Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-4013
  • E-ISSN: 2212-3881

Abstract

Background

Postbiotics, also called biogenics, metabiotics, or Cell-Free Supernatants (CFS), are soluble compounds produced by live probiotic microorganisms or released after the lysis of probiotics that could provide beneficial health effects to the host.

Objective

This study was conducted with the aim of investigating the antimicrobial, antibiofilm, antioxidant, and cytotoxic effects of postbiotics derived from .

Methods

In this study, the antimicrobial properties of the postbiotic of were investigated in different experimental settings, and pasteurized milk. The antioxidant effect of postbiotic was also evaluated by -diphenyl-1-picrylhydrazyl (DPPH) and 2, 20-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) method. Furthermore, the chemical composition of the postbiotics was identified gas chromatography-mass spectrometry. The cytotoxic effects of the compounds were investigated using a human normal cell line.

Results and Discussion

According to the results, postbiotics had aconcentration-dependent antimicrobial effect, and the inhibitory effect increased with increasing concentrations. The antimicrobial activity was mainly linked with lactic acid and laurostearic acid. The Minimum Inhibitory Concentration (MIC) of the prepared postbiotic was determined to be 100 mg/ml. The lowest Minimum Effective Concentration (MEC) of postbiotics significantly differed in the food matrix, and a low MEC (minimum effective concentration) index (150 mg/ml) was detected for postbiotic of .

Conclusion

Therefore, the prepared postbiotic should be subjected to more in-depth analysis to examine its suitability as a food additive.

Loading

Article metrics loading...

/content/journals/cnf/10.2174/0115734013305717240718104323
2024-08-30
2024-12-27
Loading full text...

Full text loading...

References

  1. PrezziL.E. LeeS.H.I. NunesV.M.R. CorassinC.H. PimentelT.C. RochaR.S. RamosG.L.P.A. GuimarãesJ.T. BalthazarC.F. DuarteM.C.K.H. FreitasM.Q. EsmerinoE.A. SilvaM.C. CruzA.G. OliveiraC.A.F. Effect of Lactobacillus rhamnosus on growth of Listeria monocytogenes and Staphylococcus aureus in a probiotic Minas Frescal cheese.Food Microbiol.20209210355710.1016/j.fm.2020.10355732950151
    [Google Scholar]
  2. ŻółkiewiczJ. MarzecA. RuszczyńskiM. FeleszkoW. Postbiotics—a step beyond pre-and probiotics.Nutrients2020128218910.3390/nu1208218932717965
    [Google Scholar]
  3. PalM. KetchakmadzeD DurglishviliN. KetchakmadzeK Staphylococcus aureus: A major pathogen of food poisoning: A rare research report.Nutrition and Food Processing202251010310.31579/2637‑8914/074
    [Google Scholar]
  4. WangL. HuaX. ShiJ. JingN. JiT. LvB. LiuL. ChenY. Ochratoxin A: Occurrence and recent advances in detoxification.Toxicon2022210111810.1016/j.toxicon.2022.02.01035181402
    [Google Scholar]
  5. RossoniR.D. de BarrosP.P. MendonçaI.C. MedinaR.P. SilvaD.H.S. FuchsB.B. JunqueiraJ.C. MylonakisE. The postbiotic activity of Lactobacillus paracasei 28.4 against Candida auris.Front. Cell. Infect. Microbiol.20201039710.3389/fcimb.2020.0039732850495
    [Google Scholar]
  6. Homayouni R.A. Aghebati M.L. Samadi K.H. Fathi Z.H. AbbasiA. Postbiotics as promising tools for cancer adjuvant therapy.Adv. Pharm. Bull.20201111510.34172/apb.2021.00733747846
    [Google Scholar]
  7. MohebbiZ. HomayouniA. AziziM.H. HosseiniS.J. Effects of beta-glucan and resistant starch on wheat dough and prebiotic bread properties.J. Food Sci. Technol.201855110111010.1007/s13197‑017‑2836‑929358800
    [Google Scholar]
  8. RadA.H. AbbasiA. KafilH.S. GanbarovK. Potential pharmaceutical and food applications of postbiotics: A review.Curr. Pharm. Biotechnol.202021151576158710.2174/138920102166620051615483332416671
    [Google Scholar]
  9. Homayouni RadA. PirouzianH.R. TokerO.S. KonarN. Application of simplex lattice mixture design for optimization of sucrose-free milk chocolate produced in a ball mill.Lebensm. Wiss. Technol.201911510843510.1016/j.lwt.2019.108435
    [Google Scholar]
  10. MirghafourvandM. Homayouni R.A. Mohammad Alizadeh CharandabiS. FardiazarZ. ShokriK. The effect of probiotic yogurt on constipation in pregnant women: a randomized controlled clinical trial.Iran. Red Crescent Med. J.20161811e3987010.5812/ircmj.3987028203450
    [Google Scholar]
  11. EjtahedH, Mohtadi NJ, Homayouni RA, Niafar M, Asghari JM, Mofid V. The effects of probiotic and conventional yoghurt on diabetes markers and insulin resistance in type 2 diabetic patients: a randomized controlled clinical trial.Majallah-i Ghudad-i Darun/Riz va Mitabulism-i Iran201113118
    [Google Scholar]
  12. Homayouni-RadA. SoleimaniR.A. KhaniN. Can postbiotics prevent or improve SARS-CoV-2?Curr. Nutr. Food Sci.202319875675710.2174/1573401318666221004112500
    [Google Scholar]
  13. SadeghiA. EbrahimiM. KharazmiM.S. JafariS.M. Effects of microbial-derived biotics (meta/pharma/post-biotics) on the modulation of gut microbiome and metabolome; general aspects and emerging trends.Food Chem.202341113547810.1016/j.foodchem.2023.13547836696721
    [Google Scholar]
  14. SalminenS. ColladoM.C. EndoA. HillC. LebeerS. QuigleyE.M.M. SandersM.E. ShamirR. SwannJ.R. SzajewskaH. VinderolaG. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics.Nat. Rev. Gastroenterol. Hepatol.202118964966710.1038/s41575‑021‑00440‑633948025
    [Google Scholar]
  15. KhaniN. Abedi S.R. NoorkhajaviG. Abedi S.A. AbbasiA. Homayouni R.A. Postbiotics as potential promising tools for SARS-CoV-2 disease adjuvant therapy.J. Appl. Microbiol.202213264097411110.1111/jam.1545735064987
    [Google Scholar]
  16. Aghebati-MalekiL HasannezhadP AbbasiA KhaniN. Antibacterial, antiviral, antioxidant, and anticancer activities of postbiotics: a review of mechanisms and therapeutic perspectives.Biointerface Res. Appl. Chem.20211222629264510.33263/BRIAC122.26292645
    [Google Scholar]
  17. RadAH Aghebati-MalekiL KafilHS GilaniN AbbasiA KhaniN Postbiotics, as dynamic biomolecules, and their promising role in promoting food safety.Biointerface Res. Appl. Chem.2021116145291454410.33263/BRIAC116.1452914544
    [Google Scholar]
  18. Homayouni-radA. Postbiotics as a safe alternative to live probiotic bacteria in the food and pharmaceutical industries.HBI J.20212613215710.52547/sjku.26.4.132
    [Google Scholar]
  19. HosseiniSA AbbasiA SabahiS KhaniN Application of postbiotics produced by lactic acid bacteria in the development of active food packaging.Biointerface Res. Appl. Chem.20211256164618310.33263/BRIAC125.61646183
    [Google Scholar]
  20. ZhaoZ. WuJ. SunZ. FanJ. LiuF. ZhaoW. LiuW.H. ZhangM. HungW.L. Postbiotics derived from L. paracasei ET-22 inhibit the formation of S. mutans biofilms and bioactive substances: An analysis.Molecules2023283123610.3390/molecules2803123636770903
    [Google Scholar]
  21. MoradiM. MardaniK. TajikH. Characterization and application of postbiotics of Lactobacillus spp. on Listeria monocytogenes in vitro and in food models.Lebensm. Wiss. Technol.201911145746410.1016/j.lwt.2019.05.072
    [Google Scholar]
  22. Shafipour YordshahiA. MoradiM. TajikH. MolaeiR. Design and preparation of antimicrobial meat wrapping nanopaper with bacterial cellulose and postbiotics of lactic acid bacteria.Int. J. Food Microbiol.202032110856110.1016/j.ijfoodmicro.2020.10856132078868
    [Google Scholar]
  23. KhaniN. SoleimaniR.A. MilaniP.G. RadA.H. Evaluation of the antifungal and antibiofilm activity of postbiotics derived from Lactobacillus spp. on Penicillium expansoum in vitro and in food model.Lett. Appl. Microbiol.2023767ovad07010.1093/lambio/ovad07037339913
    [Google Scholar]
  24. KafilH.S. OzmaM.A. KhodadadiE. RezaeeM.A. AsgharzadehM. AghazadehM. ZeinalzadehE. GanbarovK. Bacterial proteomics and its application in pathogenesis studies.Curr. Pharm. Biotechnol.202223101245125610.2174/138920102266621090815323434503411
    [Google Scholar]
  25. ChangH.M. FooH.L. LohT.C. LimE.T.C. Abdul MutalibN.E. Comparative studies of inhibitory and antioxidant activities, and organic acids compositions of postbiotics produced by probiotic Lactiplantibacillus plantarum strains isolated from Malaysian foods.Front. Vet. Sci.2021760228010.3389/fvets.2020.60228033575277
    [Google Scholar]
  26. ChuahL.O. FooH.L. LohT.C. Mohammed AlitheenN.B. YeapS.K. Abdul MutalibN.E. Abdul RahimR. YusoffK. Postbiotic metabolites produced by Lactobacillus plantarum strains exert selective cytotoxicity effects on cancer cells.BMC Complement. Altern. Med.201919111410.1186/s12906‑019‑2528‑231159791
    [Google Scholar]
  27. WilsonR.M. Investigating the Antibacterial and Immunomodulatory Properties of Lactobacillus acidophilus Postbiotics.Phd Thesis, Virtua Health College of Medicine and Life Sciences of Rowan University, 2023.
    [Google Scholar]
  28. Cuevas-GonzálezP.F. LiceagaA.M. Aguilar-ToaláJ.E. Postbiotics and paraprobiotics: From concepts to applications.Food Res. Int.202013610950210.1016/j.foodres.2020.10950232846581
    [Google Scholar]
  29. OzmaM.A. AbbasiA. SabahiS. Characterization of postbiotics derived from Lactobacillus paracasei ATCC 55544 and its application in Malva sylvestris seed mucilage edible coating to the improvement of the microbiological, and sensory properties of lamb meat during storage.Biointerface Res. Appl. Chem.20221332671
    [Google Scholar]
  30. ScottE. De PaepeK. Van de WieleT. Postbiotics and their health modulatory biomolecules.Biomolecules20221211164010.3390/biom1211164036358990
    [Google Scholar]
  31. Garcia P.V. Jorge H.C.G.R. Antimicrobial activity of Lactobacillus acidophilus against foodborne pathogens.J. Biosci. Appl. Res.200783173180
    [Google Scholar]
  32. AliM Abdel-FatahAM JansonJ-C ElshafeiA. Antimicrobial potential of Saccharomyces boulardii extracts and fractions.J. Appl. Sci. Res.201245374543
    [Google Scholar]
  33. RadA.H. HosseiniS. PourjafarH. Postbiotics as dynamic biological molecules for antimicrobial activity: A mini-review.Biointerface Res. Appl. Chem.202212565436556
    [Google Scholar]
  34. SevinS. KaracaB. HaliscelikO. KibarH. OmerOglouE. KiranF. Postbiotics secreted by Lactobacillus sakei EIR/CM-1 isolated from cow milk microbiota, display antibacterial and antibiofilm activity against ruminant mastitis-causing pathogens.Ital. J. Anim. Sci.20212011302131610.1080/1828051X.2021.1958077
    [Google Scholar]
  35. OoiM.F. FooH.L. LohT.C. MohamadR. RahimR.A. AriffA. A refined medium to enhance the antimicrobial activity of postbiotic produced by Lactiplantibacillus plantarum RS5.Sci. Rep.2021111761710.1038/s41598‑021‑87081‑633828119
    [Google Scholar]
  36. ZamojskaD. NowakA. NowakI. Macierzyńska-PiotrowskaE. Probiotics and postbiotics as substitutes of antibiotics in farm animals: A review.Animals (Basel)20211112343110.3390/ani1112343134944208
    [Google Scholar]
  37. KareemK.Y. Hooi L.F. Teck C.L. May F.O. Anjas A.S. Inhibitory activity of postbiotic produced by strains of Lactobacillus plantarum using reconstituted media supplemented with inulin.Gut Pathog.2014612310.1186/1757‑4749‑6‑2324991236
    [Google Scholar]
  38. NooriS.M.A. BehfarA. SaadatA. AmeriA. Atashi Y.S.S. SiahpooshA. Antimicrobial and antioxidant properties of natural postbiotics derived from five lactic acid bacteria.Jundishapur J. Nat. Pharm. Prod.2022181e13078510.5812/jjnpp‑130785
    [Google Scholar]
  39. DanladiY. LohT.C. FooH.L. AkitH. Md TamrinN.A. Naeem AziziM. Effects of postbiotics and paraprobiotics as replacements for antibiotics on growth performance, carcass characteristics, small intestine histomorphology, immune status and hepatic growth gene expression in broiler chickens.Animals (Basel)202212791710.3390/ani1207091735405905
    [Google Scholar]
  40. HumamA.M. LohT.C. FooH.L. SamsudinA.A. MustaphaN.M. ZulkifliI. IzuddinW.I. Effects of feeding different postbiotics produced by Lactobacillus plantarum on growth performance, carcass yield, intestinal morphology, gut microbiota composition, immune status, and growth gene expression in broilers under heat stress.Animals (Basel)20199964410.3390/ani909064431480791
    [Google Scholar]
  41. MonikaM. Characterization of lactic acid bacteria postbiotics its in-vitro evaluation for antibacterial effect, anti-inflammatory and antioxidant properties. Food Microbiol.202210410400110.5958/0974‑8180.2022.00047.2
    [Google Scholar]
  42. SerterB. ÖnenA. IlhakO.I. Antimicrobial efficacy of postbiotics of lactic acid bacteria and their effects on food safety and shelf life of chicken meat.Annal. Animal Sci.202424127728710.2478/aoas‑2023‑0081
    [Google Scholar]
  43. SabahiS, Homayouni Rad A, Aghebati-Maleki L, Postbiotics as the new frontier in food and pharmaceutical research.Crit. Rev. Food Sci. Nutr.20236326837540235348016
    [Google Scholar]
  44. BanakarM. PourhajibagherM. Etemad-MoghadamS. MehranM. YazdiM.H. HaghgooR. AlaeddiniM. FrankenbergerR. Antimicrobial effects of postbiotic mediators derived from Lactobacillus rhamnosus GG and Lactobacillus reuteri on Streptococcus mutans. Frontiers in Bioscience-Landmark20232858810.31083/j.fbl280508837258481
    [Google Scholar]
  45. ButeraA. GalloS. PascadopoliM. TaccardiD. ScribanteA. Home oral care of periodontal patients using antimicrobial gel with postbiotics, lactoferrin, and aloe barbadensis leaf juice powder vs. conventional chlorhexidine gel: A split-mouth randomized clinical trial.Antibiotics (Basel)202211111810.3390/antibiotics1101011835052995
    [Google Scholar]
  46. HosseiniS. Homayouni-RadA. Samadi K.H. DorudN. Evaluating the antimicrobial effect of postbiotic extract from Lactobacillus casei on Escherichia coli in commercial sterilized milk.J.Food Saf. Hygiene202281425210.18502/jfsh.v8i1.9960
    [Google Scholar]
  47. KiranF. Kibar DemirhanH. HaliscelikO. ZatariD. Metabolic profiles of Weissella spp. postbiotics with anti-microbial and anti-oxidant effects.J. Infect. Dev. Ctries.202317450751710.3855/jidc.1692137159891
    [Google Scholar]
  48. KosgeyJ.C. MwanikiM.W. ZhangF. Probiotics and Postbiotics from Food to Health: Antimicrobial Experimental ConfirmationIntechopen2021
    [Google Scholar]
  49. MirnejadR. VahdatiA.R. RashidianiJ. ErfaniM. PiranfarV. The antimicrobial effect of lactobacillus casei culture supernatant against multiple drug resistant clinical isolates of Shigella sonnei and Shigella flexneri in vitro.Iran. Red Crescent Med. J.201315212212610.5812/ircmj.745423682323
    [Google Scholar]
  50. OliveiraC.P. SilvaJ.A. Siqueira-JúniorJ.P. Nature of the antimicrobial activity of Lactobacillus casei Bifidobacterium bifidum and Bifidobacterium animalis against foodborne pathogenic and spoilage microorganisms.Nat. Prod. Res.201529222133213610.1080/14786419.2014.98984425533144
    [Google Scholar]
  51. HartmannH.A. WilkeT. ErdmannR. Efficacy of bacteriocin-containing cell-free culture supernatants from lactic acid bacteria to control Listeria monocytogenes in food.Int. J. Food Microbiol.2011146219219910.1016/j.ijfoodmicro.2011.02.03121411169
    [Google Scholar]
  52. Ben SlamaR. KouidhiB. ZmantarT. ChaiebK. BakhroufA. Anti-listerial and anti-biofilm activities of potential Probiotic L actobacillus strains isolated from T unisian traditional fermented food.J. Food Saf.201333181610.1111/jfs.12017
    [Google Scholar]
  53. GaoH. WenJ-J. HuJ-L. NieQ-X. ChenH-H. NieS-P. XiongT. XieM-Y. Momordica charantia juice with Lactobacillus plantarum fermentation: Chemical composition, antioxidant properties and aroma profile.Food Biosci.201929627210.1016/j.fbio.2019.03.007
    [Google Scholar]
  54. MinZ. YunyunJ. MiaoC. ZhennaiY.I Characterization and ACE inhibitory activity of fermented milk with probiotic Lactobacillus plantarum K25 as analyzed by GC-MS-based metabolomics approach.J. Microbiol. Biotechnol.202030690391110.4014/jmb.1911.1100732160695
    [Google Scholar]
  55. Rahbar S.Y. Yari K.A. MovassaghpourA.A. TalebiM. Pourghassem G.B. Modulatory role of exopolysaccharides of Kluyveromyces marxianus and Pichia kudriavzevii as probiotic yeasts from dairy products in human colon cancer cells.J. Funct. Foods20206410367510.1016/j.jff.2019.103675
    [Google Scholar]
  56. MessaoudiS. MadiA. PrévostH. FeuilloleyM. ManaiM. DoussetX. ConnilN. In vitro evaluation of the probiotic potential of Lactobacillus salivarius SMXD51.Anaerobe201218658458910.1016/j.anaerobe.2012.10.00423122647
    [Google Scholar]
  57. ZabalaA. MartínM.R. HazaA.I. FernándezL. RodríguezJ.M. MoralesP. Anti-proliferative effect of two lactic acid bacteria strains of human origin on the growth of a myeloma cell line.Lett. Appl. Microbiol.200132428729210.1046/j.1472‑765X.2001.00910.x11298943
    [Google Scholar]
  58. de Oliveira CoelhoB. Fiorda-MelloF. de Melo PereiraG. Thomaz-SoccolV. RakshitS. de CarvalhoJ. SoccolC. In vitro probiotic properties and DNA protection activity of yeast and lactic acid bacteria isolated from a honey-based kefir beverage.Foods201981048510.3390/foods810048531614798
    [Google Scholar]
  59. IzuddinW.I. HumamA.M. LohT.C. FooH.L. SamsudinA.A. Dietary postbiotic Lactobacillus plantarum improves serum and ruminal antioxidant activity and upregulates hepatic antioxidant enzymes and ruminal barrier function in post-weaning lambs.Antioxidants20209325010.3390/antiox903025032204511
    [Google Scholar]
  60. Guerrero-EncinasI. González-GonzálezJ.N. Santiago-LópezL. Muhlia-AlmazánA. GarciaH.S. Mazorra-ManzanoM.A. Vallejo-CordobaB. González-CórdovaA.F. Hernández-MendozaA. Protective effect of Lacticaseibacillus casei CRL 431 postbiotics on mitochondrial function and oxidative status in rats with aflatoxin B1–induced oxidative stress.Probiotics Antimicrob. Proteins20211341033104310.1007/s12602‑021‑09747‑x33512646
    [Google Scholar]
  61. İnciliG.K. KaratepeP. AkgölM. GüngörenA. KolumanA. İlhakO.İ. KanmazH. KayaB. HayaloğluA.A. Characterization of lactic acid bacteria postbiotics, evaluation in-vitro antibacterial effect, microbial and chemical quality on chicken drumsticks.Food Microbiol.202210410400110.1016/j.fm.2022.10400135287820
    [Google Scholar]
  62. AmarettiA. di NunzioM. PompeiA. RaimondiS. RossiM. BordoniA. Antioxidant properties of potentially probiotic bacteria: in vitro and in vivo activities.Appl. Microbiol. Biotechnol.201397280981710.1007/s00253‑012‑4241‑722790540
    [Google Scholar]
  63. AfifyA.E-M.M. Antioxidant activity and biological evaluations of probiotic bacteria strains.Int. J. Acad. Res.2012461313910.7813/2075‑4124.2012/4‑6/A.19
    [Google Scholar]
  64. KimJ.Y. ChoiS.I. HeoT.R. Screening of antioxidative activity ofBifidobacterium species isolated from Korean infant feces and their identification.Biotechnol. Bioprocess Eng.; BBE20038319920410.1007/BF02935897
    [Google Scholar]
  65. LinM.Y. YenC.L. Inhibition of lipid peroxidation by Lactobacillus acidophilus and Bifidobacterium longum.J. Agric. Food Chem.19994793661366410.1021/jf981235l10552700
    [Google Scholar]
/content/journals/cnf/10.2174/0115734013305717240718104323
Loading
/content/journals/cnf/10.2174/0115734013305717240718104323
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test