Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4137
  • E-ISSN: 1875-6786

Abstract

Background

In our previous studies, we have identified Gsk-3β as a crucial target molecule in response to Danhong injection for cerebral ischemia intervention. Furthermore, it can serve as a molecular imaging probe for medical diagnosis. Bacterial magnetic particles (BMPs), synthesized by magnetotactic bacteria, are regarded as excellent natural nanocarriers.

Methods

In this study, we utilized biological modification and chemical crosslinking techniques to produce a multifunctional BMP known as “RVG29-BMP-FA-Gsk-3β-Ab”, which exhibits both magnetic properties and brain-targeting capabilities. Then, a combination of analytical techniques was used to characterize the properties of the multifunctional BMPs. Finally, we evaluated the cell targeting ability of the RVG29-BMP-FA-Gsk-3β-Ab.

Results

The multifunctional BMPs were observed to possess uniform size and shape using TEM analysis, with a particle size of 70.1±7.33 nm. Zeta potential analysis revealed that the nanoparticles exhibited a regular and non-aggregative distribution of particle sizes. Relative fluorescence intensity results demonstrated that the complex of 1 mg of RVG29-BMP-FA-Gsk-3β-Ab could bind to FITC-RVG29 polypeptide at a concentration of 2189.5 nM. Cell viability analysis indicated its high biocompatibility and minimal cytotoxicity. The RVG29-BMP-FA-Gsk-3β-Ab was observed to possess active targeting towards neuronal cells and fluorescence imaging capabilities , as evidenced by fluorescence imaging assays. The complex of RVG29-BMP-FA-Gsk-3β-Ab exhibited favourable properties for early diagnosis and efficacy evaluation of traditional Chinese medicine in treating cerebral ischemia.

Conclusion

This study establishes a fundamental basis for the prospective implementation of multimodal imaging in traditional Chinese medicine for cerebral ischemia.

Loading

Article metrics loading...

/content/journals/cnano/10.2174/0115734137259242231109174821
2025-01-01
2025-02-17
Loading full text...

Full text loading...

References

  1. Lloyd-JonesD. AdamsR. CarnethonM. De SimoneG. FergusonT.B. FlegalK. FordE. FurieK. GoA. GreenlundK. HaaseN. HailpernS. HoM. HowardV. KisselaB. KittnerS. LacklandD. LisabethL. MarelliA. McDermottM. MeigsJ. MozaffarianD. NicholG. O’DonnellC. RogerV. RosamondW. SaccoR. SorlieP. StaffordR. SteinbergerJ. ThomT. Wasserthiel-SmollerS. WongN. Wylie-RosettJ. HongY. Heart disease and stroke statistics--2009 update: A report from the american heart association statistics committee and stroke statistics subcommittee.Circulation2009119348048610.1161/CIRCULATIONAHA.108.191259 19171871
    [Google Scholar]
  2. KimA.S. JohnstonS.C. Temporal and geographic trends in the global stroke epidemic.Stroke2013446_suppl_1S123S12510.1161/STROKEAHA.111.000067 23709707
    [Google Scholar]
  3. World Health Organization (WHO)Global Status Report on Alcohol.,Available from: http://www.who.int/substance_abuse/publications/global_status_report_2004_overview.pdf 2004
  4. MaidaC.D. NorritoR.L. DaidoneM. TuttolomondoA. PintoA. Neuroinflammatory mechanisms in ischemic stroke: Focus on cardioembolic stroke, background, and therapeutic approaches.Int. J. Mol. Sci.20202118645410.3390/ijms21186454 32899616
    [Google Scholar]
  5. CarotaA. NeufeldH. CalabreseP. Memory profiles after unilateral paramedian thalamic stroke infarction: A comparative study.Case Rep. Med.201520151510.1155/2015/430869 26587026
    [Google Scholar]
  6. MoskowitzM.A. LoE.H. IadecolaC. The science of stroke: Mechanisms in search of treatments.Neuron201067218119810.1016/j.neuron.2010.07.002 20670828
    [Google Scholar]
  7. SunK. FanJ. HanJ. Ameliorating effects of traditional Chinese medicine preparation, Chinese materia medica and active compounds on ischemia/reperfusion-induced cerebral microcirculatory disturbances and neuron damage.Acta Pharm. Sin. B20155182410.1016/j.apsb.2014.11.002 26579420
    [Google Scholar]
  8. GuoH. LiM. LiuQ. GuoL. MaM. WangS. YuB. HuL.M. Danhong injection attenuates ischemia/reperfusion-induced brain damage which is associating with Nrf2 levels in vivo and in vitro.Neurochem. Res.20143991817182410.1007/s11064‑014‑1384‑1 25069640
    [Google Scholar]
  9. LiuH. WangS. SunA. HuangD. WangW. ZhangC. ShiD. ChenK. ZouY. GeJ. Danhong inhibits oxidized low-density lipoprotein-induced immune maturation of dentritic cells via a peroxisome proliferator activated receptor γ-mediated pathway.J. Pharmacol. Sci.201211911910.1254/jphs.11226FP 22739234
    [Google Scholar]
  10. CuiY. LiuX. LiX. YangH. In-depth proteomic analysis of the hippocampus in a rat model after cerebral ischaemic injury and repair by Danhong injection (DHI).Int. J. Mol. Sci.2017187135510.3390/ijms18071355 28672812
    [Google Scholar]
  11. VargasG. CyprianoJ. CorreaT. LeãoP. BazylinskiD. AbreuF. Applications of magnetotactic bacteria, magnetosomes and magnetosome crystals in biotechnology and nanotechnology: Mini-Review.Molecules20182310243810.3390/molecules23102438 30249983
    [Google Scholar]
  12. LinW. PanY. BazylinskiD.A. Diversity and ecology of and biomineralization by magnetotactic bacteria.Environ. Microbiol. Rep.20179434535610.1111/1758‑2229.12550 28557300
    [Google Scholar]
  13. LinW. KirschvinkJ.L. PatersonG.A. BazylinskiD.A. PanY. On the origin of microbial magnetoreception.Natl. Sci. Rev.20207247247910.1093/nsr/nwz065 34692062
    [Google Scholar]
  14. WangQ. LiuJ.X. ZhangW.J. ZhangT.W. YangJ. LiY. Expression patterns of key iron and oxygen metabolism genes during magnetosome formation in Magnetospirillum gryphiswaldense MSR-1.FEMS Microbiol. Lett.20133472163172 23937222
    [Google Scholar]
  15. MuratD. QuinlanA. ValiH. KomeiliA. Comprehensive genetic dissection of the magnetosome gene island reveals the step-wise assembly of a prokaryotic organelle.Proc. Natl. Acad. Sci.2010107125593559810.1073/pnas.0914439107 20212111
    [Google Scholar]
  16. UebeR. JungeK. HennV. PoxleitnerG. KatzmannE. PlitzkoJ.M. ZarivachR. KasamaT. WannerG. PósfaiM. BöttgerL. MatzankeB. SchülerD. The cation diffusion facilitator proteins MamB and MamM of Magnetospirillum gryphiswaldense have distinct and complex functions, and are involved in magnetite biomineralization and magnetosome membrane assembly.Mol. Microbiol.201182481883510.1111/j.1365‑2958.2011.07863.x 22007638
    [Google Scholar]
  17. DraperO. ByrneM.E. LiZ. KeyhaniS. BarrozoJ.C. JensenG. KomeiliA. MamK, a bacterial actin, forms dynamic filaments in vivo that are regulated by the acidic proteins MamJ and LimJ.Mol. Microbiol.201182234235410.1111/j.1365‑2958.2011.07815.x 21883528
    [Google Scholar]
  18. KatzmannE. ScheffelA. GruskaM. PlitzkoJ.M. SchülerD. Loss of the actin-like protein MamK has pleiotropic effects on magnetosome formation and chain assembly in Magnetospirillum gryphiswaldense.Mol. Microbiol.201077120822410.1111/j.1365‑2958.2010.07202.x 20487281
    [Google Scholar]
  19. FaivreD. BöttgerL.H. MatzankeB.F. SchülerD. Intracellular magnetite biomineralization in bacteria proceeds by a distinct pathway involving membrane-bound ferritin and an iron(II) species.Angew. Chem. Int. Ed.200746448495849910.1002/anie.200700927 17902080
    [Google Scholar]
  20. QiL. LiJ. ZhangW. LiuJ. RongC. LiY. WuL. Fur in Magnetospirillum gryphiswaldense influences magnetosomes formation and directly regulates the genes involved in iron and oxygen metabolism.PLoS One201271e2957210.1371/journal.pone.0029572 22238623
    [Google Scholar]
  21. DengZ. WangQ. LiuZ. ZhangM. MachadoA.C.D. ChiuT.P. FengC. ZhangQ. YuL. QiL. ZhengJ. WangX. HuoX. QiX. LiX. WuW. RohsR. LiY. ChenZ. Mechanistic insights into metal ion activation and operator recognition by the ferric uptake regulator.Nat. Commun.201561764210.1038/ncomms8642 26134419
    [Google Scholar]
  22. WangQ. WangM. WangX. GuanG. LiY. PengY. LiJ. Iron response regulator protein IrrB in Magnetospirillum gryphiswaldense MSR-1 helps control the iron/oxygen balance, oxidative stress tolerance, and magnetosome formation.Appl. Environ. Microbiol.201581238044805310.1128/AEM.02585‑15 26386052
    [Google Scholar]
  23. RongC. HuangY. ZhangW. JiangW. LiY. LiJ. Ferrous iron transport protein B gene (feoB1) plays an accessory role in magnetosome formation in Magnetospirillum gryphiswaldense strain MSR-1.Res. Microbiol.20081597-853053610.1016/j.resmic.2008.06.005 18639631
    [Google Scholar]
  24. RongC. ZhangC. ZhangY. QiL. YangJ. GuanG. LiY. LiJ. FeoB2 Functions in magnetosome formation and oxidative stress protection in Magnetospirillum gryphiswaldense strain MSR-1.J. Bacteriol.2012194153972397610.1128/JB.00382‑12 22636767
    [Google Scholar]
  25. LiY. KatzmannE. BorgS. SchülerD. The periplasmic nitrate reductase nap is required for anaerobic growth and involved in redox control of magnetite biomineralization in Magnetospirillum gryphiswaldense.J. Bacteriol.2012194184847485610.1128/JB.00903‑12 22730130
    [Google Scholar]
  26. LiY. BaliS. BorgS. KatzmannE. FergusonS.J. SchülerD. Cytochrome cd1 nitrite reductase NirS is involved in anaerobic magnetite biomineralization in Magnetospirillum gryphiswaldense and requires NirN for proper d1 heme assembly.J. Bacteriol.2013195184297430910.1128/JB.00686‑13 23893106
    [Google Scholar]
  27. RaoC. LiaoD. PanY. ZhongY. ZhangW. OuyangQ. Nezamzadeh-EjhiehA. LiuJ. Novel formulations of metal-organic frameworks for controlled drug delivery.Expert Opin. Drug Deliv.202219101183120210.1080/17425247.2022.2064450 35426756
    [Google Scholar]
  28. ChenJ. ZhangZ. MaJ. Nezamzadeh-EjhiehA. LuC. PanY. LiuJ. BaiZ. Current status and prospects of MOFs in controlled delivery of Pt anticancer drugs.Dalton Trans.202352196226623810.1039/D3DT00413A 37070759
    [Google Scholar]
  29. ZengY. XuG. KongX. YeG. GuoJ. LuC. Nezamzadeh-EjhiehA. Shahnawaz KhanM. LiuJ. PengY. Recent advances of the core–shell MOFs in tumour therapy.Int. J. Pharm.202262712222810.1016/j.ijpharm.2022.122228 36162610
    [Google Scholar]
  30. LiL. ZouJ. HanY. LiaoZ. LuP. Nezamzadeh-EjhiehA. LiuJ. PengY. Recent advances in Al(III)/In(III)-based MOFs for the detection of pollutants.New J. Chem.20224641195771959210.1039/D2NJ03419K
    [Google Scholar]
  31. ZhouS. LuL. LiuD. WangJ. SakiyamaH. MuddassirM. Nezamzadeh-EjhiehA. LiuJ. Series of highly stable Cd(II)-based MOFs as sensitive and selective sensors for detection of nitrofuran antibiotic.CrystEngComm202123468043805210.1039/D1CE01264A
    [Google Scholar]
  32. ChenJ. ChengF. LuoD. HuangJ. OuyangJ. Nezamzadeh-EjhiehA. KhanM.S. LiuJ. PengY. Recent advances in Ti-based MOFs in biomedical applications.Dalton Trans.20225139148171483210.1039/D2DT02470E 36124915
    [Google Scholar]
  33. ZhangW. YeG. LiaoD. ChenX. LuC. Nezamzadeh-EjhiehA. KhanM.S. LiuJ. PanY. DaiZ. Recent advances of silver-based coordination polymers on antibacterial applications.Molecules20222721716610.3390/molecules27217166 36363993
    [Google Scholar]
  34. ChenW. LiuM. YangH. Nezamzadeh-EjhiehA. LuC. PanY. LiuJ. BaiZ. Recent advances of Fe(III)/Fe(II)-MPNs in biomedical applications.Pharmaceutics2023155132310.3390/pharmaceutics15051323 37242566
    [Google Scholar]
  35. LiaoD. HuangJ. JiangC. ZhouL. ZhengM. Nezamzadeh-EjhiehA. QiN. LuC. LiuJ. A novel platform of mof for sonodynamic therapy advanced therapies.Pharmaceutics2023158207110.3390/pharmaceutics15082071 37631285
    [Google Scholar]
  36. GuoX. ZhouL. LiuX. TanG. YuanF. Nezamzadeh-EjhiehA. QiN. LiuJ. PengY. Fluorescence detection platform of metal-organic frameworks for biomarkers.Colloids Surf. B Biointerfaces202322911345510.1016/j.colsurfb.2023.113455 37473653
    [Google Scholar]
  37. Nezamzadeh-EjhiehA. Tavakoli-GhinaniS. Effect of a nano-sized natural clinoptilolite modified by the hexadecyltrimethyl ammonium surfactant on cephalexin drug delivery.C. R. Chim.2014171496110.1016/j.crci.2013.07.009
    [Google Scholar]
  38. NajafianN. AarabiA. Nezamzadeh-EjhiehA. Evaluation of physicomechanical properties of gluten-based film incorporated with Persian gum and Guar gum.Int. J. Biol. Macromol.2022233(Part A)1257126710.1016/j.ijbiomac.2022.11.056
    [Google Scholar]
  39. RevathyT. JayasriM.A. SuthindhiranK. Toxicity assessment of magnetosomes in different models.3 Biotech20177212610.1007/s13205‑017‑0780‑z 28573396
    [Google Scholar]
  40. XiangZ. YangX. XuJ. LaiW. WangZ. HuZ. TianJ. GengL. FangQ. Tumor detection using magnetosome nanoparticles functionalized with a newly screened EGFR/HER2 targeting peptide.Biomaterials2017115536410.1016/j.biomaterials.2016.11.022 27888699
    [Google Scholar]
  41. ZhangY. NiQ. XuC. WanB. GengY. ZhengG. YangZ. TaoJ. ZhaoY. WenJ. ZhangJ. WangS. TangY. LiY. ZhangQ. LiuL. TengZ. LuG. Smart bacterial magnetic nanoparticles for tumor-targeting magnetic resonance imaging of HER2-positive breast cancers.ACS Appl. Mater. Interfaces20191143654366510.1021/acsami.8b15838 30495920
    [Google Scholar]
  42. XuJ. HuJ. LiuL. LiL. WangX. ZhangH. JiangW. TianJ. LiY. LiJ. Surface expression of protein A on magnetosomes and capture of pathogenic bacteria by magnetosome/antibody complexes.Front. Microbiol.2014513610.3389/fmicb.2014.00136 24765089
    [Google Scholar]
  43. LiA. ZhangH. ZhangX. WangQ. TianJ. LiY. LiJ. Rapid separation and immunoassay for low levels of Salmonella in foods using magnetosome-antibody complex and real-time fluorescence quantitative PCR.J. Sep. Sci.201033213437344310.1002/jssc.201000441 20886524
    [Google Scholar]
  44. XuJ. LiuL. HeJ. MaS. LiS. WangZ. XuT. JiangW. WenY. LiY. TianJ. LiF. Engineered magnetosomes fused to functional molecule (protein A) provide a highly effective alternative to commercial immunomagnetic beads.J. Nanobiotechnol.20191713710.1186/s12951‑019‑0469‑z 30841927
    [Google Scholar]
  45. GengY. WangJ. WangX. LiuJ. ZhangY. NiuW. BasitA. LiuW. JiangW. Growth-inhibitory effects of anthracycline-loaded bacterial magnetosomes against hepatic cancer in vitro and in vivo.Nanomedicine201914131663168010.2217/nnm‑2018‑0296 31167626
    [Google Scholar]
  46. MaS. GuC. XuJ. HeJ. LiS. ZhengH. PangB. WenY. FangQ. LiuW. TianJ. Strategy for avoiding protein corona inhibition of targeted drug delivery by linking recombinant affibody scaffold to magnetosomes.Int. J. Nanomedicine20221766568010.2147/IJN.S338349 35185331
    [Google Scholar]
  47. KumarP. WuH. McBrideJ.L. JungK.E. Hee KimM. DavidsonB.L. Kyung LeeS. ShankarP. ManjunathN. Transvascular delivery of small interfering RNA to the central nervous system.Nature20074487149394310.1038/nature05901 17572664
    [Google Scholar]
  48. PinheiroR.G.R. GranjaA. LoureiroJ.A. PereiraM.C. PinheiroM. NevesA.R. ReisS. RVG29-functionalized lipid nanoparticles for quercetin brain delivery and Alzheimer’s Disease.Pharm. Res.202037713910.1007/s11095‑020‑02865‑1 32661727
    [Google Scholar]
  49. TanakaT. MatsunagaT. Fully automated chemiluminescence immunoassay of insulin using antibody-protein A-bacterial magnetic particle complexes.Anal. Chem.200072153518352210.1021/ac9912505 10952537
    [Google Scholar]
  50. Juillerat-JeanneretL. SchmittF. Chemical modification of therapeutic drugs or drug vector systems to achieve targeted therapy: Looking for the grail.Med. Res. Rev.200727457459010.1002/med.20086 17022028
    [Google Scholar]
  51. ZhangY.D. Nanopharmacology.Chemical Industry Press2006
    [Google Scholar]
  52. SunJ. TangT. DuanJ. XuP. WangZ. ZhangY. WuL. LiY. Biocompatibility of bacterial magnetosomes: Acute toxicity, immunotoxicity and cytotoxicity.Nanotoxicology20104327128310.3109/17435391003690531 20795909
    [Google Scholar]
  53. XiangL. WeiJ. JianboS. GuiliW. FengG. YingL. Purified and sterilized magnetosomes from Magnetospirillum gryphiswaldense MSR-1 were not toxic to mouse fibroblasts in vitro.Lett. Appl. Microbiol.2007451758110.1111/j.1472‑765X.2007.02143.x 17594464
    [Google Scholar]
  54. WiatrakB. Kubis-KubiakA. PiwowarA. BargE. PC12 cell line: Cell types, coating of culture vessels, differentiation and other culture conditions.Cells20209495810.3390/cells9040958 32295099
    [Google Scholar]
/content/journals/cnano/10.2174/0115734137259242231109174821
Loading
/content/journals/cnano/10.2174/0115734137259242231109174821
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test