Skip to content
2000
Volume 23, Issue 8
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Neurological disorders are the leading health threats worldwide, characterized by impairments in consciousness, cognition, movement, and sensation, and can even lead to death. UFMylation is a novel post-translational modification (PTM) that serves as an important regulatory factor, promoting the complexity of protein structures and enhancing the diversity and specificity of functions. In UFMylation, ubiquitin-fold modifier 1 (UFM1) is covalently transferred to the primary amine of a lysine residue on the target protein through the synergistic action of three enzymes: the activating enzyme E1 of UFM1, the coupling enzyme E2 of UFM1, and the ligase E3. UFMylation has been proven to be involved in various cellular processes, such as the maintenance of genome homeostasis, autophagy, signal transduction during antiviral responses, cell death, and differentiation. Additionally, a growing number of evidence suggests that polymorphisms in genes related to the UFMylation system are associated with the risk of epileptic encephalopathy, microcephaly, neurodegenerative diseases, and schizophrenia. Therefore, the concept, enzymatic cascade, and biological functions of UFMylation are carefully summarized, along with its potential role in neurological diseases.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X340639240905092813
2025-01-02
2025-07-14
Loading full text...

Full text loading...

References

  1. DollS. BurlingameA.L. Mass spectrometry-based detection and assignment of protein posttranslational modifications.ACS Chem. Biol.2015101637110.1021/cb500904b 25541750
    [Google Scholar]
  2. KomatsuM. ChibaT. TatsumiK. IemuraS. TanidaI. OkazakiN. UenoT. KominamiE. NatsumeT. TanakaK. A novel protein-conjugating system for Ufm1, a ubiquitin-fold modifier.EMBO J.20042391977198610.1038/sj.emboj.7600205 15071506
    [Google Scholar]
  3. TatsumiK. SouY. TadaN. NakamuraE. IemuraS. NatsumeT. KangS.H. ChungC.H. KasaharaM. KominamiE. YamamotoM. TanakaK. KomatsuM. A novel type of E3 ligase for the Ufm1 conjugation system.J. Biol. Chem.201028585417542710.1074/jbc.M109.036814 20018847
    [Google Scholar]
  4. ChengY. NiuZ. CaiY. ZhangW. Emerging role of UFMylation in secretory cells involved in the endocrine system by maintaining ER proteostasis.Front. Endocrinol. (Lausanne)202313108540810.3389/fendo.2022.1085408 36743909
    [Google Scholar]
  5. CaiY. PiW. SivaprakasamS. ZhuX. ZhangM. ChenJ. MakalaL. LuC. WuJ. TengY. PaceB. TuanD. SinghN. LiH. UFBP1, a key component of the Ufm1 conjugation system, is essential for ufmylation-mediated regulation of erythroid development.PLoS Genet.20151111e100564310.1371/journal.pgen.1005643 26544067
    [Google Scholar]
  6. TatsumiK. Yamamoto-MukaiH. ShimizuR. WaguriS. SouY.S. SakamotoA. TayaC. ShitaraH. HaraT. ChungC.H. TanakaK. YamamotoM. KomatsuM. The Ufm1-activating enzyme Uba5 is indispensable for erythroid differentiation in mice.Nat. Commun.20112118110.1038/ncomms1182 21304510
    [Google Scholar]
  7. JingY. MaoZ. ChenF. UFMylation system: An emerging player in tumorigenesis.Cancers (Basel)20221414350110.3390/cancers14143501 35884562
    [Google Scholar]
  8. ZhouJ. MaX. HeX. ChenB. YuanJ. JinZ. LiL. WangZ. XiaoQ. CaiY. ZouY. CongY.S. Dysregulation of PD-L1 by UFMylation imparts tumor immune evasion and identified as a potential therapeutic target.Proc. Natl. Acad. Sci. USA202312011e221573212010.1073/pnas.2215732120 36893266
    [Google Scholar]
  9. WangK. ChenS. WuY. WangY. LuY. SunY. ChenY. The ufmylation modification of ribosomal protein L10 in the development of pancreatic adenocarcinoma.Cell Death Dis.202314635010.1038/s41419‑023‑05877‑y 37280198
    [Google Scholar]
  10. ChungC.H. YooH.M. Emerging role of protein modification by UFM1 in cancer.Biochem. Biophys. Res. Commun.2022633616310.1016/j.bbrc.2022.08.093 36344165
    [Google Scholar]
  11. YiuS.P.T. ZerbeC. VanderwallD. HuttlinE.L. WeekesM.P. GewurzB.E. An Epstein-Barr virus protein interaction map reveals NLRP3 inflammasome evasion via MAVS UFMylation.Mol. Cell2023831323672386.e1510.1016/j.molcel.2023.05.018 37311461
    [Google Scholar]
  12. BalceD.R. WangY.T. McAllasterM.R. DunlapB.F. OrvedahlA. HykesB.L.Jr DroitL. HandleyS.A. WilenC.B. DoenchJ.G. OrchardR.C. StallingsC.L. VirginH.W. UFMylation inhibits the proinflammatory capacity of interferon–γ–activated macrophages.Proc. Natl. Acad. Sci. USA20211181e201176311810.1073/pnas.2011763118 33372156
    [Google Scholar]
  13. IshimuraR. El-GowilyA.H. NoshiroD. Komatsu-HirotaS. OnoY. ShindoM. HattaT. AbeM. UemuraT. Lee-OkadaH.C. MohamedT.M. YokomizoT. UenoT. SakimuraK. NatsumeT. SorimachiH. InadaT. WaguriS. NodaN.N. KomatsuM. The UFM1 system regulates ER-phagy through the ufmylation of CYB5R3.Nat. Commun.2022131785710.1038/s41467‑022‑35501‑0 36543799
    [Google Scholar]
  14. KangS.H. KimG.R. SeongM. BaekS.H. SeolJ.H. BangO.S. OvaaH. TatsumiK. KomatsuM. TanakaK. ChungC.H. Two novel ubiquitin-fold modifier 1 (Ufm1)-specific proteases, UfSP1 and UfSP2.J. Biol. Chem.200728285256526210.1074/jbc.M610590200 17182609
    [Google Scholar]
  15. LiangQ. JinY. XuS. ZhouJ. MaoJ. MaX. WangM. CongY.S. Human UFSP1 translated from an upstream near-cognate initiation codon functions as an active UFM1-specific protease.J. Biol. Chem.2022298610201610.1016/j.jbc.2022.102016 35525273
    [Google Scholar]
  16. BanerjeeS. VargaJ.K. KumarM. ZoltsmanG. Rotem-BambergerS. Cohen-KfirE. IsupovM.N. RosenzweigR. Schueler-FurmanO. WienerR. Structural study of UFL1-UFC1 interaction uncovers the role of UFL1 N-terminal helix in ufmylation.EMBO Rep.20232412e5692010.15252/embr.202356920 37988244
    [Google Scholar]
  17. PeterJ.J. MagnussenH.M. DaRosaP.A. MillrineD. MatthewsS.P. LamoliatteF. SundaramoorthyR. KopitoR.R. KulathuY. A non-canonical scaffold-type E3 ligase complex mediates protein UFMylation.EMBO J.20224121e11101510.15252/embj.2022111015 36121123
    [Google Scholar]
  18. WalczakC.P. LetoD.E. ZhangL. RiepeC. MullerR.Y. DaRosaP.A. IngoliaN.T. EliasJ.E. KopitoR.R. Ribosomal protein RPL26 is the principal target of UFMylation.Proc. Natl. Acad. Sci. USA201911641299130810.1073/pnas.1816202116 30626644
    [Google Scholar]
  19. WangL. XuY. RogersH. SaidiL. NoguchiC.T. LiH. YewdellJ.W. GuydoshN.R. YeY. UFMylation of RPL26 links translocation-associated quality control to endoplasmic reticulum protein homeostasis.Cell Res.202030152010.1038/s41422‑019‑0236‑6 31595041
    [Google Scholar]
  20. MatsuoY. IkeuchiK. SaekiY. IwasakiS. SchmidtC. UdagawaT. SatoF. TsuchiyaH. BeckerT. TanakaK. IngoliaN.T. BeckmannR. InadaT. Ubiquitination of stalled ribosome triggers ribosome-associated quality control.Nat. Commun.20178115910.1038/s41467‑017‑00188‑1 28757607
    [Google Scholar]
  21. RuggianoA. ForestiO. CarvalhoP. ER-associated degradation: Protein quality control and beyond.J. Cell Biol.2014204686987910.1083/jcb.201312042 24637321
    [Google Scholar]
  22. ScavoneF. GumbinS.C. Da RosaP.A. KopitoR.R. RPL26/uL24 UFMylation is essential for ribosome-associated quality control at the endoplasmic reticulum.Proc. Natl. Acad. Sci. USA202312016e222034012010.1073/pnas.2220340120 37036982
    [Google Scholar]
  23. IshimuraR. ItoS. MaoG. Komatsu-HirotaS. InadaT. NodaN.N. KomatsuM. Mechanistic insights into the roles of the UFM1 E3 ligase complex in ufmylation and ribosome-associated protein quality control.Sci. Adv.2023933eadh363510.1126/sciadv.adh3635 37595036
    [Google Scholar]
  24. LiuJ. WangY. SongL. ZengL. YiW. LiuT. ChenH. WangM. JuZ. CongY.S. A critical role of DDRGK1 in endoplasmic reticulum homoeostasis via regulation of IRE1α stability.Nat. Commun.2017811418610.1038/ncomms14186 28128204
    [Google Scholar]
  25. LuoH. JiaoQ.B. ShenC.B. GongW.Y. YuanJ.H. LiuY.Y. ChenZ. LiuJ. XuX.L. CongY.S. ZhangX.W. UFMylation of HRD1 regulates endoplasmic reticulum homeostasis.FASEB J.20233711e2322110.1096/fj.202300004RRRR 37795761
    [Google Scholar]
  26. PicchiantiL. Sánchez de Medina HernándezV. ZhanN. IrwinN.A.T. GrohR. StephaniM. HorneggerH. BeveridgeR. Sawa-MakarskaJ. LendlT. GrujicN. NaumannC. MartensS. RichardsT.A. ClausenT. RamundoS. KaragözG.E. DagdasY. Shuffled ATG8 interacting motifs form an ancestral bridge between UFMylation and autophagy.EMBO J.20234210e11205310.15252/embj.2022112053 36762703
    [Google Scholar]
  27. StephaniM. PicchiantiL. GajicA. BeveridgeR. SkarwanE. Sanchez de Medina HernandezV. MohseniA. ClavelM. ZengY. NaumannC. MatuszkiewiczM. TurcoE. LoefkeC. LiB. DürnbergerG. SchutzbierM. ChenH.T. AbdrakhmanovA. SavovaA. ChiaK.S. DjameiA. SchaffnerI. AbelS. JiangL. MechtlerK. IkedaF. MartensS. ClausenT. DagdasY. A cross-kingdom conserved ER-phagy receptor maintains endoplasmic reticulum homeostasis during stress.eLife20209e5839610.7554/eLife.58396 32851973
    [Google Scholar]
  28. StephaniM. PicchiantiL. DagdasY. C53 is a cross-kingdom conserved reticulophagy receptor that bridges the gap betweenselective autophagy and ribosome stalling at the endoplasmic reticulum.Autophagy202117258658710.1080/15548627.2020.1846304 33164651
    [Google Scholar]
  29. LiangJ.R. LingemanE. LuongT. AhmedS. MuharM. NguyenT. OlzmannJ.A. CornJ.E. A Genome-wide ER-phagy screen highlights key roles of mitochondrial metabolism and ER-resident UFMylation.Cell2020180611601177.e2010.1016/j.cell.2020.02.017 32160526
    [Google Scholar]
  30. CaoY. LiR. ShenM. LiC. ZouY. JiangQ. LiuS. LuC. LiH. LiuH. CaiY. DDRGK1, a crucial player of ufmylation system, is indispensable for autophagic degradation by regulating lysosomal function.Cell Death Dis.202112541610.1038/s41419‑021‑03694‑9 33879777
    [Google Scholar]
  31. LeeJ-H. PaullT.T. Activation and regulation of ATM kinase activity in response to DNA double-strand breaks.Oncogene200726567741774810.1038/sj.onc.1210872 18066086
    [Google Scholar]
  32. WangZ. GongY. PengB. ShiR. FanD. ZhaoH. ZhuM. ZhangH. LouZ. ZhouJ. ZhuW.G. CongY.S. XuX. MRE11 UFMylation promotes ATM activation.Nucleic Acids Res.20194784124413510.1093/nar/gkz110 30783677
    [Google Scholar]
  33. QinB. YuJ. NowsheenS. WangM. TuX. LiuT. LiH. WangL. LouZ. UFL1 promotes histone H4 ufmylation and ATM activation.Nat. Commun.2019101124210.1038/s41467‑019‑09175‑0 30886146
    [Google Scholar]
  34. QinB. YuJ. ZhaoF. HuangJ. ZhouQ. LouZ. Dynamic recruitment of UFM1-specific peptidase 2 to the DNA double-strand breaks regulated by WIP1.Genome Instab. Dis.20223421722610.1007/s42764‑022‑00076‑z 36042814
    [Google Scholar]
  35. Da CostaI.C. SchmidtC.K. Ubiquitin-like proteins in the DNA damage response: The next generation.Essays Biochem.202064573775210.1042/EBC20190095 32451552
    [Google Scholar]
  36. ZhangM. ZhuX. ZhangY. CaiY. ChenJ. SivaprakasamS. GuravA. PiW. MakalaL. WuJ. PaceB. Tuan-LoD. GanapathyV. SinghN. LiH. RCAD/Ufl1, a Ufm1 E3 ligase, is essential for hematopoietic stem cell function and murine hematopoiesis.Cell Death Differ.201522121922193410.1038/cdd.2015.51 25952549
    [Google Scholar]
  37. KulsuptrakulJ. WangR. MeyersN.L. OttM. PuschnikA.S. A genome-wide CRISPR screen identifies UFMylation and TRAMP-like complexes as host factors required for hepatitis A virus infection.Cell Rep.2021341110885910.1016/j.celrep.2021.108859 33730579
    [Google Scholar]
  38. SniderD.L. ParkM. MurphyK.A. BeachboardD.C. HornerS.M. Signaling from the RNA sensor RIG-I is regulated by ufmylation.Proc. Natl. Acad. Sci. USA202211915e211953111910.1073/pnas.2119531119 35394863
    [Google Scholar]
  39. TaoY. YinS. LiuY. LiC. ChenY. HanD. HuangJ. XuS. ZouZ. YuY. UFL1 promotes antiviral immune response by maintaining STING stability independent of UFMylation.Cell Death Differ.2023301162610.1038/s41418‑022‑01041‑9 35871231
    [Google Scholar]
  40. SchurenA.B.C. BoerI.G.J. BoumaE.M. Van de WeijerM.L. CostaA.I. HubelP. PichlmairA. LebbinkR.J. WiertzE.J.H.J. The UFM1 pathway impacts HCMV US2-mediated degradation of HLA Class I.Molecules202126228710.3390/molecules26020287 33430125
    [Google Scholar]
  41. HeC. XingX. ChenH.Y. GaoM. ShiJ. XiangB. XiaoX. SunY. YuH. XuG. YaoY. XieZ. XingY. BudiartoB.R. ChenS.Y. GaoY. LeeY.R. ZhangJ. UFL1 ablation in T cells suppresses PD-1 UFMylation to enhance anti-tumor immunity.Mol. Cell202484611201138.e810.1016/j.molcel.2024.01.024 38377992
    [Google Scholar]
  42. TeraiH. KitajimaS. PotterD.S. MatsuiY. QuicenoL.G. ChenT. KimT. RusanM. ThaiT.C. PiccioniF. DonovanK.A. KwiatkowskiN. HinoharaK. WeiG. GrayN.S. FischerE.S. WongK.K. ShimamuraT. LetaiA. HammermanP.S. BarbieD.A. ER stress signaling promotes the survival of cancer “persister cells” tolerant to EGFR tyrosine kinase inhibitors.Cancer Res.20187841044105710.1158/0008‑5472.CAN‑17‑1904 29259014
    [Google Scholar]
  43. ZhouJ. MaX. XuL. LiangQ. MaoJ. LiuJ. WangM. YuanJ. CongY. Genomic profiling of the UFMylation family genes identifies UFSP2 as a potential tumour suppressor in colon cancer.Clin. Transl. Med.20211112e64210.1002/ctm2.642 34923774
    [Google Scholar]
  44. MuonaM. IshimuraR. LaariA. IchimuraY. LinnankiviT. Keski-FilppulaR. HervaR. RantalaH. PaetauA. PöyhönenM. ObataM. UemuraT. KarhuT. BizenN. TakebayashiH. McKeeS. ParkerM.J. AkawiN. McRaeJ. HurlesM.E. KuisminO. KurkiM.I. AnttonenA.K. TanakaK. PalotieA. WaguriS. LehesjokiA.E. KomatsuM. KomatsuM. Biallelic variants in UBA5 link dysfunctional UFM1 Ubiquitin-like modifier pathway to severe infantile-onset encephalopathy.Am. J. Hum. Genet.201699368369410.1016/j.ajhg.2016.06.020 27545674
    [Google Scholar]
  45. ArnadottirG.A. JenssonB.O. MarelssonS.E. SulemG. OddssonA. KristjanssonR.P. BenonisdottirS. GudjonssonS.A. MassonG. ThorissonG.A. SaemundsdottirJ. MagnussonO.T. JonasdottirA. JonasdottirA. SigurdssonA. GudbjartssonD.F. ThorsteinsdottirU. ArngrimssonR. SulemP. StefanssonK. Compound heterozygous mutations in UBA5 causing early-onset epileptic encephalopathy in two sisters.BMC Med. Genet.201718110310.1186/s12881‑017‑0466‑8 28965491
    [Google Scholar]
  46. BriereL.C. WalkerM.A. HighF.A. CooperC. RogersC.A. CallahanC.J. IshimuraR. IchimuraY. CarusoP.A. SharmaN. BrokampE. KoziuraM.E. MohammadS.S. DaleR.C. RileyL.G. PhillipsJ.A. KomatsuM. SweetserD.A. SweetserD.A. A description of novel variants and review of phenotypic spectrum in UBA5 -related early epileptic encephalopathy.Molecular Case Studies202173a00582710.1101/mcs.a005827 33811063
    [Google Scholar]
  47. Mignon-RavixC. MilhM. KaiserC.S. DanielJ. RiccardiF. CacciagliP. NagaraM. BusaT. LiebauE. VillardL. Abnormal function of the UBA5 protein in a case of early developmental and epileptic encephalopathy with suppression-burst.Hum. Mutat.201839793493810.1002/humu.23534 29663568
    [Google Scholar]
  48. DaidaA. HamanoS. IkemotoS. MatsuuraR. NakashimaM. MatsumotoN. KatoM. Biallelic loss‐of‐function UBA5 mutations in a patient with intractable West syndrome and profound failure to thrive.Epileptic Disord.201820431331810.1684/epd.2018.0981 30078785
    [Google Scholar]
  49. NiM. AfrozeB. XingC. PanC. ShaoY. CaiL. CantarelB.L. PeiJ. GrishinN.V. HewsonS. KnightD. MahidaS. MichelD. TarnopolskyM. PoduriA. RotenbergA. SondheimerN. DeBerardinisR.J. A pathogenic UFSP2 variant in an autosomal recessive form of pediatric neurodevelopmental anomalies and epilepsy.Genet. Med.202123590090810.1038/s41436‑020‑01071‑z 33473208
    [Google Scholar]
  50. ZhangJ. ZhuH. LiuS. QuinteroM. ZhuT. XuR. CaiY. HanY. LiH. Deficiency of murine UFM1-specific E3 ligase causes microcephaly and inflammation.Mol. Neurobiol.202259106363637210.1007/s12035‑022‑02979‑0 35931931
    [Google Scholar]
  51. PanX. AlvarezA.N. MaM. LuS. CrawfordM.W. BriereL.C. KancaO. YamamotoS. SweetserD.A. WilsonJ.L. NapierR.J. PrunedaJ.N. BellenH.J. Allelic strengths of encephalopathy-associated UBA5 variants correlate between in vivo and in vitro assays.eLife202312RP8989110.7554/eLife.89891.3 38079206
    [Google Scholar]
  52. FuJ. TaoT. LiZ. ChenY. LiJ. PengL. The roles of ER stress in epilepsy: Molecular mechanisms and therapeutic implications.Biomed. Pharmacother.202013111065810.1016/j.biopha.2020.110658 32841895
    [Google Scholar]
  53. EdvardsonS. NicolaeC.M. NohG.J. BurtonJ.E. PunziG. ShaagA. BischetsriederJ. De GrassiA. PierriC.L. ElpelegO. MoldovanG.L. Heterozygous RNF13 gain-of-function variants are associated with congenital microcephaly, epileptic encephalopathy, blindness, and failure to thrive.Am. J. Hum. Genet.2019104117918510.1016/j.ajhg.2018.11.018 30595371
    [Google Scholar]
  54. LiuG. GuoH. GuoC. ZhaoS. GongD. ZhaoY. Involvement of IRE1α signaling in the hippocampus in patients with mesial temporal lobe epilepsy.Brain Res. Bull.20118419410210.1016/j.brainresbull.2010.10.004 20965234
    [Google Scholar]
  55. ColinE. DanielJ. ZieglerA. WakimJ. ScrivoA. HaackT.B. KhiatiS. DenomméA.S. Amati-BonneauP. CharifM. ProcaccioV. ReynierP. AleckK.A. BottoL.D. HerperC.L. KaiserC.S. NabboutR. N’GuyenS. Mora-LorcaJ.A. AssmannB. ChristS. MeitingerT. StromT.M. ProkischH. Miranda-VizueteA. HoffmannG.F. LenaersG. BomontP. LiebauE. BonneauD. GéninE. CampionD. DartiguesJ-F. DeleuzeJ-F. LambertJ-C. RedonR. LudwigT. Grenier-BoleyB. LetortS. LindenbaumP. MeyerV. QuenezO. DinaC. BellenguezC. -Le Clézio, C.C.; Giemza, J.; Chatel, S.; Férec, C.; Le Marec, H.; Letenneur, L.; Nicolas, G.; Rouault, K.; Bacq, D.; Boland, A.; Lechner, D. Biallelic variants in UBA5 reveal that disruption of the UFM1 cascade can result in early-onset encephalopathy.Am. J. Hum. Genet.201699369570310.1016/j.ajhg.2016.06.030 27545681
    [Google Scholar]
  56. LowK.J. BaptistaJ. BabikerM. CaswellR. KingC. EllardS. ScurrI. Hemizygous UBA5 missense mutation unmasks recessive disorder in a patient with infantile-onset encephalopathy, acquired microcephaly, small cerebellum, movement disorder and severe neurodevelopmental delay.Eur. J. Med. Genet.20196229710210.1016/j.ejmg.2018.06.009 29902590
    [Google Scholar]
  57. NahorskiM.S. MaddirevulaS. IshimuraR. AlsahliS. BradyA.F. BegemannA. MizushimaT. Guzmán-VegaF.J. ObataM. IchimuraY. AlsaifH.S. AnaziS. IbrahimN. AbdulwahabF. HashemM. MoniesD. AbouelhodaM. MeyerB.F. AlfadhelM. EyaidW. ZweierM. SteindlK. RauchA. AroldS.T. WoodsC.G. KomatsuM. AlkurayaF.S. Biallelic UFM1 and UFC1 mutations expand the essential role of ufmylation in brain development.Brain201814171934194510.1093/brain/awy135 29868776
    [Google Scholar]
  58. YuL. LiG. DengJ. JiangX. XueJ. ZhuY. HuangW. TangB. DuanR. The UFM1 cascade times mitosis entry associated with microcephaly.FASEB J.20203411319133010.1096/fj.201901751R 31914610
    [Google Scholar]
  59. Nicolas-JilwanM. Recessive congenital methemoglobinemia type II: Hypoplastic basal ganglia in two siblings with a novel mutation of the cytochrome b5 reductase gene.Neuroradiol. J.201932214314710.1177/1971400918822153 30614390
    [Google Scholar]
  60. BarakizouH. ChaiebS. Familial psychomotor delay of an uncommon cause: Type II congenital methemoglobinemia.Clin. Med. Insights. Pediatr.2024181179556524122900710.1177/11795565241229007 38303731
    [Google Scholar]
  61. DuanR. ShiY. YuL. ZhangG. LiJ. LinY. GuoJ. WangJ. ShenL. JiangH. WangG. TangB. UBA5 mutations cause a new form of autosomal recessive cerebellar ataxia.PLoS One2016112e014903910.1371/journal.pone.0149039 26872069
    [Google Scholar]
  62. HamiltonE.M.C. BertiniE. KalaydjievaL. MorarB. Dojjčáková, D.; Liu, J.; Vanderver, A.; Curiel, J.; Persoon, C.M.; Diodato, D.; Pinelli, L.; van der Meij, N.L.; Plecko, B.; Blaser, S.; Wolf, N.I.; Waisfisz, Q.; Abbink, T.E.M.; van der Knaap, M.S.; D’Amico, A.; Raguž, A.B.; la Boria, P.; Cefalo, G.; Dinopoulos, A.; Domènech, S.; Donati, M.A.; Frattini, D.; Gasperini, S.; Giordano, L.; Procopio, E.; Rauch, A.; Rodriguez-Palmero, A.; Siriwardena, K.; Tomás-Vila, M. UFM1 founder mutation in the Roma population causes recessive variant of H-ABC.Neurology201789171821182810.1212/WNL.0000000000004578 28931644
    [Google Scholar]
  63. IvanovI. PachevaI. YordanovaR. SotkovaI. GalabovaF. GaberovaK. PanovaM. GhenevaI. TsvetanovaT. NonevaK. DimitrovaD. MarkovS. SapundzhievN. BichevS. SavovA. Hypomyelination with atrophy of basal ganglia and cerebellum (HABC) due to UFM1 mutation in Roma patients - Severe early encephalopathy with stridor and severe hearing and visual impairment. A single center experience.CNS Neurol. Disord. Drug Targets202322220721410.2174/1871527321666220221100704 35189806
    [Google Scholar]
  64. Al-SaadyM.L. KaiserC.S. WakasuquiF. KorenkeG.C. WaisfiszQ. PolstraA. PouwelsP.J.W. BugianiM. van der KnaapM.S. LunsingR.J. LiebauE. WolfN.I. Homozygous UBA5 variant leads to hypomyelination with thalamic involvement and axonal neuropathy.Neuropediatrics202152648949410.1055/s‑0041‑1724130 33853163
    [Google Scholar]
  65. Szűcs, Z.; Fitala, R.; Nyuzó, Á.R.; Fodor, K.; Czemmel, É.; Vrancsik, N.; Bessenyei, M.; Szabó, T.; Szakszon, K.; Balogh, I. Four new cases of hypomyelinating leukodystrophy associated with the UFM1 c.-155_-153delTCA founder mutation in pediatric patients of Roma descent in Hungary.Genes (Basel)2021129133110.3390/genes12091331 34573312
    [Google Scholar]
  66. LiH. YuZ. NiuZ. ChengY. WeiZ. CaiY. MaF. HuL. ZhuJ. ZhangW. A neuroprotective role of Ufmylation through Atg9 in the aging brain of Drosophila.Cell. Mol. Life Sci.202380512910.1007/s00018‑023‑04778‑9 37086384
    [Google Scholar]
  67. LinM.T. BealM.F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases.Nature2006443711378779510.1038/nature05292 17051205
    [Google Scholar]
  68. ZhangW. LiuD. YuanM. ZhuL.Q. The mechanisms of mitochondrial abnormalities that contribute to sleep disorders and related neurodegenerative diseases.Ageing Res. Rev.20249710230710.1016/j.arr.2024.102307 38614368
    [Google Scholar]
  69. QinP. SunY. LiL. Mitochondrial dysfunction in chronic neuroinflammatory diseases (Review).Int. J. Mol. Med.20245354710.3892/ijmm.2024.5371 38577947
    [Google Scholar]
  70. JohnsonJ. Mercado-AyonE. Mercado-AyonY. DongY.N. HalawaniS. NgabaL. LynchD.R. Mitochondrial dysfunction in the development and progression of neurodegenerative diseases.Arch. Biochem. Biophys.202170210869810.1016/j.abb.2020.108698 33259796
    [Google Scholar]
  71. RubioM.D. WoodK. HaroutunianV. Meador-WoodruffJ.H. Dysfunction of the ubiquitin proteasome and ubiquitin-like systems in schizophrenia.Neuropsychopharmacology201338101910192010.1038/npp.2013.84 23571678
    [Google Scholar]
  72. KimP. ScottM.R. Meador-WoodruffJ.H. Abnormal expression of ER quality control and ER associated degradation proteins in the dorsolateral prefrontal cortex in schizophrenia.Schizophr. Res.201819748449110.1016/j.schres.2018.02.010 29496332
    [Google Scholar]
  73. BaldridgeR.D. RapoportT.A. Autoubiquitination of the Hrd1 ligase triggers protein retrotranslocation in ERAD.Cell2016166239440710.1016/j.cell.2016.05.048 27321670
    [Google Scholar]
  74. XiangC. WangY. ZhangH. HanF. The role of endoplasmic reticulum stress in neurodegenerative disease.Apoptosis201722112610.1007/s10495‑016‑1296‑4 27815720
    [Google Scholar]
  75. Cabrera-SerranoM. CooteD.J. AzmanovD. GoulleeH. AndersenE. McLeanC. DavisM. IshimuraR. StarkZ. VallatJ.M. KomatsuM. KornbergA. RyanM. LaingN.G. RavenscroftG. A homozygous UBA5 pathogenic variant causes a fatal congenital neuropathy.J. Med. Genet.2020571283584210.1136/jmedgenet‑2019‑106496 32179706
    [Google Scholar]
/content/journals/cn/10.2174/011570159X340639240905092813
Loading
/content/journals/cn/10.2174/011570159X340639240905092813
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): neurological diseases; UBA5; UFC1; UFL1; UFM1; UFMylation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test