Skip to content
2000
Volume 4, Issue 4
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Nanoparticles serve the need for advanced materials with specific chemical, physical, and electronic properties. These properties can be attained by manipulating the particle size. Consequently, size control has been recognized as a key factor for selecting a nanoparticle preparation technique. (w/o) Microemulsions, or reverse micelles, have been successfully used to prepare wide variety of nanoparticles with controlled sizes. Studies showed that adjusting microemulsion and/or operation variables provides a key to controlling nanoparticle size and polydispersity. The effect of a given variable, however, relies heavily on the reactant addition scheme. The mixing of two microemulsions scheme has been widely used in the literature, and the effect of microemulsion and operation variables on intermicellar nucleation and growth was detailed. The single microemulsions reactant addition scheme, on the other hand, enables intramicellar nucleation and growth, and therefore, may lead to a different response. Moreover, studies on nanoparticle preparation using the single microemulsions scheme involved more of reactive surfactants and introduced the concept nanoparticle uptake, which pertains to the maximum colloidal concentration of nanoparticles that can be stabilized in a microemulsion system. This review looks into the mechanisms controlling nanoparticle formation and compares literature trends reported for the effect of microemulsion and operation variables on the nanoparticle size and polydispersity for the single microemulsions reactant addition scheme. Moreover, it sheds some light on nanoparticle uptake and its significance.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/157341308786306116
2008-11-01
2025-10-11
Loading full text...

Full text loading...

/content/journals/cnano/10.2174/157341308786306116
Loading

  • Article Type:
    Research Article
Keyword(s): microemulsion; Nanoparticle; reverse micelle; single; surfactant; uptake
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test