Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Background and Objective

In the present investigation, low molecular weight polyethylenimine (LMW PEI, 1.8 kDa PEI) was conjugated to dextrin urethane units and tested to transfer plasmid encoding interleukin-12 (IL-12) plasmid. Although high molecular weight PEI (HMW PEI, 25 kDa PEI) has shown substantial transfection efficiency, its wide application has been hampered due to considerable cytotoxicity. Therefore, LMW PEI with low toxic effects was used as the core of our gene transfer construct.

Methods

LMW PEI was conjugated to dextrin urethane units to improve its biophysical characteristics as well as cytotoxic effects. The conjugates were characterized in terms of buffering capacity, plasmid DNA condensation ability, particle size, and zeta potential as well as protection against enzymatic degradation. experiments were carried out to evaluate the ability of these LMW PEI conjugates to transfer plasmid encoding human interleukin-12 (hIL-12) to the cells. The MTT assay was performed to measure the cell-induced toxicity of the conjugates.

Results

The results of our study demonstrated that the PEI derivatives with higher amounts of amine content (. higher conjugation degrees) have considerable buffering capacity and plasmid condensation ability. These conjugates could condense plasmid DNA at Carrier to Plasmid ratios (C/P) ≥2 and form polyplexes at the size range of 120-165 nm while their zeta potential was around 5.5-8.5 mV. The results of transfection efficiency demonstrated that the level of IL-12 production increased by 2-3 folds compared with unmodified LMW PEI while the level of cytotoxicity was not higher than 20%.

Conclusion

The strategy used in this study shows a promising way to prepare gene carriers with high transfection efficiency and low toxicity.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137275215231113100147
2025-01-01
2024-11-22
Loading full text...

Full text loading...

References

  1. BlancoJ.L. BenitoJ.M. MelletC. FernándezJ.M. Molecular nanoparticle-based gene delivery systems.J. Drug Deliv. Sci. Technol.201742183710.1016/j.jddst.2017.03.012
    [Google Scholar]
  2. SargaziS. ArshadR. GhamariR. RahdarA. BakhshiA. KarkanS.F. AjalliN. BilalM. Díez-PascualA.M. siRNA‐based nanotherapeutics as emerging modalities for immune‐mediated diseases: A preliminary review.Cell Biol. Int.20224691320134410.1002/cbin.11841 35830711
    [Google Scholar]
  3. UddinF. RudinC.M. SenT. CRISPR gene therapy: Applications, limitations, and implications for the future.Front. Oncol.202010138710.3389/fonc.2020.01387 32850447
    [Google Scholar]
  4. LiuX.Y. ZhangX. YangJ.B. WuC.Y. WangQ. LuZ.L. TangQ. Multifunctional amphiphilic peptide dendrimer as nonviral gene vectors for effective cancer therapy via combined gene/photodynamic therapies.Colloids Surf. B Biointerfaces202221711265110.1016/j.colsurfb.2022.112651 35759892
    [Google Scholar]
  5. KulkarniJ.A. WitzigmannD. ThomsonS.B. ChenS. LeavittB.R. CullisP.R. van der MeelR. The current landscape of nucleic acid therapeutics.Nat. Nanotechnol.202116663064310.1038/s41565‑021‑00898‑0 34059811
    [Google Scholar]
  6. ChenJ. WangK. WuJ. TianH. ChenX. Polycations for gene delivery: Dilemmas and solutions.Bioconjug. Chem.201930233834910.1021/acs.bioconjchem.8b00688 30383373
    [Google Scholar]
  7. BidramE. EsmaeiliY. Ranji-BurachalooH. Al-ZaubaiN. ZarrabiA. StewartA. DunstanD.E. A concise review on cancer treatment methods and delivery systems.J. Drug Deliv. Sci. Technol.20195410135010.1016/j.jddst.2019.101350
    [Google Scholar]
  8. NabelG.J. Genetic, cellular and immune approaches to disease therapy: Past and future.Nat. Med.200410213514110.1038/nm990 14760423
    [Google Scholar]
  9. ThomasT.J. Tajmir-RiahiH.A. PillaiC.K.S. Biodegradable polymers for gene delivery.Molecules20192420374410.3390/molecules24203744 31627389
    [Google Scholar]
  10. ParkT. JeongJ. KimS. Current status of polymeric gene delivery systems.Adv. Drug Deliv. Rev.200658446748610.1016/j.addr.2006.03.007 16781003
    [Google Scholar]
  11. Van BruggenC. HexumJ.K. TanZ. DalalR.J. ReinekeT.M. Nonviral gene delivery with cationic glycopolymers.Acc. Chem. Res.20195251347135810.1021/acs.accounts.8b00665 30993967
    [Google Scholar]
  12. MerdanT. Kopec̆ekJ. KisselT. Prospects for cationic polymers in gene and oligonucleotide therapy against cancer.Adv. Drug Deliv. Rev.200254571575810.1016/S0169‑409X(02)00046‑7 12204600
    [Google Scholar]
  13. AkbariA. RahimiF. RadmoghaddamaZ.A. HonarmandS. GodaryaT. ToudeshkchoueiM.G. AkbariS. β-Cyclodextrins-based nano carriers for cancer therapy.Nanosci20212021111
    [Google Scholar]
  14. LimY. KimS. SuhH. ParkJ. Biodegradable, endosome disruptive, and cationic network-type polymer as a highly efficient and nontoxic gene delivery carrier.Bioconjug. Chem.200213595295710.1021/bc025541n 12236776
    [Google Scholar]
  15. MarzbaliY.M. KhosroushahiY.A. MovassaghpourA. YeganehH. Polyurethane dispersion containing quaternized ammonium groups: An efficient nanosize gene delivery carrier for A549 cancer cell line transfection.Chem. Biol. Interact.2016244273610.1016/j.cbi.2015.11.028 26658031
    [Google Scholar]
  16. ZuH. GaoD. Non-viral vectors in gene therapy: Recent development, challenges, and prospects.AAPS J.20212347810.1208/s12248‑021‑00608‑7 34076797
    [Google Scholar]
  17. PatilS. GaoY-G. LinX. LiY. DangK. TianY. ZhangW-J. JiangS-F. QadirA. QianA-R. The development of functional non-viral vectors for gene delivery.Int. J. Mol. Sci.20192021549110.3390/ijms20215491 31690044
    [Google Scholar]
  18. AkbarzadehM. OskueeR.K. GholamiL. MahmoudiA. Malaekeh-NikoueiB. BR2 cell penetrating peptide improved the transfection efficiency of modified polyethyleneimine.J. Drug Deliv. Sci. Technol.20195310115410.1016/j.jddst.2019.101154
    [Google Scholar]
  19. NouriF. SadeghpourH. HeidariR. DehshahriA. Preparation, characterization, and transfection efficiency of low molecular weight polyethylenimine-based nanoparticles for delivery of the plasmid encoding CD200 gene.Int. J. Nanomedicine2017125557556910.2147/IJN.S140734 28831252
    [Google Scholar]
  20. DehshahriA. OskueeR.K. RamezaniM. Plasmid DNA delivery into hepatocytes using a multifunctional nanocarrier based on sugar-conjugated polyethylenimine.Gene Ther. Mol. Biol.2012146271
    [Google Scholar]
  21. IbraheemD. ElaissariA. FessiH. Gene therapy and DNA delivery systems.Int. J. Pharm.20144591-2708310.1016/j.ijpharm.2013.11.041 24286924
    [Google Scholar]
  22. TomaI. PorfireA.S. TefasL.R. Berindan-NeagoeI. TomuțăI. A quality by design approach in pharmaceutical development of non-viral vectors with a focus on miRNA.Pharmaceutics2022147148210.3390/pharmaceutics14071482 35890377
    [Google Scholar]
  23. RenS. WangM. WangC. WangY. SunC. ZengZ. CuiH. ZhaoX. Application of non-viral vectors in drug delivery and gene therapy.Polymers20211319330710.3390/polym13193307 34641123
    [Google Scholar]
  24. KloecknerJ. BruzzanoS. OgrisM. WagnerE. Gene carriers based on hexanediol diacrylate linked oligoethylenimine: Effect of chemical structure of polymer on biological properties.Bioconjug. Chem.20061751339134510.1021/bc060133v 16984145
    [Google Scholar]
  25. BarrioniB.R. de CarvalhoS.M. OréficeR.L. de OliveiraA.A.R. PereiraM.M. Synthesis and characterization of biodegradable polyurethane films based on HDI with hydrolyzable crosslinked bonds and a homogeneous structure for biomedical applications.Mater. Sci. Eng. C201552223010.1016/j.msec.2015.03.027 25953536
    [Google Scholar]
  26. SolankiA. DasM. ThakoreS. A review on carbohydrate embedded polyurethanes: An emerging area in the scope of biomedical applications.Carbohydr. Polym.20181811003101610.1016/j.carbpol.2017.11.049 29253925
    [Google Scholar]
  27. YuC. LiL. HuP. YangY. WeiW. DengX. WangL. TayF.R. MaJ. Recent advances in stimulus‐responsive nanocarriers for gene therapy.Adv. Sci.2021814210054010.1002/advs.202100540 34306980
    [Google Scholar]
  28. WendelsS. AvérousL. Biobased polyurethanes for biomedical applications.Bioact. Mater.2021641083110610.1016/j.bioactmat.2020.10.002 33102948
    [Google Scholar]
  29. BerceaM. GradinaruL.M. MandruM. TigauD.L. CiobanuC. Intermolecular interactions and self-assembling of polyurethane with poly(vinyl alcohol) in aqueous solutions.J. Mol. Liq.201927456256710.1016/j.molliq.2018.11.018
    [Google Scholar]
  30. NaureenB. HaseebA.S.M.A. BasirunW.J. MuhamadF. Recent advances in tissue engineering scaffolds based on polyurethane and modified polyurethane.Mater. Sci. Eng. C202111811122810.1016/j.msec.2020.111228 33254956
    [Google Scholar]
  31. ParkS.Y. YunY.H. ParkB.J. SeoH.I. ChungI. Fabrication and biological activities of plasmid DNA gene carrier nanoparticles based on biodegradable l-tyrosine polyurethane.Pharmaceuticals20211511710.3390/ph15010017 35056074
    [Google Scholar]
  32. ZhangS. XuY. WangB. QiaoW. LiuD. LiZ. Cationic compounds used in lipoplexes and polyplexes for gene delivery.J. Control. Release2004100216518010.1016/j.jconrel.2004.08.019 15544865
    [Google Scholar]
  33. TsengS. TangS. ShauM. ZengY. CherngJ. ShihM. Structural characterization and buffering capacity in relation to the transfection efficiency of biodegradable polyurethane.Bioconjug. Chem.20051661375138110.1021/bc050005r 16287233
    [Google Scholar]
  34. ZhengQ. LinD. LeiL. LiX. ShiS. Engineered Non-viral gene vectors for combination cancer therapy: a review.J. Biomed. Nanotechnol.201713121565158010.1166/jbn.2017.2489 29490748
    [Google Scholar]
  35. SyedM.H. ZahariM.A.K.M. KhanM.M.R. BegM.D.H. AbdullahN. An overview on recent biomedical applications of biopolymers: Their role in drug delivery systems and comparison of major systems.J. Drug Deliv. Sci. Technol.2022104121
    [Google Scholar]
  36. ZhangW. HuE. WangY. MiaoS. LiuY. HuY.III LiuJ. XuB. ChenD. ShenY. Emerging antibacterial strategies with application of targeting drug delivery system and combined treatment.Int. J. Nanomedicine2021166141615610.2147/IJN.S311248 34511911
    [Google Scholar]
  37. SungY.K. KimS.W. Recent advances in polymeric drug delivery systems.Biomater. Res.20202411210.1186/s40824‑020‑00190‑7 32537239
    [Google Scholar]
  38. LiH. ZhouZ. ZhangF. GuoY. YangX. JiangH. TanF. OupickyD. SunM. A networked swellable dextrin nanogels loading Bcl2 siRNA for melanoma tumor therapy.Nano Res.20181194627464210.1007/s12274‑018‑2044‑6
    [Google Scholar]
  39. DumontelB. Conejo-RodríguezV. Vallet-RegíM. ManzanoM. Natural biopolymers as smart coating materials of mesoporous silica nanoparticles for drug delivery.Pharmaceutics202315244710.3390/pharmaceutics15020447 36839771
    [Google Scholar]
  40. MohamedE.E. Abdel-MoneimA. AhmedO.M. ZoheirK.M.A. EldinZ.E. El-ShahawyA.A.G. Anticancer activity of a novel naringin‒dextrin nanoformula: Preparation, characterization, and in vitro induction of apoptosis in human hepatocellular carcinoma cells by inducing ROS generation, DNA fragmentation, and cell cycle arrest.J. Drug Deliv. Sci. Technol.20227510367710.1016/j.jddst.2022.103677
    [Google Scholar]
  41. PishavarE. OroojalianF. RamezaniM. HashemiM. Cholesterol‐conjugated PEGylated PAMAM as an efficient nanocarrier for plasmid encoding interleukin‐12 immunogene delivery toward colon cancer cells.Biotechnol. Prog.2020363e295210.1002/btpr.2952 31846226
    [Google Scholar]
  42. SabahiZ. SamaniS.M. DehshahriA. Conjugation of poly(amidoamine) dendrimers with various acrylates for improved delivery of plasmid encoding interleukin-12 gene.J. Biomater. Appl.201529794195310.1177/0885328214551010 25209882
    [Google Scholar]
  43. ChoiK-J. ZhangS-N. ChoiI-K. KimJ-S. YunC-O. Strengthening of antitumor immune memory and prevention of thymic atrophy mediated by adenovirus expressing IL-12 and GM-CSF.Gene Ther.201219771172310.1038/gt.2011.125 21993173
    [Google Scholar]
  44. NguyenK.G. VrabelM.R. MantoothS.M. HopkinsJ.J. WagnerE.S. GabaldonT.A. ZaharoffD.A. Localized interleukin-12 for cancer immunotherapy.Front. Immunol.20201157559710.3389/fimmu.2020.575597 33178203
    [Google Scholar]
  45. DehshahriA. AlhashemiS.H. JamshidzadehA. SabahiZ. SamaniS.M. SadeghpourH. MohazabiehE. FadaeiM. Comparison of the effectiveness of polyethylenimine, polyamidoamine and chitosan in transferring plasmid encoding interleukin-12 gene into hepatocytes.Macromol. Res.201321121322133010.1007/s13233‑013‑1180‑9
    [Google Scholar]
  46. AlemzadehE. DehshahriA. DehghanianA.R. AfsharifarA. BehjatniaA.A. IzadpanahK. AhmadiF. Enhanced anti-tumor efficacy and reduced cardiotoxicity of doxorubicin delivered in a novel plant virus nanoparticle.Colloids Surf. B Biointerfaces2019174808610.1016/j.colsurfb.2018.11.008 30445253
    [Google Scholar]
  47. SheikhsaranF. SadeghpourH. KhalvatiB. Entezar-AlmahdiE. DehshahriA. Tetraiodothyroacetic acid-conjugated polyethylenimine for integrin receptor mediated delivery of the plasmid encoding IL-12 gene.Colloids Surf. B Biointerfaces201715042643610.1016/j.colsurfb.2016.11.008 27847224
    [Google Scholar]
  48. LotfipourF. Hallaj-NezhadiS. ValizadehH. DastmalchiS. BaradaranB. JalaliM.B. DobakhtiF. Preparation of chitosan-plasmid DNA nanoparticles encoding interleukin-12 and their expression in CT-26 colon carcinoma cells.J. Pharm. Pharm. Sci.201114218119510.18433/J3TP4T 21733408
    [Google Scholar]
  49. HaoF. LiY. ZhuJ. SunJ. MarshallB. LeeR.J. TengL. YangZ. XieJ. Polyethylenimine-based formulations for delivery of oligonucleotides.Curr. Med. Chem.201926132264228410.2174/0929867325666181031094759 30378483
    [Google Scholar]
  50. HajighahramaniN. EslamiM. NegahdaripourM. GhoshoonM.B. DehshahriA. ErfaniN. HeidariR. GholamiA. NezafatN. GhasemiY. Computational design of a chimeric epitope-based vaccine to protect against Staphylococcus aureus infections.Mol. Cell. Probes20194610141410.1016/j.mcp.2019.06.004 31233779
    [Google Scholar]
  51. DowdyS.F. Endosomal escape of RNA therapeutics: How do we solve this rate-limiting problem?RNA202329439640110.1261/rna.079507.122 36669888
    [Google Scholar]
  52. BenjaminsenR.V. MattebjergM.A. HenriksenJ.R. MoghimiS.M. AndresenT.L. The possible “proton sponge ” effect of polyethylenimine (PEI) does not include change in lysosomal pH.Mol. Ther.201321114915710.1038/mt.2012.185 23032976
    [Google Scholar]
  53. MadamsettyV.S. TavakolS. MoghassemiS. DadashzadehA. SchneibleJ.D. FatemiI. ShirvaniA. ZarrabiA. AzediF. DehshahriA. AfsharA.A. AghaabbasiK. PardakhtyA. MohammadinejadR. KesharwaniP. Chitosan: A versatile bio-platform for breast cancer theranostics.J. Control. Release202234173375210.1016/j.jconrel.2021.12.012 34906606
    [Google Scholar]
  54. HoW. GaoM. LiF. LiZ. ZhangX.Q. XuX. Next‐generation vaccines: Nanoparticle‐mediated DNA and mRNA delivery.Adv. Healthc. Mater.2021108200181210.1002/adhm.202001812 33458958
    [Google Scholar]
  55. AlipourS. KalariS. MorowvatM.H. SabahiZ. DehshahriA. Green synthesis of selenium nanoparticles by cyanobacterium Spirulina platensis (abdf2224): Cultivation condition quality controls.BioMed Res. Int.2021202111110.1155/2021/6635297 34195275
    [Google Scholar]
  56. TanZ. JiangY. GanewattaM.S. KumarR. KeithA. TwaroskiK. PengoT. TolarJ. LodgeT.P. ReinekeT.M. Block Polymer micelles enable CRISPR/Cas9 ribonucleoprotein delivery: Physicochemical properties affect packaging mechanisms and gene editing efficiency.Macromolecules201952218197820610.1021/acs.macromol.9b01645
    [Google Scholar]
  57. UchidaS. ItakaK. ChenQ. OsadaK. IshiiT. ShibataM.A. Harada-ShibaM. KataokaK. PEGylated polyplex with optimized PEG shielding enhances gene introduction in lungs by minimizing inflammatory responses.Mol. Ther.20122061196120310.1038/mt.2012.20 22334020
    [Google Scholar]
  58. ThomasT.J. ThomasT. Collapse of DNA in packaging and cellular transport.Int. J. Biol. Macromol.2018109364810.1016/j.ijbiomac.2017.12.076 29247730
    [Google Scholar]
  59. ForrestM.L. MeisterG.E. KoerberJ.T. PackD.W. Partial acetylation of polyethylenimine enhances in vitro gene delivery.Pharm. Res.200421236537110.1023/B:PHAM.0000016251.42392.1e 15032320
    [Google Scholar]
  60. YazdiM.T. GhasemiY. GhasemianA. ShokraviS. NiknahadH. AminiM. DehshahriA. FaramarziM.A. Bioconversion of hydrocortisone by cyanobacterium Fischerella ambigua PTCC 1635.World J. Microbiol. Biotechnol.2005216-781181410.1007/s11274‑004‑2238‑9
    [Google Scholar]
  61. van den BergA.I.S. YunC.O. SchiffelersR.M. HenninkW.E. Polymeric delivery systems for nucleic acid therapeutics: Approaching the clinic.J. Control. Release202133112114110.1016/j.jconrel.2021.01.014 33453339
    [Google Scholar]
  62. DehshahriA. SadeghpourH. Kazemi OskueeR. FadaeiM. SabahiZ. AlhashemiS.H. MohazabiehE. Interleukin-12 plasmid DNA delivery using l-thyroxine-conjugated polyethylenimine nanocarriers.J. Nanopart. Res.2014165242310.1007/s11051‑014‑2423‑1
    [Google Scholar]
  63. XiangS. TongH. ShiQ. FernandesJ.C. JinT. DaiK. ZhangX. Uptake mechanisms of non-viral gene delivery.J. Control. Release2012158337137810.1016/j.jconrel.2011.09.093 21982904
    [Google Scholar]
  64. LiuN. TangM. Toxic effects and involved molecular pathways of nanoparticles on cells and subcellular organelles.J. Appl. Toxicol.2020401163610.1002/jat.3817 31294482
    [Google Scholar]
  65. ParhamifarL. LarsenA.K. HunterA.C. AndresenT.L. MoghimiS.M. Polycation cytotoxicity: A delicate matter for nucleic acid therapy-focus on polyethylenimine.Soft Matter20106174001400910.1039/c000190b
    [Google Scholar]
  66. ShoaibM. ur RahmanM.S. SaeedA. NaseerM.M. Mesoporous bioactive glass-polyurethane nanocomposites as reservoirs for sustained drug delivery.Colloids Surf. B Biointerfaces201817280681110.1016/j.colsurfb.2018.10.030 30352378
    [Google Scholar]
  67. KeX. SheltonL. HuY. ZhuY. ChowE. TangH. SantosJ.L. MaoH.Q. Surface-functionalized PEGylated nanoparticles deliver messenger RNA to pulmonary immune cells.ACS Appl. Mater. Interfaces20201232358353584410.1021/acsami.0c08268 32659078
    [Google Scholar]
  68. HotiG. MatencioA. Rubin PedrazzoA. CeconeC. AppletonS.L. Khazaei MonfaredY. CalderaF. TrottaF. Nutraceutical concepts and dextrin-based delivery systems.Int. J. Mol. Sci.2022238410210.3390/ijms23084102 35456919
    [Google Scholar]
  69. DehshahriA. Kazemi OskueeR. Thomas ShierW. RamezaniM. β-Galactosylated alkyl-oligoamine derivatives of polyethylenimine enhanced pDNA delivery into hepatic cells with reduced toxicity.Curr. Nanosci.20128454855510.2174/157341312801784339
    [Google Scholar]
  70. ChienC.S. WangC.Y. YangY.P. ChouS.J. KoY.L. TsaiF.T. YuW.C. ChangC.C. CherngJ.Y. YangM.Y. Using cationic polyurethane-short branch PEI as microRNA-driven nano-delivery system for stem cell differentiation.J. Chin. Med. Assoc.202083436737010.1097/JCMA.0000000000000272 32101899
    [Google Scholar]
  71. ChenC.K. HuangP.K. LawW.C. ChuC.H. ChenN.T. LoL.W. Biodegradable polymers for gene-delivery applications.Int. J. Nanomedicine2020152131215010.2147/IJN.S222419 32280211
    [Google Scholar]
  72. CherngJ.Y. HouT.Y. ShihM.F. TalsmaH. HenninkW.E. Polyurethane-based drug delivery systems.Int. J. Pharm.20134501-214516210.1016/j.ijpharm.2013.04.063 23632262
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137275215231113100147
Loading
/content/journals/cnano/10.2174/0115734137275215231113100147
Loading

Data & Media loading...

Supplements


  • Article Type:
    Research Article
Keyword(s): dextrin; Gene delivery; nanoparticle; polyethylenimine (PEI); transfection; urethane
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test