Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-4013
  • E-ISSN: 2212-3881

Abstract

Background

In Côte d’Ivoire, sorghum was most commonly used to produce beer. However, the population must focus on other sorghum uses. Sorghum possesses numerous health and nutritional benefits that must be explored, such as its involvement in diabetes management and prevention. Globally, the prevalence of diabetes is rising. Understanding the glycemic index (GI) is crucial for managing and preventing it. The GI gauges how quickly or slowly blood glucose rises in response to a meal.

Objective

The aim of this study was to investigate the glycemic index (GI) of sorghum household cookies.

Methods

The macro- and micronutrients and phytochemical compounds content of sorghum cookies have been determined. Microbiological analysis of sorghum cookies during storage at room temperature has been carried out by spoilage germ and pathogenic germ enumeration. The glycaemic index (GI) of sorghum cookies has been investigated by the blood sugar response method.

Results

In this study, the results showed that the sorghum-based biscuit has an energy value of 515.655 ± 0.5 Kcal/GMS due to its carbohydrate content of 54.95 ± 0.028%, fat content of 30.05 ± 0.05%, and protein content of 6.34 ± 0.0141%. It also contains minerals such as sodium (3.21 ± 0.014 mg), phosphorus (14 ± 0.41 g), and calcium (122 ± 5.65 mg). The phenolic compound content was: total phenols 2756.72 ± 294.5 µg EAG/gMS, flavonoids 497.29 ± 13.016 µg EQ/gMS, and condensed tannins 651.59 ± 199.429 µg EC/gMS. The glycaemic index of household cookies made from sorghum was investigated. The results revealed that sorghum cookies exhibited a low glycaemic index of 40.82%, which is less than 55% in accordance with the norm. Also, microbiological analysis showed the total absence of spoilage germs and pathogenic germs during 30 days of storage at room temperature.

Conclusion

Sorghum cookies present a low glycaemic index and can be used in diabetes management and prevention. They are stored at room temperature for 30 days under hygienic conditions.

Loading

Article metrics loading...

/content/journals/cnf/10.2174/0115734013307493240627033411
2024-07-11
2024-12-27
Loading full text...

Full text loading...

References

  1. World Health OrganizationGlobal report on diabetes.GenevaWorld Health Organization2016
    [Google Scholar]
  2. American Diabetes AssociationThe increasing burden of diabetes.Medicine of Metabolic Diseases202171724
    [Google Scholar]
  3. International Diabetes FederationDiagnosis and classification of diabetes mellitus.Diabetes Care201336Suppl 1S6774
    [Google Scholar]
  4. Songré-OuattaraL.T. GoubgouM. SavadogoA. Impact de l’emballage et de la durée de conservation sur la qualité nutritionnelle et microbiologique des biscuits de sorgho enrichis au moringa et à la spiruline.J. Appl. Biosci.20171091105611057010.4314/jab.v109i1.1
    [Google Scholar]
  5. Programme National de Lutte contre les Maladies Métaboliques et Prévention des Maladies Non Transmissibles 2017 : Le taux de prévalence nationale du diabète selon une enquête Médecine des Maladies Métaboliques.2017
  6. GassasseZ. SmithD. FinerS. GalloV. Association between urbanisation and type 2 diabetes: An ecological study.BMJ Glob. Health201724e00047310.1136/bmjgh‑2017‑00047329104770
    [Google Scholar]
  7. Le GrelleC. Adhésion aux règles hygiéno-diététiques des patients diabétiques de type 2 et rôle du médecin généraliste dans leur prise en charge à Fréjus et Saint-Raphaël.Université de Nice Sophia Antipolis, Faculte de Médecine2015
    [Google Scholar]
  8. MensahP. TomkinsA. Household-level technologies to improve the availability and preparation of adequate and safe complementary foods.Food Nutr. Bull.200324110412510.1177/15648265030240010612664529
    [Google Scholar]
  9. Songre-OuattaraL.T. GorgaK. BationoF. SavadogoA. DiawaraB. Utilisation du moringa, de la spiruline, de la patate douce à chair orange et d’un complexe minéral et vitaminique dans la fabrication de biscuits de sorgho enrichis destinés aux jeunes enfants.Int. J. Biol. Chem. Sci.20171041651166510.4314/ijbcs.v10i4.17
    [Google Scholar]
  10. LicataR. CooreyR. ZhaoY. ChuJ. JohnsonS. Maximizing slowly digested starch in an expanded sorghum‐maize extruded food using response surface methodology.Stärke2015673-428529310.1002/star.201400191
    [Google Scholar]
  11. OfosuF.K. ElahiF. DaliriE.B.M. AlooS.O. ChelliahR. HanS.I. OhD.H. Fermented sorghum improves type 2 diabetes remission by modulating gut microbiota and their related metabolites in high fat diet-streptozotocin induced diabetic mice.J. Funct. Foods202310710566610.1016/j.jff.2023.105666
    [Google Scholar]
  12. BirhanuS. Potential benefits of sorghum (Sorghum bicolor (l.) Moench) on human health: A review.Int J Food Eng Technol202151162610.11648/j.ijfet.20210501.13
    [Google Scholar]
  13. OlawoleT.D. OkundigieM.I. RotimiS.O. OkwumabuaO. AfolabiI.S. Preadministration of fermented sorghum diet provides protection against hyperglycemia induced oxidative stress and suppressed glucose utilization in alloxan-induced diabetic rats.Front. Nutr.201851610.3389/fnut.2018.0001629594128
    [Google Scholar]
  14. MoraesÉ.A. MarineliR.S. LenquisteS.A. QueirozV.A.V. CamargoR.L. BorckP.C. CarneiroE.M. Maróstica JúniorM.R. Whole sorghum flour improves glucose tolerance, insulin resistance and preserved pancreatic islets function in obesity diet-induced rats.J. Funct. Foods20184553054010.1016/j.jff.2017.03.047
    [Google Scholar]
  15. CoulibalyW.H. BoliZ.B.I.A. BouateninK.M.J.P. M’braA.M.A. KouhoundeS.H.S. DjèK.M. Identification of non-Saccharomyces yeast strains isolated from local traditional sorghum beer produced in Abidjan district (Côte d’Ivoire) and their ability to carry out alcoholic fermentation.BMC Microbiol.202222116510.1186/s12866‑022‑02560‑835754030
    [Google Scholar]
  16. AugustinL.S.A. KendallC.W.C. JenkinsD.J.A. WillettW.C. AstrupA. BarclayA.W. BjörckI. Brand-MillerJ.C. BrighentiF. BuykenA.E. CerielloA. La VecchiaC. LiveseyG. LiuS. RiccardiG. RizkallaS.W. SievenpiperJ.L. TrichopoulouA. WoleverT.M.S. Baer-SinnottS. PoliA. Glycemic index, glycemic load and glycemic response: An international scientific consensus summit from the international carbohydrate quality consortium (ICQC).Nutr. Metab. Cardiovasc. Dis.201525979581510.1016/j.numecd.2015.05.00526160327
    [Google Scholar]
  17. FAO and WHOCarbohydrates in human nutrition. Report of a Joint FAO/WHO Expert Consultation.FAO Food Nutr Pap.1998661140
    [Google Scholar]
  18. HussainA. KaulR. Formulation and characterization of buckwheat-barley supplemented multigrain biscuits.Curr. Res. Nutr. Food Sci.20186387388110.12944/CRNFSJ.6.3.30
    [Google Scholar]
  19. SaeedS. AliS. FaheemK. AliR. GiuffrèA. The impact of innovative plant sources (Cordia myxa L. fruit (Assyrian Plum) and Phoenix dactylifera L. Biowaste (Date Pit)) on the physicochemical, microstructural, nutritional, and sensorial properties of gluten-free biscuits.Foods20221115234610.3390/foods1115234635954112
    [Google Scholar]
  20. WengM. LiY. WuL. ZhengH. LaiP. TangB. LuoX. Effects of passion fruit peel flour as a dietary fibre resource on biscuit quality.Food Sci. Technol.2021411657310.1590/fst.33419
    [Google Scholar]
  21. Functional Food MarketFunctional foods market size, share & trends analysis report by ingredient (carotenoids, prebiotics & probiotics, fatty acids, dietary fibers), by product, by application, by region, and segment forecasts, 2022 - 2030.2019Available From: https://www.researchandmarkets.com/reports/4764576/functional-foods-market-size-share-and-trends
  22. AOAC. Official Methods of analysis. In: 1990. Available From: https://www.scirp.org/reference/ReferencesPapers?ReferenceID=1929875
  23. AFNORV03-908.Graines oléagineuses. Détermination de la teneur en huile. Méthode simplifiée par extraction à l’hexane.1988Available From: https://connect.snv.ch/fr/v03-908-1988
  24. KularatneK.I.A. de FreitasC.R. Epiphytic lichens as biomonitors of airborne heavy metal pollution.Environ. Exp. Bot.201388243210.1016/j.envexpbot.2012.02.010
    [Google Scholar]
  25. SingletonV.L. RossiJ.A.Jr Colorimetry of total phenols with phospho molybdic phosphotungstic acid reagents.Am. J. Enol. Vitic.196516314415810.5344/ajev.1965.16.3.144
    [Google Scholar]
  26. El HaririB. SalléG. AndaryC. Involvement of flavonoids in the resistance of two poplar cultivars to mistletoe (Viscum album L.).Protoplasma19911621202610.1007/BF01403897
    [Google Scholar]
  27. HeimlerD VignoliniP Giulia DiniM Francesco VincieriF RmaniA. Antiradical activity and polyphenol composition of local Brassicaceae edible varieties.Food Chem200699346446910.1016/j.foodchem.2005.07.057
    [Google Scholar]
  28. BloisM.S. Antioxidant determinations by the use of a stable free radical.Nature195818146171199120010.1038/1811199a0
    [Google Scholar]
  29. BrounsF. BjorckI. FraynK.N. GibbsA.L. LangV. SlamaG. WoleverT.M.S. Glycaemic index methodology.Nutr. Res. Rev.200518114517110.1079/NRR200510019079901
    [Google Scholar]
  30. ISO26642:2010— food products-determination of the Glycaemic Index (GI) and recommendation for food classification.2010Available From: https://www.iso.org/standard/43633.html
  31. DjeniN.T. N’GuessanK.F. TokaD.M. KouameK.A. DjeK.M. Quality of attieke (a fermentedcassava product) frorn the three main processing zones in Côte d’Ivoire.Food Control20111713741
    [Google Scholar]
  32. CapitaR. Alonso-CallejaM.C.B. Garcia-FernandezM.C. Assessment of Baird- Parker agar as screening test for determination of Staphylococcus aureus in poultry meat.J. Microbiol.2001394321325
    [Google Scholar]
  33. CesarJ. KanweA. ZongoL. AkoudjimM. Expérimentations en cultures fourragères dans la région de Bobo-Dioulasso.2009Available From: https://www.sidalc.net/search/Record/dig-cirad-fr-556497/Details
  34. Mami-SoualemZ. BrixiN. BeghdadC. BelarbiM. Effet antioxydant et antihyperglycémiant du seigle ( Secale cereale L.) et du sorgho ( Sorghum bicolor L.) chez le rat Wistar rendu diabétique.Phytotherapie201816S1S273S28310.3166/phyto‑2018‑0013
    [Google Scholar]
  35. PrasadM.P.R. RaoB.D. KalpanaK. RaoM.V. PatilJ.V. Glycaemic index and glycaemic load of sorghum products.J. Sci. Food Agric.20159581626163010.1002/jsfa.686125092385
    [Google Scholar]
  36. GiuntiniE.B. SardáF.A.H. de MenezesE.W. The effects of soluble dietary fibers on glycemic response: An overview and futures perspectives.Foods20221123393410.3390/foods1123393436496742
    [Google Scholar]
  37. HollandC. RydenP. EdwardsC.H. GrundyM.M.L. Plant cell walls: Impact on nutrient bioaccessibility and digestibility.Foods20209220110.3390/foods902020132079083
    [Google Scholar]
  38. CaiM. DouB. PughJ.E. LettA.M. FrostG.S. The impact of starchy food structure on postprandial glycemic response and appetite: A systematic review with meta-analysis of randomized crossover trials.Am. J. Clin. Nutr.2021114247248710.1093/ajcn/nqab09834049391
    [Google Scholar]
  39. ChungI.M. KimE.H. YeoM.A. KimS.J. SeoM.C. MoonH.I. Antidiabetic effects of three Korean sorghum phenolic extracts in normal and streptozotocin-induced diabetic rats.Food Res. Int.201144112713210.1016/j.foodres.2010.10.051
    [Google Scholar]
  40. ParkJ.H. DarvinP. LimE.J. JoungY.H. HongD.Y. ParkE.U. ParkS.H. ChoiS.K. MoonE.S. ChoB.W. ParkK.D. LeeH.K. KimM.J. ParkD.S. ChungI.M. YangY.M. Hwanggeumchal sorghum induces cell cycle arrest, and suppresses tumor growth and metastasis through Jak2/STAT pathways in breast cancer xenografts.PLoS One201277e4053110.1371/journal.pone.004053122792362
    [Google Scholar]
  41. KimJ. ParkY. Anti-diabetic effect of sorghum extract on hepatic gluconeogenesis of streptozotocin-induced diabetic rats.Nutr. Metab.20129110610.1186/1743‑7075‑9‑10623186010
    [Google Scholar]
  42. ChungI.M. YeoM.A. KimS.J. KimM.J. ParkD.S. MoonH.I. Antilipidemic activity of organic solvent extract from Sorghum bicolor on rats with diet-induced obesity.Hum. Exp. Toxicol.201130111865186810.1177/096032711039006621078773
    [Google Scholar]
  43. PoquetteN.M. GuX. LeeS.O. Grain sorghum muffin reduces glucose and insulin responses in men.Food Funct.20145589489910.1039/C3FO60432B24608948
    [Google Scholar]
  44. KhalilN. ElbeltagyA.E. AljutailyT. AliA. GadallahM. Organoleptic, antioxidant activity and microbial aspects of functional biscuit formulated with date fruit fibers grown in Qassim Region.Food Sci. Technol.202343e9522210.1590/fst.95222
    [Google Scholar]
  45. LuY. BennickA. Interaction of tannin with human salivary proline rich proteins.Arch. Oral Biol.199843971772810.1016/S0003‑9969(98)00040‑59783826
    [Google Scholar]
  46. GuL. HouseS.E. RooneyL.W. PriorR.L. Sorghum extrusion increases bioavailability of catechins in weanling pigs.J. Agric. Food Chem.20085641283128810.1021/jf072742i18251504
    [Google Scholar]
  47. DunnK.L. YangL. GirardA. BeanS. AwikaJ.M. Interaction of sorghum tannins with wheat proteins and effect on in vitro starch and protein digestibility in a baked product matrix.J. Agric. Food Chem.20156341234124110.1021/jf504112z25574762
    [Google Scholar]
  48. HargroveJ.L. GreenspanP. HartleD.K. DowdC. Inhibition of aromatase and α-amylase by flavonoids and proanthocyanidins from Sorghum bicolor bran extracts.J. Med. Food2011147-879980710.1089/jmf.2010.014321612457
    [Google Scholar]
  49. KimJ.S. HyunT.K. KimM.J. The inhibitory effects of ethanol extracts from sorghum, foxtail millet and proso millet on α-glucosidase and α-amylase activities.Food Chem.201112441647165110.1016/j.foodchem.2010.08.020
    [Google Scholar]
  50. LinksM.R. TaylorJ. KrugerM.C. TaylorJ.R.N. Sorghum condensed tannins encapsulated in kafirin microparticles as a nutraceutical for inhibition of amylases during digestion to attenuate hyperglycaemia.J. Funct. Foods201512556310.1016/j.jff.2014.11.003
    [Google Scholar]
  51. AryeeFNA OduroI EllisWO AfuakwaJJ The physicochemical properties of flour samples from the roots of 31 varieties of cassava.Food Control2006171191692210.1016/j.foodcont.2005.06.013
    [Google Scholar]
/content/journals/cnf/10.2174/0115734013307493240627033411
Loading
/content/journals/cnf/10.2174/0115734013307493240627033411
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test