Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4013
  • E-ISSN: 2212-3881

Abstract

Food recommendation systems (FRS) have gained prominence for providing personalized dietary recommendations. This paper explores the integration of FRS and nutritional therapy to enhance the management of diabetes mellitus. Nutritional therapy plays a crucial role in controlling blood glucose levels and reducing complications in diabetes. The study reviews and analyzes various food recommendation models in diverse scenarios of diabetic nutritional therapy. By considering specific needs and constraints, the strengths of each model are assessed, leading to the identification of the most suitable model for each scenario. The findings contribute to improving the quality of dietary guidance for individuals with diabetes.

Loading

Article metrics loading...

/content/journals/cnf/10.2174/0115734013297002240522063241
2024-06-03
2025-02-19
Loading full text...

Full text loading...

References

  1. ShawJ.E. SicreeR.A. ZimmetP.Z. Global estimates of the prevalence of diabetes for 2010 and 2030.Diabetes Res. Clin. Pract.201087141410.1016/j.diabres.2009.10.007 19896746
    [Google Scholar]
  2. FranzM.J. BantleJ.P. BeebeC.A. Evidence-based nutrition principles and recommendations for the treatment and prevention of diabetes and related complications.Diabetes Care200225114819810.2337/diacare.25.1.148
    [Google Scholar]
  3. SamiW. AnsariT. ButtN.S. HamidM.R.A. Effect of diet on type 2 diabetes mellitus: A review.Int. J. Health Sci.20171126571 28539866
    [Google Scholar]
  4. LeyS.H. HamdyO. MohanV. HuF.B. Prevention and management of type 2 diabetes: Dietary components and nutritional strategies.Lancet201438399331999200710.1016/S0140‑6736(14)60613‑9
    [Google Scholar]
  5. PirahandehM. UllahS. KimD.H. A distributed edge-based scheduling technique with low-latency and high-bandwidth for existing driver profiling algorithms.Electronics202110897210.3390/electronics10080972
    [Google Scholar]
  6. SongT.G. PirahandehM. AhnC.J. KimD.H. GPU-accelerated high-performance encoding and decoding of hierarchical RAID in virtual machines.J. Supercomput.201874115865588810.1007/s11227‑017‑1969‑y
    [Google Scholar]
  7. KakaniV. KimH. BasiviP.K. PasupuletiV.R. Surface thermo-dynamic characterization of poly (vinylidene chloride-co-acrylonitrile)(P (VDC-co-AN)) using inverse-gas chromatography and investigation of visual traits using computer vision image processing algorithms.Polymers2020128163110.3390/polym12081631 32717780
    [Google Scholar]
  8. BasiviP.K. KakaniV. HamiehT. HeoS.M. PasupuletiV.R. KimC.W. Thermal modeling for anionic surfactant using Inverse gas chromatography and image processing techniques.J. Mol. Liq.202338312207210.1016/j.molliq.2023.122072
    [Google Scholar]
  9. ChandrasekaranK. RameshS. KokkaracheduV. KakaniV. Toxicity reduction of ZnO cauliflower-like structure through trivalent neodymium ion substitution and investigation via computer vision and AI image analysis.Mater. Chem. Phys.20235128640
    [Google Scholar]
  10. ChandrasekaranK. KakaniV. KokkaracheduV. Toxicological assessment of divalent ion-modified ZnO nanomaterials through artificial intelligence and in vivo study.Aquat. Toxicol.202426710682610.1016/j.aquatox.2023.106826 38219502
    [Google Scholar]
  11. BasiviP.K. HamiehT. KakaniV. Exploring advanced materials: Harnessing the synergy of inverse gas chromatography and artificial vision intelligence.Trends Analyt. Chem.202417311765510.1016/j.trac.2024.117655
    [Google Scholar]
  12. KumarB.P. HamiehT. KakaniV. Surface thermodynamic properties by reverse phase chromatography and visual traits using computer vision techniques on Amberlite XAD-7 acrylic-ester-resin.Polym. Adv. Technol.202233103572358210.1002/pat.5810
    [Google Scholar]
  13. AbhariS. SafdariR. AzadbakhtL. A systematic review of nutrition recommendation systems: With focus on technical aspects.J. Biomed. Phys. Eng.20199659160210.31661/JBPE.V0I0.1248 32039089
    [Google Scholar]
  14. KumarA. TanwarP. NigamS. Survey and evaluation of food recommendation systems and techniques.20163rd International Conference on Computing for Sustainable Global Development (INDIACom)35926
    [Google Scholar]
  15. TrattnerC ElsweilerD. Food recommender systems: important contributions, challenges and future research directions.arXiv 2017171102760
    [Google Scholar]
  16. NorouziS. NematyM. ZabolinezhadH. SistaniS. EtminaniK. Food recommender systems for diabetic patients: A narrative review.Rev Clin Med201743128130
    [Google Scholar]
  17. YeraR. AlzahraniA.A. MartínezL. RodríguezR.M. A systematic review on food recommender systems for diabetic patients.Int. J. Environ. Res. Public Health2023205424810.3390/ijerph20054248 36901271
    [Google Scholar]
  18. TranT.N.T. FelfernigA. TrattnerC. HolzingerA. Recommender systems in the healthcare domain: state-of-the-art and research issues.J. Intell. Inf. Syst.202157117120110.1007/s10844‑020‑00633‑6
    [Google Scholar]
  19. VairaleV.S. ShuklaS. Recommendation of food items for thyroid patients using content-based KNN method.Data Science and Security Lecture Notes in Networks and Systems.SingaporeSpringer2021717710.1007/978‑981‑15‑5309‑7_8
    [Google Scholar]
  20. SahooA.K. PradhanC. DeepReco: Deep learning based health recommender system using collaborative filtering.Computation2019722510.3390/computation7020025
    [Google Scholar]
  21. PecuneF. CallebertL. MarsellaS. 2020. A Recommender System for Healthy and Personalized Recipes Recommendations.In: Healthy Reesys@reccsys20201520
    [Google Scholar]
  22. LiS ZhangZ LiuY WangZ LiX. A hybrid filtering method for recommender systems based on user preferences and item features.IEEE Access2019796695711
    [Google Scholar]
  23. Yera ToledoR AlzahraniAA MartinezL A food recommender system considering nutritional information and user preferences. IEEE Access201979669571110.1109/ACCESS.2019.2929413
    [Google Scholar]
  24. AlianS LiJ PandeyV. A personalized recommendation system to support diabetes self-management for American Indians.IEEE Access20186730415110.1109/ACCESS.2018.2882138
    [Google Scholar]
  25. SahooA.K. MallikS. PradhanC. MishraB.S.P. BarikR.K. DasH. Intelligence-based health recommendation system using big data analytics.Big data analytics for intelligent healthcare management.Academic Press201922724610.1016/B978‑0‑12‑818146‑1.00009‑X
    [Google Scholar]
  26. ArchenaaJ. AnitaE.M. Health recommender system using big data analytics.J Manag Sci Busin Intell2017221723
    [Google Scholar]
  27. ShowafahM. SihwiS.W. Winarno. Ontology-based daily menu recommendation system for complementary food according to nutritional needs using naïve bayes and topsis.Int. J. Adv. Comput. Sci. Appl.2021121110.14569/IJACSA.2021.0121173
    [Google Scholar]
  28. AgapitoG. CalabreseB. GuzziP.H. CannataroM. SimeoniM. CaréI. DIETOS: A recommender system for adaptive diet monitoring and personalized food suggestion.2016 IEEE 12th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob)New York, NY, USA,20161810.1109/WiMOB.2016.7763190
    [Google Scholar]
  29. LeeC.S. WangM.H. LiH.C. ChenW.H. Intelligent ontological agent for diabetic food recommendation.2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence) Hong Kong200818031810
    [Google Scholar]
  30. Mckensy-SambolaD. Rodríguez-GarcíaM.Á. García-SánchezF. Valencia-GarcíaR. Ontology-based nutritional recommender system.Appl. Sci.202112114310.3390/app12010143
    [Google Scholar]
  31. Nisheva-PavlovaM. MihaylovI. HadzhiyskiS. VassilevD. Ontology-based decision support system for dietary recommendations for type 2 diabetes mellitus.International Conference on Computational ScienceChamSpringer International Publishing202173574110.1007/978‑3‑030‑77967‑2_61
    [Google Scholar]
  32. TangruamsubS. KappaganthuK. O’DonovanJ. MadanA. CareGraph: A graph-based recommender system for diabetes self-care.The Tenth International Conference on Learning Representations
    [Google Scholar]
  33. SongY. YangX. XuC. Self-supervised calorie-aware heterogeneous graph networks for food recommendation.ACM Trans. Multimed. Comput. Commun. Appl.2023191s12310.1145/3524618
    [Google Scholar]
  34. RostamiM OussalahM FarrahiV. A novel time-aware food recommender-system based on deep learning and graph clustering. IEEE Access202210525082410.1109/ACCESS.2022.3175317
    [Google Scholar]
  35. GopalakrishnanA.K. A food recommendation system based on BMI, BMR, k-NN algorithm, and a BPNN. In Machine Learning for Predictive Analysis.Proceedings of ICTIS20212020107118
    [Google Scholar]
  36. ManoharanS. Patient diet recommendation system using K clique and deep learning classifiers.J Artif Intell2020202121130
    [Google Scholar]
  37. ChoiI. KimJ. KimW.C. Dietary pattern extraction using natural language processing techniques.Front. Nutr.2022976579410.3389/fnut.2022.765794 35356732
    [Google Scholar]
  38. SyahputraM.F. FeliciaV. RahmatR.F. BudiartoR. Scheduling diet for diabetes mellitus patients using genetic algorithm.J. Phys. Conf. Ser.2017801101203310.1088/1742‑6596/801/1/012033
    [Google Scholar]
  39. ZhangJ. LiM. LiuW. LauriaS. LiuX. Many-objective optimization meets recommendation systems: A food recommendation scenario.Neurocomputing202250310911710.1016/j.neucom.2022.06.081
    [Google Scholar]
  40. OsadchiyT. PoliakovI. OlivierP. RowlandM. FosterE. Recommender system based on pairwise association rules.Expert Syst. with Appl.201911553554210.1016/j.eswa.2018.07.077
    [Google Scholar]
  41. Van MeterenR. Van SomerenM. Using content-based filtering for recommendation.In: Proceedings of the machine learning in the new information age: MLnet/ECML2000 workshop.2000304756
    [Google Scholar]
  42. LiQ. KimB.M. An approach for combining content-based and collaborative filters.Proceedings of the sixth international workshop on Information Retrieval with Asian languages172410.3115/1118935.1118938
    [Google Scholar]
  43. BagS. KumarS.K. TiwariM.K. An efficient recommendation generation using relevant Jaccard similarity.Inf. Sci.2019483536410.1016/j.ins.2019.01.023
    [Google Scholar]
  44. PazzaniM.J. BillsusD. Content-based recommendation systems.In: Brusilovsky P, Kobsa A, Nejdl W, Eds. The Adaptive Web Lecture Notes in Computer Science.Berlin, Heidelberg: Springer 200743213254110.1007/978‑3‑540‑72079‑9_10
    [Google Scholar]
  45. SchaferJ.B. FrankowskiD. HerlockerJ. SenS. Collaborative filtering recommender systems.The adaptive web: methods and strategies of web personalization.Springer200729132410.1007/978‑3‑540‑72079‑9_9
    [Google Scholar]
  46. LaishramA. SahuS.P. PadmanabhanV. UdgataS.K. Collaborative filtering, matrix factorization and population based search: The nexus unveiled.International Conference on Neural Information Processing3526110.1007/978‑3‑319‑46675‑0_39
    [Google Scholar]
  47. NoelJ. SannerS. TranK.N. New objective functions for social collaborative filtering.Proceedings of the 21st international conference on World Wide Web8596810.1145/2187836.2187952
    [Google Scholar]
  48. LingG. LyuM.R. KingI. Online learning for collaborative filtering.The 2012 International Joint Conference on Neural Networks (IJCNN).201218
    [Google Scholar]
  49. ShaoY. XieYh. Research on cold-start problem of collaborative filtering algorithm.Proceedings of the 3rd International Conference on Big Data Research677110.1145/3372454.3372470
    [Google Scholar]
  50. ZhangZ. LiS. LiuY. WangZ. LiX. A hybrid filtering method for image denoising based on sparse representation and nonlocal means.IEEE Trans. Image Process.2018276087610010.1109/TIP.2018.2866760
    [Google Scholar]
  51. LiL. ZhangZ. ZhangS. Hybrid algorithm based on content and collaborative filtering in recommendation system optimization and simulation.Sci. Program.2021202111110.1155/2021/7427409
    [Google Scholar]
  52. AsghariS. NematzadehH. AkbariE. MotameniH. Mutual information-based filter hybrid feature selection method for medical datasets using feature clustering.Multimedia Tools Appl.20238227426174263910.1007/s11042‑023‑15143‑0
    [Google Scholar]
  53. NaL. Ming-xiaL. Hai-yangQ. Hao-longS. A hybrid user-based collaborative filtering algorithm with topic model.Appl. Intell.202151117946795910.1007/s10489‑021‑02207‑7
    [Google Scholar]
  54. ZhangZ. LiZ. WangL. ZhangX. An improved collaborative filtering recommendation algorithm based on user interest and item similarity.ScitifProg202220224544152
    [Google Scholar]
  55. NainwalA. GuptaD. PantB. Probabilistic model using bayes theorem research paper recommender system. Advances in Data and Information Sciences.Springer202010351044
    [Google Scholar]
  56. BozdoganH. Model selection and akaike’s information criterion (AIC): The general theory and its analytical extensions.Psychometrika198752334537010.1007/BF02294361
    [Google Scholar]
  57. WangJ. ZhouJ. ChenX. Probabilistic graphical model for continuous variables.J. Phys. Conf. Ser.2017887101200510.1088/1742‑6596/887/1/012005
    [Google Scholar]
  58. XuM. LiJ. LiangX. Graph embedding-based domain-specific knowledge graph construction for sustainable supply chain management.Sustainability20191123671410.3390/su11236714
    [Google Scholar]
  59. WangX. XuH. TanW. WangZ. XuX. Scholarly paper recommendation via related path analysis in knowledge graph.2020 International Conference on Service Science (ICSS)2020364310.1109/ICSS50103.2020.00014
    [Google Scholar]
  60. MuN. ZhaD. GongR. Gated knowledge graph neural networks for top-n recommendation system.2021 IEEE 24th International Conference on Computer Supported Cooperative Work in Design (CSCWD).20211111610.1109/CSCWD49262.2021.9437829
    [Google Scholar]
  61. AbdigapporovS MiralievS KakaniV KimH Joint multiclass object detection and semantic segmentation for autonomous driving.IEEE Access202311376374910.1109/ACCESS.2023.3266284
    [Google Scholar]
  62. PrabakaranN. KannadasanR. KrishnamoorthyA. KakaniV. A Bidirectional LSTM approach for written script auto evaluation using keywords-based pattern matching.Nat Lang Proces J2023510003310.1016/j.nlp.2023.100033
    [Google Scholar]
  63. PirahandehM. KimD.H. High performance GPU-based parity computing scheduler in storage applications.Concurr. Comput.2017294e388910.1002/cpe.3889
    [Google Scholar]
  64. SongT-G PirahandehM KimD-H Hierarchicalraid’sparity generation using pass-through gpu in multi virtual-machine environment. Big Data and Smart Computing (BigComp).386910.1109/BIGCOMP.2016.7425954
    [Google Scholar]
  65. GhimireA KakaniV KimH. SSRT: A sequential skeleton RGB transformer to recognize fine-grained human-object interactions and action recognition.IEEE Access202311519304810.1109/ACCESS.2023.3278974
    [Google Scholar]
  66. KakaniV. LiX. CuiX. KimH. KimB.S. KimH. Implementation of field-programmable gate array platform for object classification tasks using spike-based backpropagated deep convolutional spiking neural networks.Micromachines2023147135310.3390/mi14071353 37512665
    [Google Scholar]
  67. JuraevS GhimireA AlikhanovJ KakaniV KimH Exploring human pose estimation and the usage of synthetic data for elderly fall detection in real-world surveillance.IEEE Access202210942496110.1109/ACCESS.2022.3203174
    [Google Scholar]
  68. MiralievS. AbdigapporovS. KakaniV. KimH. Real-time memory efficient multitask learning model for autonomous driving.IEEE Trans. Intell. Veh.202491247258
    [Google Scholar]
  69. RevathiA.R. KumarD. An efficient system for anomaly detection using deep learning classifier.Signal Image Video Process.201711229129910.1007/s11760‑016‑0935‑0
    [Google Scholar]
  70. AbdigapporovS. MiralievS. AlikhanovJ. KakaniV. KimH. Performance comparison of backbone networks for multi-tasking in self-driving operations.22nd International Conference on Control, Automation and Systems (ICCAS)8192410.23919/ICCAS55662.2022.10003816
    [Google Scholar]
  71. ParkD.H. KakaniV. KimH.I. Automatic radial un-distortion using conditional generative adversarial network.J Inst ContRobot Syst2019251110071013
    [Google Scholar]
  72. SyedT. KakaniV. CuiX. KimH. Spiking neural networks using backpropagation.IEEE Region 10 Symposium (TENSYMP)202115
    [Google Scholar]
  73. KakaniV. LeeS. CuiX. KimH. Performance analysis of spiking neural network using temporal spike-based backpropagation on field programmable gate array (FPGA) platform.In: 2022 IEEE Region 10 Symposium (TENSYMP),IEEE202216
    [Google Scholar]
  74. KakaniV. JinC.B. KimH. Segmentation-based ID preserving iris synthesis using generative adversarial networks.Multimedia Tools Appl.2023839275892761710.1007/s11042‑023‑16508‑1
    [Google Scholar]
  75. NguyenQ.D. MaiN.D. NguyenV.H. KakaniV. KimH. SynFAGnet: A fully automated generative network for realistic fire image generation.Fire Technol.2024712310.1007/s10694‑023‑01540‑2
    [Google Scholar]
  76. MiralievS. AbdigapporovS. AlikhanovJ. KakaniV. KimH. Edge device deployment of multi-tasking network for self-driving operations.arXiv:2210047352022
    [Google Scholar]
  77. GenuthS.M. PalmerJ.P. NathanD.M. Classification and diagnosis of diabetes.In: Diabetes in America.3rd edBethesda, MDNational Institute of Diabetes and Digestive and Kidney Diseases (US)2018
    [Google Scholar]
  78. American Diabetes Association. 13. Children and Adolescents: Standards of Medical Care in Diabetes—2021.Diabetes Care202144Suppl. 1S180S19910.2337/dc21‑S013 33298424
    [Google Scholar]
  79. ChiangJ.L. MaahsD.M. GarveyK.C. Type 1 diabetes in children and adolescents: A position statement by the american diabetes association.Diabetes Care20184192026204410.2337/dci18‑0023 30093549
    [Google Scholar]
  80. ScottS.N. AndersonL. MortonJ.P. WagenmakersA.J.M. RiddellM.C. Carbohydrate restriction in type 1 diabetes: A realistic therapy for improved glycaemic control and athletic performance?Nutrients2019115102210.3390/nu11051022 31067747
    [Google Scholar]
  81. GreenA. HedeS.M. PattersonC.C. Type 1 diabetes in 2017: Global estimates of incident and prevalent cases in children and adults.Diabetologia202164122741275010.1007/s00125‑021‑05571‑8 34599655
    [Google Scholar]
  82. WangL. LiX. WangZ. Trends in prevalence of diabetes and control of risk factors in diabetes among us adults, 1999-2018.JAMA2021326870410.1001/jama.2021.9883 34170288
    [Google Scholar]
  83. FranzM.J. MacLeodJ. EvertA. Academy of nutrition and dietetics nutrition practice guideline for type 1 and type 2 diabetes in adults: Systematic review of evidence for medical nutrition therapy effectiveness and recommendations for integration into the nutrition care process.J. Acad. Nutr. Diet.2017117101659167910.1016/j.jand.2017.03.022 28533169
    [Google Scholar]
  84. GuptaU.C. GuptaS.C. GuptaS.S. An evidence-based review of diabetes care: History, types, relationship to cancer and heart disease, co-morbid factors, and preventive measures.Curr. Nutr. Food Sci.202319439940810.2174/1573401318666220802103404
    [Google Scholar]
  85. TipiciB.E. Atik AltınokY. KeserA. Frequently asked questions and evidence-based answers on medical nutritional therapy in children with type 1 diabetes for health care professionals.J. Clin. Res. Pediatr. Endocrinol.202315212012610.4274/jcrpe.galenos.2022.2022‑6‑4 36416458
    [Google Scholar]
  86. SalisS. JosephM. AgarwalaA. SharmaR. KapoorN. IraniA.J. Medical nutrition therapy of pediatric type 1 diabetes mellitus in India: Unique aspects and challenges.Pediatr. Diabetes20212219310010.1111/pedi.13080 32666666
    [Google Scholar]
  87. Granado-CasasM. SolàI. HernándezM. Rojo-LópezM.I. JulveJ. MauricioD. Effectiveness of medical nutrition therapy in adolescents with type 1 diabetes: A systematic review.Nutr. Diabetes20221212410.1038/s41387‑022‑00201‑7 35459205
    [Google Scholar]
  88. TasciniG. BerioliM. CerquigliniL. Carbohydrate counting in children and adolescents with type 1 diabetes.Nutrients201810110910.3390/nu10010109 29361766
    [Google Scholar]
  89. QuartaA. GuarinoM. TripodiR. GianniniC. ChiarelliF. BlasettiA. Diet and glycemic index in children with type 1 diabetes.Nutrients20231516350710.3390/nu15163507 37630698
    [Google Scholar]
  90. PetroniM.L. BrodosiL. MarchignoliF. Nutrition in patients with type 2 diabetes: Present knowledge and remaining challenges.Nutrients2021138274810.3390/nu13082748 34444908
    [Google Scholar]
  91. de BoerI.H. CaramoriM.L. ChanJ.C.N. Executive summary of the 2020 KDIGO Diabetes Management in CKD Guideline: evidence-based advances in monitoring and treatment.Kidney Int.202098483984810.1016/j.kint.2020.06.024 32653403
    [Google Scholar]
  92. GillespieS.J. KulkarniK.D. DalyA. Using carbohydrate counting in diabetes clinical practice.J. Am. Diet. Assoc.199898889790510.1016/S0002‑8223(98)00206‑5 9710660
    [Google Scholar]
  93. EvertA.B. DennisonM. GardnerC.D. Nutrition therapy for adults with diabetes or prediabetes: A consensus report.Diabetes Care201942573175410.2337/dci19‑0014 31000505
    [Google Scholar]
  94. PamungkasR. ChamroonsawasdiK. VatanasomboonP. A systematic review: family support integrated with diabetes self-management among uncontrolled type II diabetes mellitus patients.Behav. Sci.2017746210.3390/bs7030062 28914815
    [Google Scholar]
  95. LambrinouE HansenTB BeulensJWJ Lifestyle factors, self-management and patient empowerment in diabetes care.Eur J Prev Cardiol2019262_suppl)(Suppl.556310.1177/2047487319885455 31766913
    [Google Scholar]
  96. PalmerC. Providing self-management education to patients with type 2 diabetes mellitus.Nurse Pract.20174211364210.1097/01.NPR.0000525719.99231.41 29040177
    [Google Scholar]
  97. SaravananP. MageeL.A. BanerjeeA. Gestational diabetes: Opportunities for improving maternal and child health.Lancet Diabetes Endocrinol.20208979380010.1016/S2213‑8587(20)30161‑3 32822601
    [Google Scholar]
  98. MahajanA. DonovanL.E. ValleeR. YamamotoJ.M. Evidenced-based nutrition for gestational diabetes mellitus.Curr. Diab. Rep.201919109410.1007/s11892‑019‑1208‑4 31473839
    [Google Scholar]
  99. HillA.J. CairnduffV. McCanceD.R. Nutritional and clinical associations of food cravings in pregnancy.J. Hum. Nutr. Diet.201629328128910.1111/jhn.12333 26400798
    [Google Scholar]
  100. BelzerL.M. SmulianJ.C. LuS.E. TepperB.J. Food cravings and intake of sweet foods in healthy pregnancy and mild gestational diabetes mellitus. A prospective study.Appetite201055360961510.1016/j.appet.2010.09.014 20869416
    [Google Scholar]
  101. RasmussenL. PoulsenC.W. KampmannU. SmedegaardS.B. OvesenP.G. FuglsangJ. Diet and healthy lifestyle in the management of gestational diabetes mellitus.Nutrients20201210305010.3390/nu12103050 33036170
    [Google Scholar]
  102. YamamotoJ.M. KellettJ.E. BalsellsM. Gestational diabetes mellitus and diet: A systematic review and meta-analysis of randomized controlled trials examining the impact of modified dietary interventions on maternal glucose control and neonatal birth weight.Diabetes Care20184171346136110.2337/dc18‑0102 29934478
    [Google Scholar]
  103. FilardiT. PanimolleF. CrescioliC. LenziA. MoranoS. Gestational diabetes mellitus: The impact of carbohydrate quality in diet.Nutrients2019117154910.3390/nu11071549 31323991
    [Google Scholar]
  104. LendeM. RijhsinghaniA. Gestational diabetes: Overview with emphasis on medical management.Int. J. Environ. Res. Public Health20201724957310.3390/ijerph17249573 33371325
    [Google Scholar]
  105. ChentliF. AzzougS. MahgounS. Diabetes mellitus in elderly.Indian J. Endocrinol. Metab.201519674475210.4103/2230‑8210.167553 26693423
    [Google Scholar]
  106. AbdelhafizA.H. SinclairA.J. Management of type 2 diabetes in older people.Diabetes Ther.201341132610.1007/s13300‑013‑0020‑4 23605454
    [Google Scholar]
  107. TamuraY. OmuraT. ToyoshimaK. ArakiA. Nutrition management in older adults with diabetes: A review on the importance of shifting prevention strategies from metabolic syndrome to frailty.Nutrients20201211336710.3390/nu12113367 33139628
    [Google Scholar]
  108. DoolaR. PreiserJ.C. Nutritional therapy in critically ill patients with diabetes.Curr. Opin. Clin. Nutr. Metab. Care2022252939810.1097/MCO.0000000000000807 34966114
    [Google Scholar]
  109. WagnerK.H. SchwingshacklL. DraxlerA. FranzkeB. Impact of dietary and lifestyle interventions in elderly or people diagnosed with diabetes, metabolic disorders, cardiovascular disease, cancer and micronutrient deficiency on micronuclei frequency: A systematic review and meta-analysis.Mutat. Res. Rev. Mutat. Res.202178710836710.1016/j.mrrev.2021.108367 34083034
    [Google Scholar]
  110. EqlimaElfira GirsangB.M. RosseveltF.A. Nutrition management in elderly with diabetes mellitus: Literature review.Caring: IndonJ Nurs Sci202241395410.32734/ijns.v4i1.8835
    [Google Scholar]
  111. YanaseT. YanagitaI. MutaK. NawataH. Frailty in elderly diabetes patients.Endocr. J.201865111110.1507/endocrj.EJ17‑0390 29238004
    [Google Scholar]
  112. JadhavS.D. ChanneH.P. Efficient recommendation system using decision tree classifier and collaborative filtering.Int Res J Eng Technol20163821132118
    [Google Scholar]
  113. JeevamolJ. RenumolV.G. An ontology-based hybrid e-learning content recommender system for alleviating the cold-start problem.Educ. Inf. Technol.20212644993502210.1007/s10639‑021‑10508‑0
    [Google Scholar]
  114. RosaR.L. SchwartzG.M. RuggieroW.V. RodríguezD.Z. A knowledge-based recommendation system that includes sentiment analysis and deep learning.IEEE Trans. Industr. Inform.20191542124213510.1109/TII.2018.2867174
    [Google Scholar]
  115. ChakrabortyA. DasU.K. SikderJ. MaimunaM. SarekK.I. Content based email spam classifier as a web application using naïve Bayes classifier.International Conference on Intelligent Computing & Optimization202238998
    [Google Scholar]
  116. NilashiM. IbrahimO. BagherifardK. A recommender system based on collaborative filtering using ontology and dimensionality reduction techniques.Expert Syst. Appl.20189250752010.1016/j.eswa.2017.09.058
    [Google Scholar]
  117. RabahallahK. MahdaouiL. AzouaouF. MOOCs recommender system using ontology and memory-based collaborative filtering.Proceedings of the 20th International Conference on Enterprise Information Systems16354110.5220/0006786006350641
    [Google Scholar]
  118. BagherifardK. RahmaniM. NilashiM. RafeV. Performance improvement for recommender systems using ontology.Telemat. Inform.20173481772179210.1016/j.tele.2017.08.008
    [Google Scholar]
  119. ChristakopoulouK. RadlinskiF. HofmannK. Towards conversational recommender systems.Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. Towards Convers Recommend Sys20168152410.1145/2939672.2939746
    [Google Scholar]
/content/journals/cnf/10.2174/0115734013297002240522063241
Loading
/content/journals/cnf/10.2174/0115734013297002240522063241
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test