Skip to content
2000
image of Pharmacological Blockade of Group II Metabotropic Glutamate Receptors Reduces the Incidence of Brain Tumors Induced by Prenatal Exposure to N-ethyl-N-nitrosourea in Rats

Abstract

Background

The study demonstrates that pharmacological blockade of type 3 metabotropic glutamate (mGlu3) receptors at the time of tumor induction significantly reduces the incidence of brain gliomas in rats. The overall survival of patients with high-grade brain gliomas is 14-20 months after current multimodal therapy, including surgery, radiotherapy, and adjuvant chemotherapy.

Objective

To demonstrate in this experimental model that pharmacological blockade of group II metabotropic glutamate receptors reduces the incidence of brain tumors induced by prenatal exposure to N- ethyl-N-nitrosourea (ENU) in rats.

Methods

Dams received a single injection of ENU (40 mg/kg, e.v.) at day 20 of pregnancy, combined with 5 daily injections of either saline or the mGlu2/3 receptor antagonist, LY341495 (10 mg/kg) (from day 15 to day 21 of pregnancy). Assessment of brain tumors in the offspring at 5 months of age showed the presence of mixed gliomas (astrocytomas/oligodendrogliomas) in 70% of the ENU + saline group of rats and only in 30% of the ENU + LY341495 group.

Conclusion

Tumors in both groups of rats showed a moderate/high expression of the astrocyte marker, GFAP, and the oligodendrocyte marker, OLIG-2, and a low expression of the proliferation marker, Ki-67. However, tumors of the ENU + LY341495 group showed a reduced density of Iba-1+ cells, suggesting a lower extent of neuroinflammation in the tumor microenvironment. These findings strengthen the hypothesis that mGlu3 receptors are candidate drug targets for the treatment of malignant gliomas.

Loading

Article metrics loading...

/content/journals/cn/10.2174/1570159X23666241209090326
2024-12-13
2025-01-05
Loading full text...

Full text loading...

References

  1. Arcella A. Carpinelli G. Battaglia G. D’Onofrio M. Santoro F. Ngomba R.T. Bruno V. Casolini P. Giangaspero F. Nicoletti F. Pharmacological blockade of group II metabotropic glutamate receptors reduces the growth of glioma cells in vivo. Neuro-oncol. 2005 7 3 236 245 10.1215/S1152851704000961 16053698
    [Google Scholar]
  2. Nicoletti F. Arcella A. Iacovelli L. Battaglia G. Giangaspero F. Melchiorri D. Metabotropic glutamate receptors: New targets for the control of tumor growth? Trends Pharmacol. Sci. 2007 28 5 206 213 10.1016/j.tips.2007.03.008 17433452
    [Google Scholar]
  3. Ciceroni C. Arcella A. Mosillo P. Battaglia G. Mastrantoni E. Oliva M.A. Carpinelli G. Santoro F. Sale P. Ricci-Vitiani L. De Maria R. Pallini R. Giangaspero F. Nicoletti F. Melchiorri D. Type-3 metabotropic glutamate receptors negatively modulate bone morphogenetic protein receptor signaling and support the tumourigenic potential of glioma-initiating cells. Neuropharmacology 2008 55 4 568 576 10.1016/j.neuropharm.2008.06.064 18621067
    [Google Scholar]
  4. Ciceroni C. Bonelli M. Mastrantoni E. Niccolini C. Laurenza M. Larocca L.M. Pallini R. Traficante A. Spinsanti P. Ricci-Vitiani L. Arcella A. De Maria R. Nicoletti F. Battaglia G. Melchiorri D. Type-3 metabotropic glutamate receptors regulate chemoresistance in glioma stem cells, and their levels are inversely related to survival in patients with malignant gliomas. Cell Death Differ. 2013 20 3 396 407 10.1038/cdd.2012.150 23175182
    [Google Scholar]
  5. Stefani M.A. Modkovski R. Hansel G. Zimmer E.R. Kopczynski A. Muller A.P. Strogulski N.R. Rodolphi M.S. Carteri R.K. Schmidt A.P. Oses J.P. Smith D.H. Portela L.V. Elevated glutamate and lactate predict brain death after severe head trauma. Ann. Clin. Transl. Neurol. 2017 4 6 392 402 10.1002/acn3.416 28589166
    [Google Scholar]
  6. Wirsching H.G. Silginer M. Ventura E. Macnair W. Burghardt I. Claassen M. Gatti S. Wichmann J. Riemer C. Schneider H. Weller M. Negative allosteric modulators of metabotropic glutamate receptor 3 target the stem-like phenotype of glioblastoma. Mol. Ther. Oncolytics 2021 20 166 174 10.1016/j.omto.2020.12.009 33575479
    [Google Scholar]
  7. Maier J.P. Ravi V.M. Kueckelhaus J. Behringer S.P. Garrelfs N. Will P. Sun N. von Ehr J. Goeldner J.M. Pfeifer D. Follo M. Hannibal L. Walch A.K. Hofmann U.G. Beck J. Heiland D.H. Schnell O. Joseph K. Inhibition of metabotropic glutamate receptor III facilitates sensitization to alkylating chemotherapeutics in glioblastoma. Cell Death Dis. 2021 12 8 723 10.1038/s41419‑021‑03937‑9 34290229
    [Google Scholar]
  8. Tanabe Y. Masu M. Ishii T. Shigemoto R. Nakanishi S. A family of metabotropic glutamate receptors. Neuron 1992 8 1 169 179 10.1016/0896‑6273(92)90118‑W 1309649
    [Google Scholar]
  9. Condorelli D.F. Dell’Albani P. Corsaro M. Giuffrida R. Caruso A. A, T.S.; Spinella, F.; Nicoletti, F.; Albanese, V.; Stella, A.M.G. Metabotropic glutamate receptor expression in cultured rat astrocytes and human gliomas. Neurochem. Res. 1997 22 9 1127 1133 10.1023/A:1027317319166 9251103
    [Google Scholar]
  10. Nicoletti F. Bockaert J. Collingridge G.L. Conn P.J. Ferraguti F. Schoepp D.D. Wroblewski J.T. Pin J.P. Metabotropic glutamate receptors: From the workbench to the bedside. Neuropharmacology 2011 60 7-8 1017 1041 10.1016/j.neuropharm.2010.10.022 21036182
    [Google Scholar]
  11. Di Menna L. Joffe M.E. Iacovelli L. Orlando R. Lindsley C.W. Mairesse J. Gressèns P. Cannella M. Caraci F. Copani A. Bruno V. Battaglia G. Conn P.J. Nicoletti F. Functional partnership between mGlu3 and mGlu5 metabotropic glutamate receptors in the central nervous system. Neuropharmacology 2018 128 301 313 10.1016/j.neuropharm.2017.10.026 29079293
    [Google Scholar]
  12. Joffe M.E. Santiago C.I. Stansley B.J. Maksymetz J. Gogliotti R.G. Engers J.L. Nicoletti F. Lindsley C.W. Conn P.J. Mechanisms underlying prelimbic prefrontal cortex mGlu3/mGlu5-dependent plasticity and reversal learning deficits following acute stress. Neuropharmacology 2019 144 19 28 10.1016/j.neuropharm.2018.10.013 30326237
    [Google Scholar]
  13. Dogra S. Stansley B.J. Xiang Z. Qian W. Gogliotti R.G. Nicoletti F. Lindsley C.W. Niswender C.M. Joffe M.E. Conn P.J. Activating mGlu3 Metabotropic glutamate receptors rescues schizophrenia-like cognitive deficits through metaplastic adaptations within the hippocampus. Biol. Psychiatry 2021 90 6 385 398 10.1016/j.biopsych.2021.02.970 33965197
    [Google Scholar]
  14. D’Onofrio M. Arcella A. Bruno V. Ngomba R.T. Battaglia G. Lombari V. Ragona G. Calogero A. Nicoletti F. Pharmacological blockade of mGlu2/3 metabotropic glutamate receptors reduces cell proliferation in cultured human glioma cells. J. Neurochem. 2003 84 6 1288 1295 10.1046/j.1471‑4159.2003.01633.x 12614329
    [Google Scholar]
  15. Gerson S.L. MGMT: Its role in cancer aetiology and cancer therapeutics. Nat. Rev. Cancer 2004 4 4 296 307 10.1038/nrc1319 15057289
    [Google Scholar]
  16. Denlinger R.H. Koestner A. Wechsler W. Induction of neurogenic tumors in C3HeB/FeJ mice by nitrosourea derivatives: Observations by light microscopy, tissue culture, and electron microscopy. Int. J. Cancer 1974 13 4 559 571 10.1002/ijc.2910130416 4366972
    [Google Scholar]
  17. Wechsler W. Koestner A. Developmental biology related to oncology. Pririciples of Sirrgical Oticology. Raven R.W. London, New York Plenum Publishing Corporation 1977 93 108 10.1007/978‑1‑4684‑2301‑3_6
    [Google Scholar]
  18. Koestner A. Characterization of N-nitrosourea-induced tumors of the nervous system; their prospective value for studies of neurocarcinogenesis and brain tumor therapy. Toxicol. Pathol. 1990 18 1_part_2 186 192 10.1177/019262339001800124 2195638
    [Google Scholar]
  19. Druckrey H. Ivanković S. Preussmann R. Teratogenic and carcinogenic effects in the offspring after single injection of ethylnitrosourea to pregnant rats. Nature 1966 210 5043 1378 1379 10.1038/2101378a0 6007120
    [Google Scholar]
  20. Cruz-Orive L.M. Stereology of single objects. J. Microsc. 1997 186 2 93 107 10.1046/j.1365‑2818.1997.1380695.x
    [Google Scholar]
  21. Lier J. Streit W.J. Bechmann I. Beyond activation: Characterizing microglial functional phenotypes. Cells 2021 10 9 2236 10.3390/cells10092236 34571885
    [Google Scholar]
  22. Basheer A.S. Abas F. Othman I. Naidu R. Role of inflammatory mediators, macrophages, and neutrophils in glioma maintenance and progression: Mechanistic understanding and potential therapeutic applications. Cancers (Basel) 2021 13 16 4226 10.3390/cancers13164226 34439380
    [Google Scholar]
  23. Yeung Y.T. Bryce N.S. Adams S. Braidy N. Konayagi M. McDonald K.L. Teo C. Guillemin G.J. Grewal T. Munoz L. p38 MAPK inhibitors attenuate pro-inflammatory cytokine production and the invasiveness of human U251 glioblastoma cells. J. Neurooncol. 2012 109 1 35 44 10.1007/s11060‑012‑0875‑7 22528800
    [Google Scholar]
  24. Caridi M. Alborghetti M. Pellicelli V. Orlando R. Pontieri F.E. Battaglia G. Arcella A. Metabotropic glutamate receptors type 3 and 5 feature the “neurotransmitter-type” of glioblastoma: A bioinformatic approach. Curr. Neuropharmacol. 2024 22 11 1923 1939 10.2174/1570159X22666240320112926 38509672
    [Google Scholar]
/content/journals/cn/10.2174/1570159X23666241209090326
Loading
/content/journals/cn/10.2174/1570159X23666241209090326
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test