Skip to content
2000
Volume 20, Issue 4
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Introduction: Nanocrystalline cellulose (NCC) is one of the most suitable cellulose derivatives for the treatment of wastewater. Various agricultural wastes have been used for the extraction of NCC. Coconut wastes have been widely studied as potential adsorbents for the removal of pollutants, including dyes and heavy metals. Methods: In this work, nanocrystalline cellulose (NCC) was successfully isolated from coconut husk fibers through alkaline pretreatment accompanied by sulfuric acid hydrolysis. Then, the ability of NCC to adsorb Cu2+ from aqueous solution in batch studies was investigated. Results: Results indicated that the optimal hydrolysis parameters were achieved at 50° C for 45 min with 64% sulfuric acid to extract NCC as rod-like particles with diameters between 4-10 nm. The potential of NCC as a biosorbent to remove copper ions (Cu2+) from aqueous solution was investigated in terms of batch mode and maximum adsorption capacity (qm) of 79.491 mg/g of Cu2+. The adsorption efficiency of Cu2+ions increased with an increase in the adsorbent dosage, decreased with an increase in the initial concentration of contaminant, and increased with the contact time. Under optimal conditions, adsorption kinetic followed a pseudo-second-order kinetic model and the adsorption isotherm fitted most closely with the Langmuir model. Conclusion: According to a literature review, NCC from coconut husk fibers has not been used for the adsorption of heavy metals, mainly copper ions. This study shows that NCC from coconut husk fibers can be used as a low-cost and environmentally friendly adsorbent for the removal of Cu2+ from aqueous solutions.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/1573413719666230502114208
2024-07-01
2024-10-14
Loading full text...

Full text loading...

/content/journals/cnano/10.2174/1573413719666230502114208
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test