scholar]
  33. King S.J. Isaacs A.M. O’Farrell E. Abizaid A. Motivation to obtain preferred foods is enhanced by ghrelin in the ventral tegmental area. Horm. Behav. 2011 60 5 572 580 10.1016/j.yhbeh.2011.08.006 21872601
    [Google Scholar]
  34. Macdiarmid J.I. Hetherington M.M. Mood modulation by food: An exploration of affect and cravings in ‘chocolate addicts’. Br. J. Clin. Psychol. 1995 34 1 129 138 10.1111/j.2044‑8260.1995.tb01445.x 7757035
    [Google Scholar]
  35. Massee L.A. Ried K. Pase M. Travica N. Yoganathan J. Scholey A. Macpherson H. Kennedy G. Sali A. Pipingas A. The acute and sub-chronic effects of cocoa flavanols on mood, cognitive and cardiovascular health in young healthy adults: A randomized, controlled trial. Front. Pharmacol. 2015 6 93 10.3389/fphar.2015.00093 26042037
    [Google Scholar]
  36. Yadav H. Unveiling the role of gut-brain axis in regulating neurodegenerative diseases: A comprehensive review. Life Sci. 2023 330 122022
    [Google Scholar]
  37. Basiji K. Sendani A.A. Ghavami S.B. Farmani M. Kazemifard N. Sadeghi A. Lotfali E. Aghdaei H.A. The critical role of gut-brain axis microbiome in mental disorders. Metab. Brain Dis. 2023 38 8 2547 2561 10.1007/s11011‑023‑01248‑w 37436588
    [Google Scholar]
  38. Verma A. Inslicht S.S. Bhargava A. Gut-brain axis: Role of microbiome, metabolomics, hormones, and stress in mental health disorders. Cells 2024 13 17 1436 10.3390/cells13171436 39273008
    [Google Scholar]
  39. Appleton J. The gut-brain Axis: Influence of microbiota on mood and mental health. Integr. Med. 2018 17 4 28 32 31043907
    [Google Scholar]
  40. Lewandowska-Pietruszka Z. Figlerowicz M. Mazur-Melewska K. The history of the intestinal microbiota and the gut-brain axis. Pathogens 2022 11 12 1540 10.3390/pathogens11121540 36558874
    [Google Scholar]
  41. Zhu S. Jiang Y. Xu K. Cui M. Ye W. Zhao G. Jin L. Chen X. The progress of gut microbiome research related to brain disorders. J. Neuroinflammation 2020 17 1 25 10.1186/s12974‑020‑1705‑z 31952509
    [Google Scholar]
  42. Parker G. Parker I. Brotchie H. Mood state effects of chocolate. J. Affect. Disord. 2006 92 2-3 149 159 10.1016/j.jad.2006.02.007 16546266
    [Google Scholar]
  43. Smit H.J. Gaffan E.A. Rogers P.J. Methylxanthines are the psycho-pharmacologically active constituents of chocolate. Psychopharmacology 2004 176 3-4 412 419 10.1007/s00213‑004‑1898‑3 15549276
    [Google Scholar]
  44. Spencer J.P.E. Flavonoids and brain health: Multiple effects underpinned by common mechanisms. Genes Nutr. 2009 4 4 243 250 10.1007/s12263‑009‑0136‑3 19685255
    [Google Scholar]
  45. Joseph J.A. Shukitt-Hale B. Denisova N.A. Bielinski D. Martin A. McEwen J.J. Bickford P.C. Reversals of age-related declines in neuronal signal transduction, cognitive, and motor behavioral deficits with blueberry, spinach, or strawberry dietary supplementation. J. Neurosci. 1999 19 18 8114 8121 10.1523/JNEUROSCI.19‑18‑08114.1999 10479711
    [Google Scholar]
  46. Sorond F.A. Lipsitz L.A. Hollenberg N.K. Fisher N.D. Cerebral blood flow response to flavanol-rich cocoa in healthy elderly humans. Neuropsychiatr. Dis. Treat. 2008 4 2 433 440 18728792
    [Google Scholar]
  47. Spencer J.P.E. Abd El Mohsen M.M. Rice-Evans C. Cellular uptake and metabolism of flavonoids and their metabolites: Implications for their bioactivity. Arch. Biochem. Biophys. 2004 423 1 148 161 10.1016/j.abb.2003.11.010 14989269
    [Google Scholar]
  48. Steinberg F.M. Bearden M.M. Keen C.L. Cocoa and chocolate flavonoids: Implications for cardiovascular health. J. Am. Diet. Assoc. 2003 103 2 215 223 10.1053/jada.2003.50028 12589329
    [Google Scholar]
  49. Manach C. Scalbert A. Morand C. Rémésy C. Jiménez L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004 79 5 727 747 10.1093/ajcn/79.5.727 15113710
    [Google Scholar]
  50. Katz D.L. Doughty K. Ali A. Cocoa and chocolate in human health and disease. Antioxid. Redox Signal. 2011 15 10 2779 2811 10.1089/ars.2010.3697 21470061
    [Google Scholar]
  51. Shah Z.A. Li R.C. Ahmad A.S. Kensler T.W. Yamamoto M. Biswal S. Doré S. The flavanol (-)-epicatechin prevents stroke damage through the Nrf2/HO1 pathway. J. Cereb. Blood Flow Metab. 2010 30 12 1951 1961 10.1038/jcbfm.2010.53 20442725
    [Google Scholar]
  52. Rolls E.T. Taste, olfactory and food texture reward processing in the brain and obesity. Int. J. Obes. 2011 35 4 550 561 10.1038/ijo.2010.155 20680018
    [Google Scholar]
  53. Manach C. Williamson G. Morand C. Scalbert A. Rémésy C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr. 2005 81 1 Suppl. 230S 242S 10.1093/ajcn/81.1.230S 15640486
    [Google Scholar]
  54. Wang J.F. Schramm D.D. Holt R.R. Ensunsa J.L. Fraga C.G. Schmitz H.H. Keen C.L. A dose-response effect from chocolate consumption on plasma epicatechin and oxidative damage. J. Nutr. 2000 130 8 Suppl. 2115S 2119S 10.1093/jn/130.8.2115S 10917932
    [Google Scholar]
  55. Holt R.R. Lazarus S.A. Sullards M.C. Zhu Q.Y. Schramm D.D. Hammerstone J.F. Fraga C.G. Schmitz H.H. Keen C.L. Procyanidin dimer B2 [epicatechin-(4β-8)-epicatechin] in human plasma after the consumption of a flavanol-rich cocoa. Am. J. Clin. Nutr. 2002 76 4 798 804 10.1093/ajcn/76.4.798 12324293
    [Google Scholar]
  56. Sachdeva A.K. Kuhad A. Chopra K. Epigallocatechin gallate ameliorates behavioral and biochemical deficits in rat model of load-induced chronic fatigue syndrome. Brain Res. Bull. 2011 86 3-4 165 172 10.1016/j.brainresbull.2011.06.007 21821105
    [Google Scholar]
  57. Maes M. Depression is an inflammatory disease, but cell-mediated immune activation is the key component of depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 2011 35 3 664 675 10.1016/j.pnpbp.2010.06.014 20599581
    [Google Scholar]
  58. Racagni G. Popoli M. The pharmacological properties of antidepressants. Int. Clin. Psychopharmacol. 2010 25 3 117 131 10.1097/YIC.0b013e3283311acd 20305568
    [Google Scholar]
  59. Rogers P.J. Smit H.J. Food craving and food “addiction”: A critical review of the evidence from a biopsychosocial perspective. Pharmacol. Biochem. Behav. 2000 66 1 3 14 10.1016/S0091‑3057(00)00197‑0 10837838
    [Google Scholar]
  60. Hill A.J. Heaton-Brown L. The experience of food craving: A prospective investigation in healthy women. J. Psychosom. Res. 1994 38 8 801 814 10.1016/0022‑3999(94)90068‑X 7722960
    [Google Scholar]
  61. Lafay L. Thomas F. Mennen L. Charles M.A. Eschwege E. Borys J.M. Basdevant A. Gender differences in the relation between food cravings and mood in an adult community: Results from the fleurbaix laventie ville santé study. Int. J. Eat. Disord. 2001 29 2 195 204 10.1002/1098‑108X(200103)29:2<195::AID‑EAT1009>3.0.CO;2‑N 11429982
    [Google Scholar]
  62. King G.A. Herman C.P. Polivy J. Food perception in dieters and non-dieters. Appetite 1987 8 2 147 158 10.1016/S0195‑6663(87)80007‑7 3592651
    [Google Scholar]
  63. Yusuf S. Hawken S. Ôunpuu S. Dans T. Avezum A. Lanas F. McQueen M. Budaj A. Pais P. Varigos J. Lisheng L. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): Case-control study. Lancet 2004 364 9438 937 952 10.1016/S0140‑6736(04)17018‑9 15364185
    [Google Scholar]
  64. Corti R. Flammer A. J. Hollenberg N. K. Lüscher T. F. Cocoa and cardiovascular health. Circulation 2009 119 10 1433 1441 10.1161/CIRCULATIONAHA.108.827022
    [Google Scholar]
  65. Berry N.M. Davison K. Coates A.M. Buckley J.D. Howe P.R.C. Impact of cocoa flavanol consumption on blood pressure responsiveness to exercise. Br. J. Nutr. 2010 103 10 1480 1484 10.1017/S0007114509993382 20082737
    [Google Scholar]
  66. Martin M. Á. Ramos S. Impact of cocoa flavanols on human health. Food Chem Toxicol. 2021 151 112121 10.1016/j.fct.2021.112121
    [Google Scholar]
  67. Nehlig A. The neuroprotective effects of cocoa flavanol and its influence on cognitive performance. Br. J. Clin. Pharmacol. 2013 75 3 716 727 10.1111/j.1365‑2125.2012.04378.x 22775434
    [Google Scholar]
  68. Ross R. Atherosclerosis--an inflammatory disease. N. Engl. J. Med. 1999 340 2 115 126 10.1056/NEJM199901143400207 9887164
    [Google Scholar]
  69. Desch S. Schmidt J. Kobler D. Sonnabend M. Eitel I. Sareban M. Rahimi K. Schuler G. Thiele H. Effect of cocoa products on blood pressure: Systematic review and meta-analysis. Am. J. Hypertens. 2010 23 1 97 103 10.1038/ajh.2009.213 19910929
    [Google Scholar]
  70. Hooper L. Kay C. Abdelhamid A. Kroon P.A. Cohn J.S. Rimm E.B. Cassidy A. Effects of chocolate, cocoa, and flavan-3-ols on cardiovascular health: A systematic review and meta-analysis of randomized trials. Am. J. Clin. Nutr. 2012 95 3 740 751 10.3945/ajcn.111.023457 22301923
    [Google Scholar]
  71. Barrera-Reyes P.K. de Lara J.C.F. González-Soto M. Tejero M.E. Effects of cocoa-derived polyphenols on cognitive function in humans. Systematic review and analysis of methodological aspects. Plant Foods Hum. Nutr. 2020 75 1 1 11 10.1007/s11130‑019‑00779‑x 31933112
    [Google Scholar]
  72. Ferri C. Desideri G. Ferri L. Proietti I. Di Agostino S. Martella L. Mai F. Di Giosia P. Grassi D. Cocoa, blood pressure, and cardiovascular health. J. Agric. Food Chem. 2015 63 45 9901 9909 10.1021/acs.jafc.5b01064 26125676
    [Google Scholar]
  73. Corti R. Hutter R. Badimon J.J. Fuster V. Evolving concepts in the triad of atherosclerosis, inflammation and thrombosis. J. Thromb. Thrombolysis 2004 17 1 35 44 10.1023/B:THRO.0000036027.39353.70 15277786
    [Google Scholar]
  74. Qu Z. Liu A. Li P. Liu C. Xiao W. Huang J. Liu Z. Zhang S. Advances in physiological functions and mechanisms of (−)-epicatechin. Crit. Rev. Food Sci. Nutr. 2021 61 2 211 233 10.1080/10408398.2020.1723057 32090598
    [Google Scholar]
  75. Cook N. C. Samman S. Flavonoids—Chemistry, metabolism, cardioprotective effects, and dietary sources. J. Nutr. Biochem. 1996 7 2 66 76 10.1016/S0955‑2863(95)00168‑9
    [Google Scholar]
  76. Renaud S. de Lorgeril M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 1992 339 8808 1523 1526 10.1016/0140‑6736(92)91277‑F 1351198
    [Google Scholar]
  77. Lin X. Zhang I. Li A. Manson J.E. Sesso H.D. Wang L. Liu S. Cocoa flavanol intake and biomarkers for cardiometabolic health: A systematic review and meta-analysis of randomized controlled trials. J. Nutr. 2016 146 11 2325 2333 10.3945/jn.116.237644 27683874
    [Google Scholar]
  78. Victor V. Rocha M. Solá E. Bañuls C. Garcia-Malpartida K. Hernández- Mijares A. V. VM Oxidative stress, endothelial dysfunction and atherosclerosis. Curr. Pharm. Des. 2009 15 26 2988 3002 10.2174/138161209789058093 19754375
    [Google Scholar]
  79. Baba S. Osakabe N. Kato Y. Natsume M. Yasuda A. Kido T. Fukuda K. Muto Y. Kondo K. Continuous intake of polyphenolic compounds containing cocoa powder reduces LDL oxidative susceptibility and has beneficial effects on plasma HDL-cholesterol concentrations in humans. Am. J. Clin. Nutr. 2007 85 3 709 717 10.1093/ajcn/85.3.709 17344491
    [Google Scholar]
  80. Ullah A. Munir S. Badshah S.L. Khan N. Ghani L. Poulson B.G. Emwas A.H. Jaremko M. Important flavonoids and their role as a therapeutic agent. Molecules 2020 25 22 5243 10.3390/molecules25225243 33187049
    [Google Scholar]
  81. Kang C.H. Choi Y.H. Moon S.K. Kim W.J. Kim G.Y. Quercetin inhibits lipopolysaccharide-induced nitric oxide production in BV2 microglial cells by suppressing the NF-κB pathway and activating the Nrf2-dependent HO-1 pathway. Int. Immunopharmacol. 2013 17 3 808 813 10.1016/j.intimp.2013.09.009 24076371
    [Google Scholar]
  82. Said R.S. El-Demerdash E. Nada A.S. Kamal M.M. Resveratrol inhibits inflammatory signaling implicated in ionizing radiation-induced premature ovarian failure through antagonistic crosstalk between silencing information regulator 1 (SIRT1) and poly(ADP-ribose) polymerase 1 (PARP-1). Biochem. Pharmacol. 2016 103 140 150 10.1016/j.bcp.2016.01.019 26827941
    [Google Scholar]
  83. Xu L. Botchway B.O.A. Zhang S. Zhou J. Liu X. Inhibition of NF-κB signaling pathway by resveratrol improves spinal cord injury. Front. Neurosci. 2018 12 690 10.3389/fnins.2018.00690 30337851
    [Google Scholar]
  84. Aggarwal B.B. Sundaram C. Malani N. Ichikawa H. Curcumin: The Indian solid gold. Adv. Exp. Med. Biol. 2007 595 1 75 10.1007/978‑0‑387‑46401‑5_1 17569205
    [Google Scholar]
  85. Wang Y. Tang Q. Duan P. Yang L. Curcumin as a therapeutic agent for blocking NF-κB activation in ulcerative colitis. Immunopharmacol. Immunotoxicol. 2018 40 6 476 482 10.1080/08923973.2018.1469145 30111198
    [Google Scholar]
  86. Katiyar S.K. Afaq F. Perez A. Mukhtar H. Green tea polyphenol (-)-epigallocatechin-3-gallate treatment of human skin inhibits ultraviolet radiation-induced oxidative stress. Carcinogenesis 2001 22 2 287 294 10.1093/carcin/22.2.287 11181450
    [Google Scholar]
  87. Chacko S.M. Thambi P.T. Kuttan R. Nishigaki I. Beneficial effects of green tea: A literature review. Chin. Med. 2010 5 1 13 10.1186/1749‑8546‑5‑13 20370896
    [Google Scholar]
  88. Cory H. Passarelli S. Szeto J. Tamez M. Mattei J. The role of polyphenols in human health and food systems: A mini-review. Front. Nutr. 2018 5 87 10.3389/fnut.2018.00087 30298133
    [Google Scholar]
  89. Bauer S. R. Ding E. L. Smit L. A. Cocoa consumption, cocoa flavonoids, and effects on cardiovascular risk factors: An evidence-based review Curr. Cardiovasc. 2011 5 2 120 127 10.1007/s12170‑011‑0157‑5
    [Google Scholar]
  90. Ramiro-Puig E. Castell M. Cocoa: Antioxidant and immunomodulator. Br. J. Nutr. 2009 101 7 931 940 10.1017/S0007114508169896 19126261
    [Google Scholar]
  91. Shapiro H. Lev S. Cohen J. Singer P. Polyphenols in the prevention and treatment of sepsis syndromes: Rationale and pre-clinical evidence. Nutrition 2009 25 10 981 997 10.1016/j.nut.2009.02.010 19502006
    [Google Scholar]
  92. Gurbel P.A. Serebruany V.L. Adhesion molecules, platelet activation, and cardiovascular risk. Am. Heart J. 2002 143 2 196 198 10.1067/mhj.2002.120304 11835020
    [Google Scholar]
  93. Rein D. Paglieroni T.G. Pearson D.A. Wun T. Schmitz H.H. Gosselin R. Keen C.L. Cocoa and wine polyphenols modulate platelet activation and function. J. Nutr. 2000 130 8 Suppl. 2120S 2126S 10.1093/jn/130.8.2120S 10917933
    [Google Scholar]
  94. Natella F. Nardini M. Belelli F. Pignatelli P. Di Santo S. Ghiselli A. Violi F. Scaccini C. Effect of coffee drinking on platelets: Inhibition of aggregation and phenols incorporation. Br. J. Nutr. 2008 100 6 1276 1282 10.1017/S0007114508981459 18439332
    [Google Scholar]
  95. Bordeaux B. Yanek L.R. Moy T.F. White L.W. Becker L.C. Faraday N. Becker D.M. Casual chocolate consumption and inhibition of platelet function. Prev. Cardiol. 2007 10 4 175 180 10.1111/j.1520‑037X.2007.06693.x 17917513
    [Google Scholar]
  96. Heptinstall S. May J. Fox S. Kwik-Uribe C. Zhao L. Cocoa flavanols and platelet and leukocyte function: Recent in vitro and ex vivo studies in healthy adults. J. Cardiovasc. Pharmacol. 2006 47 Suppl. 2 S197 S205 10.1097/00005344‑200606001‑00015 16794458
    [Google Scholar]
  97. Pearson D.A. Holt R.R. Rein D. Paglieroni T. Schmitz H.H. Keen C.L. Flavanols and platelet reactivity. Clin. Dev. Immunol. 2005 12 1 1 9 15712593
    [Google Scholar]
  98. Almoosawi S. Fyfe L. Ho C. Al-Dujaili E. The effect of polyphenol-rich dark chocolate on fasting capillary whole blood glucose, total cholesterol, blood pressure and glucocorticoids in healthy overweight and obese subjects. Br. J. Nutr. 2010 103 6 842 850 10.1017/S0007114509992431 19825207
    [Google Scholar]
  99. Davison K. Berry N.M. Misan G. Coates A.M. Buckley J.D. Howe P.R.C. Dose-related effects of flavanol-rich cocoa on blood pressure. J. Hum. Hypertens. 2010 24 9 568 576 10.1038/jhh.2009.105 20090776
    [Google Scholar]
  100. Crews W.D. Jr Harrison D.W. Wright J.W. A double-blind, placebo-controlled, randomized trial of the effects of dark chocolate and cocoa on variables associated with neuropsychological functioning and cardiovascular health: Clinical findings from a sample of healthy, cognitively intact older adults. Am. J. Clin. Nutr. 2008 87 4 872 880 10.1093/ajcn/87.4.872 18400709
    [Google Scholar]
  101. Grassi D. Necozione S. Lippi C. Croce G. Valeri L. Pasqualetti P. Desideri G. Blumberg J.B. Ferri C. Cocoa reduces blood pressure and insulin resistance and improves endothelium-dependent vasodilation in hypertensives. Hypertension 2005 46 2 398 405 10.1161/01.HYP.0000174990.46027.70 16027246
    [Google Scholar]
  102. Ried K. Sullivan T.R. Fakler P. Frank O.R. Stocks N.P. Effect of cocoa on blood pressure. Cochrane Database Syst. Rev. 2012 15 8 CD008893 22895979
    [Google Scholar]
  103. Buijsse B. Weikert C. Drogan D. Bergmann M. Boeing H. Chocolate consumption in relation to blood pressure and risk of cardiovascular disease in German adults. Eur. Heart J. 2010 31 13 1616 1623 10.1093/eurheartj/ehq068 20354055
    [Google Scholar]
  104. Napoli C. Ignarro L.J. Nitric oxide and pathogenic mechanisms involved in the development of vascular diseases. Arch. Pharm. Res. 2009 32 8 1103 1108 10.1007/s12272‑009‑1801‑1 19727602
    [Google Scholar]
  105. Lavoie J.L. Sigmund C.D. Minireview: Overview of the renin-angiotensin system--An endocrine and paracrine system. Endocrinology 2003 144 6 2179 2183 10.1210/en.2003‑0150 12746271
    [Google Scholar]
  106. Ceriello A. Motz E. Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler. Thromb. Vasc. Biol. 2004 24 5 816 823 10.1161/01.ATV.0000122852.22604.78 14976002
    [Google Scholar]
  107. Miller K.B. Stuart D.A. Smith N.L. Lee C.Y. McHale N.L. Flanagan J.A. Ou B. Hurst W.J. Antioxidant activity and polyphenol and procyanidin contents of selected commercially available cocoa-containing and chocolate products in the United States. J. Agric. Food Chem. 2006 54 11 4062 4068 10.1021/jf060290o 16719535
    [Google Scholar]
  108. Chakravarthy B.K. Gupta S. Gode K.D. Functional beta cell regeneration in the islets of pancreas in alloxan induced diabetic rats by (−)-epicatechin. Life Sci. 1982 31 24 2693 2697 10.1016/0024‑3205(82)90713‑5 6759833
    [Google Scholar]
  109. Ruzaidi A. Amin I. Nawalyah A.G. Hamid M. Faizul H.A. The effect of Malaysian cocoa extract on glucose levels and lipid profiles in diabetic rats. J. Ethnopharmacol. 2005 98 1-2 55 60 10.1016/j.jep.2004.12.018 15763363
    [Google Scholar]
  110. Kim J. Montagnani M. Koh K.K. Quon M.J. Reciprocal relationships between insulin resistance and endothelial dysfunction: molecular and pathophysiological mechanisms. Circulation 2006 113 15 1888 1904 10.1161/CIRCULATIONAHA.105.563213 16618833
    [Google Scholar]
  111. Sydow K. Mondon C.E. Cooke J.P. Insulin resistance: Potential role of the endogenous nitric oxide synthase inhibitor ADMA. Vasc. Med. 2005 10 1_suppl Suppl. 1 S35 S43 10.1177/1358836X0501000106 16444867
    [Google Scholar]
  112. Ramiro-Puig E. Urpí-Sardà M. Pérez-Cano F.J. Franch À. Castellote C. Andrés-Lacueva C. Izquierdo-Pulido M. Castell M. Cocoa-enriched diet enhances antioxidant enzyme activity and modulates lymphocyte composition in thymus from young rats. J. Agric. Food Chem. 2007 55 16 6431 6438 10.1021/jf070487w 17630760
    [Google Scholar]
  113. Kenny T.P. Shu S. Moritoki Y. Keen C.L. Gershwin M.E. Cocoa flavanols and procyanidins can modulate the lipopolysaccharide activation of polymorphonuclear cells in vitro. J. Med. Food 2009 12 1 1 7 10.1089/jmf.2007.0263 19298189
    [Google Scholar]
  114. Kenny T.P. Keen C.L. Schmitz H.H. Gershwin M.E. Immune effects of cocoa procyanidin oligomers on peripheral blood mononuclear cells. Exp. Biol. Med. 2007 232 2 293 300 17259337
    [Google Scholar]
  115. Ramiro E. Franch À. Castellote C. Andrés-Lacueva C. Izquierdo-Pulido M. Castell M. Effect of Theobroma cacao flavonoids on immune activation of a lymphoid cell line. Br. J. Nutr. 2005 93 6 859 866 10.1079/BJN20051443 16022755
    [Google Scholar]
  116. Federico A. Morgillo F. Tuccillo C. Ciardiello F. Loguercio C. Chronic inflammation and oxidative stress in human carcinogenesis. Int. J. Cancer 2007 121 11 2381 2386 10.1002/ijc.23192 17893868
    [Google Scholar]
  117. Mackenzie G.G. Carrasquedo F. Delfino J.M. Keen C.L. Fraga C.G. Oteiza P.I. Epicatechin, catechin, and dimeric procyanidins inhibit PMA‐induced NF‐κB activation at multiple steps in Jurkat T cells. FASEB J. 2004 18 1 167 169 10.1096/fj.03‑0402fje 14630700
    [Google Scholar]
  118. Spadafranca A. Martinez Conesa C. Sirini S. Testolin G. Effect of dark chocolate on plasma epicatechin levels, DNA resistance to oxidative stress and total antioxidant activity in healthy subjects. Br. J. Nutr. 2010 103 7 1008 1014 10.1017/S0007114509992698 19889244
    [Google Scholar]
  119. Myung S-K. Ju W. Choi H.J. Kim S.C. Group K.M.A.S. Soy intake and risk of endocrine‐related gynaecological cancer: A meta‐analysis. BJOG 2009 116 13 1697 1705 10.1111/j.1471‑0528.2009.02322.x 19775307
    [Google Scholar]
  120. Maskarinec G. Cancer protective properties of cocoa: A review of the epidemiologic evidence. Nutr. Cancer 2009 61 5 573 579 10.1080/01635580902825662 19838930
    [Google Scholar]
  121. Selmi C. Cocchi C.A. Lanfredini M. Keen C.L. Gershwin M.E. Chocolate at heart: The anti‐inflammatory impact of cocoa flavanols. Mol. Nutr. Food Res. 2008 52 11 1340 1348 10.1002/mnfr.200700435 18991246
    [Google Scholar]
  122. Wang-Polagruto J.F. Villablanca A.C. Polagruto J.A. Lee L. Holt R.R. Schrader H.R. Ensunsa J.L. Steinberg F.M. Schmitz H.H. Keen C.L. Chronic consumption of flavanol-rich cocoa improves endothelial function and decreases vascular cell adhesion molecule in hypercholesterolemic postmenopausal women. J. Cardiovasc. Pharmacol. 2006 47 Suppl. 2 S177 S186 10.1097/00005344‑200606001‑00013 16794456
    [Google Scholar]
  123. Suganuma M. Okabe S. Kai Y. Sueoka N. Sueoka E. Fujiki H. Synergistic effects of (--)-epigallocatechin gallate with (--)-epicatechin, sulindac, or tamoxifen on cancer-preventive activity in the human lung cancer cell line PC-9. Cancer Res. 1999 59 1 44 47 9892181
    [Google Scholar]
  124. Arlorio M. Bottini C. Travaglia F. Locatelli M. Bordiga M. Coïsson J.D. Martelli A. Tessitore L. Protective activity of Theobroma cacao L. phenolic extract on AML12 and MLP29 liver cells by preventing apoptosis and inducing autophagy. J. Agric. Food Chem. 2009 57 22 10612 10618 10.1021/jf902419t 19883072
    [Google Scholar]
/content/journals/cnf/10.2174/0115734013332631250130115501
Loading
/content/journals/cnf/10.2174/0115734013332631250130115501
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: polyphenols ; Chocolate ; cocoa beans ; antioxidant ; cancer ; microbiome
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test