Skip to content
2000
image of Neurobehavioral Disorders and Cognitive Impairment in Methcathinone Exposure: A Systematic Review of Literature

Abstract

Background

Methcathinone, a synthetic cathinone derivative similar to amphetamine, has transitioned from a 1920s ephedrine precursor and Soviet-era antidepressant to a recreationally used substance since the 1970s-1980s, raising public health concerns due to its addiction potential and neurotoxicity-related health risks.

Objective

This review comprehensively analyzes methcathinone's impact on adult offspring, synthesizing recent advancements and critiquing literature to pinpoint key findings, challenges, and future research directions.

Methods

The systematic review adhered to PRISMA guidelines and encompassed case series, prospective and retrospective studies, as well as short communications published in English. An electronic search was conducted on PubMed, Elsevier, and CNKI. The focus was on methcathinone and its neuropsychological disorders and physical health complications, specifically in adult offspring.

Results

A total of 8 studies met the inclusion criteria, resulting in a dataset of methcathinone on neurobehavioral and cognitive functions. These studies mainly found that prenatal methcathinone exposure in rats led to delayed physical development and induced anxiety-like behavior in offspring, with changes observed in neurobehavioral tests and the concentration of serotonin and dopamine. Furthermore, neurochemical effects were identified, showing dose- and time-dependent increases in extracellular dopamine and serotonin concentrations, and neurotoxic potential towards brain dopamine neurons.

Conclusion

This study concludes that methcathinone poses severe risks, including neurotoxicity for users and developmental harm for offspring, necessitating ongoing research to comprehend associated risks and inform public health interventions.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X387589250318041633
2025-03-25
2025-07-08
Loading full text...

Full text loading...

References

  1. Rojek S. Kłys M. Maciów-Głąb M. Kula K. Strona M. Cathinones derivatives‐related deaths as exemplified by two fatal cases involving methcathinone with 4‐methylmethcathinone and 4‐methylethcathinone. Drug Test. Anal. 2014 6 7-8 770 777 10.1002/dta.1615 24550156
    [Google Scholar]
  2. Eshleman A.J. Wolfrum K.M. Hatfield M.G. Johnson R.A. Murphy K.V. Janowsky A. Substituted methcathinones differ in transporter and receptor interactions. Biochem. Pharmacol. 2013 85 12 1803 1815 10.1016/j.bcp.2013.04.004 23583454
    [Google Scholar]
  3. Miliano C. Serpelloni G. Rimondo C. Mereu M. Marti M. De Luca M.A. Neuropharmacology of new psychoactive substances (nps): Focus on the rewarding and reinforcing properties of cannabimimetics and amphetamine-like stimulants. Front. Neurosci. 2016 10 153 10.3389/fnins.2016.00153 27147945
    [Google Scholar]
  4. Hadlock G.C. Webb K.M. McFadden L.M. Chu P.W. Ellis J.D. Allen S.C. Andrenyak D.M. Vieira-Brock P.L. German C.L. Conrad K.M. Hoonakker A.J. Gibb J.W. Wilkins D.G. Hanson G.R. Fleckenstein A.E. 4-Methylmethcathinone (mephedrone): Neuropharmacological effects of a designer stimulant of abuse. J. Pharmacol. Exp. Ther. 2011 339 2 530 536 10.1124/jpet.111.184119 21810934
    [Google Scholar]
  5. Pantano F. Tittarelli R. Mannocchi G. Pacifici R. di Luca A. Busardò F.P. Marinelli E. Neurotoxicity induced by mephedrone: An up-to-date review. Curr. Neuropharmacol. 2017 15 5 738 749 10.2174/1570159X14666161130130718 27908258
    [Google Scholar]
  6. Mj P. S R. Htd S. F M. The cathinone hydra: Increased cathinone and caffeine adulteration in the english MDMA market after brexit and covid-19 lockdowns. Drug Sci. Policy Law 2022 8 20503245221099209 10.1177/20503245221099209
    [Google Scholar]
  7. Guirguis A. Corkery J.M. Stair J.L. Kirton S.B. Zloh M. Schifano F. Intended and unintended use of cathinone mixtures. Hum. Psychopharmacol. 2017 32 3 e2598 10.1002/hup.2598 28657191
    [Google Scholar]
  8. Habrat B. Silczuk A. Klimkiewicz A. Manganese encephalopathy caused by homemade methcathinone (ephedrone) prevalence in poland. Nutrients 2021 13 10 3496 10.3390/nu13103496 34684497
    [Google Scholar]
  9. de Bie R.M.A. Gladstone R.M. Strafella A.P. Ko J.H. Lang A.E. Manganese-induced parkinsonism associated with methcathinone (Ephedrone) abuse. Arch. Neurol. 2007 64 6 886 889 10.1001/archneur.64.6.886 17562938
    [Google Scholar]
  10. Koziorowski D. Szlufik S. Mandat T. Kłoda M. Duszyńska-Wąs K. Drzewinska A. Friedman A. Improvement in ephedrone parkinsonism after global pallidus pars interna deep brain stimulation implantation. Mov. Disord. Clin. Pract. 2016 3 2 191 193 10.1002/mdc3.12248 30713913
    [Google Scholar]
  11. Smith D. Negus S. Blough B. Banks M. Cocaine‐like discriminative stimulus effects of amphetamine, cathinone, and alpha‐pyrrolidinovalerophenone analogs in male rhesus monkeys. FASEB J. 2016 30 S1 1184 3 10.1096/fasebj.30.1_supplement.1184.3
    [Google Scholar]
  12. Busza J.R. Balakireva O.M. Teltschik A. Bondar T.V. Sereda Y.V. Meynell C. Sakovych O. Street-based adolescents at high risk of HIV in Ukraine. J. Epidemiol. Community Health 2011 65 12 1166 1170 10.1136/jech.2009.097469 20864455
    [Google Scholar]
  13. Brunt T.M. Poortman A. Niesink R.J.M. van den Brink W. Instability of the ecstasy market and a new kid on the block: Mephedrone. J. Psychopharmacol. 2011 25 11 1543 1547 10.1177/0269881110378370 20826554
    [Google Scholar]
  14. Youyou Z. Yalei Y. Yanfei D. Shuquan Z. Zhaoyang L. Liang R. Liang L. Effects of methcathinone exposure during prenatal and lactational periods on the development and the learning and memory abilities of rat offspring. Neurotox. Res. 2020 38 1 86 95 10.1007/s12640‑020‑00184‑2 32140923
    [Google Scholar]
  15. Youyou Z. Zhaoyang L. Chen L. Shuquan Z. Hui W. Effects of prenatal methcathinone exposure on the neurological behavior of adult offspring. Curr. Neuropharmacol. 2024 22 13 2256 2262 10.2174/1570159X22666240128004722 38333971
    [Google Scholar]
  16. Stepens A. Groma V. Skuja S. Platkājis A. Aldiņš P. Ekšteina I. Mārtiņsone I. Bricis R. Donaghy M. The outcome of the movement disorder in methcathinone abusers: clinical, MRI and manganesemia changes, and neuropathology. Eur. J. Neurol. 2014 21 2 199 205 10.1111/ene.12185 23678867
    [Google Scholar]
  17. Angoa-Pérez M. Kane M.J. Francescutti D.M. Sykes K.E. Shah M.M. Mohammed A.M. Thomas D.M. Kuhn D.M. Mephedrone, an abused psychoactive component of ‘bath salts’ and methamphetamine congener, does not cause neurotoxicity to dopamine nerve endings of the striatum. J. Neurochem. 2012 120 6 1097 1107 10.1111/j.1471‑4159.2011.07632.x 22191803
    [Google Scholar]
  18. Anneken J.H. Angoa-Pérez M. Sati G.C. Crich D. Kuhn D.M. Assessing the role of dopamine in the differential neurotoxicity patterns of methamphetamine, mephedrone, methcathinone and 4-methylmethamphetamine. Neuropharmacology 2018 134 Pt A 46 56 10.1016/j.neuropharm.2017.08.033 28851615
    [Google Scholar]
  19. Selikhova M. Fedoryshyn L. Matviyenko Y. Komnatska I. Kyrylchuk M. Królicki L. Friedman A. Taylor A. Jäger H.R. Lees A. Sanotsky Y. Parkinsonism and dystonia caused by the illicit use of ephedrone—A longitudinal study. Mov. Disord. 2008 23 15 2224 2231 10.1002/mds.22290 18785245
    [Google Scholar]
  20. Zhou X. Bouitbir J. Liechti M.E. Krähenbühl S. Mancuso R.V. Hyperthermia increases neurotoxicity associated with novel methcathinones. Cells 2020 9 4 965 10.3390/cells9040965 32295288
    [Google Scholar]
  21. Zhou X. Bouitbir J. Liechti M.E. Krähenbühl S. Mancuso R.V. Para-halogenation of amphetamine and methcathinone increases the mitochondrial toxicity in undifferentiated and differentiated sh-sy5y cells. Int. J. Mol. Sci. 2020 21 8 2841 10.3390/ijms21082841 32325754
    [Google Scholar]
  22. Suyama J.A. Sakloth F. Kolanos R. Glennon R.A. Lazenka M.F. Negus S.S. Banks M.L. Abuse-related neurochemical effects of para-substituted methcathinone analogs in rats: Microdialysis studies of nucleus accumbens dopamine and serotonin. J. Pharmacol. Exp. Ther. 2016 356 1 182 190 10.1124/jpet.115.229559 26645638
    [Google Scholar]
  23. Gatch M.B. Rutledge M.A. Forster M.J. Discriminative and locomotor effects of five synthetic cathinones in rats and mice. Psychopharmacology 2015 232 7 1197 1205 10.1007/s00213‑014‑3755‑3 25281225
    [Google Scholar]
  24. Sparago M. Wlos J. Yuan J. Hatzidimitriou G. Tolliver J. Dal Cason T.A. Katz J. Ricaurte G. Neurotoxic and pharmacologic studies on enantiomers of the N-methylated analog of cathinone (methcathinone): A new drug of abuse. J. Pharmacol. Exp. Ther. 1996 279 2 1043 1052 10.1016/S0022‑3565(25)21220‑4 8930215
    [Google Scholar]
  25. Stepens A. Logina I. Liguts V. Aldiņš P. Ekšteina I. Platkājis A. Mārtiņsone I. Tērauds E. Rozentāle B. Donaghy M. A Parkinsonian syndrome in methcathinone users and the role of manganese. N. Engl. J. Med. 2008 358 10 1009 1017 10.1056/NEJMoa072488 18322282
    [Google Scholar]
  26. Juurmaa J. Menke R.A.L. Vila P. Müürsepp A. Tomberg T. Ilves P. Nigul M. Johansen-Berg H. Donaghy M. Stagg C.J. Stepens A. Taba P. Grey matter abnormalities in methcathinone abusers with a Parkinsonian syndrome. Brain Behav. 2016 6 11 e00539 10.1002/brb3.539 27843694
    [Google Scholar]
  27. Ennok M. Sikk K. Haldre S. Taba P. Cognitive profile of patients with manganese-methcathinone encephalopathy. Neurotoxicology 2020 76 138 143 10.1016/j.neuro.2019.10.007 31678058
    [Google Scholar]
  28. Meyer M.R. Maurer H.H. Metabolism of designer drugs of abuse: An updated review. Curr. Drug Metab. 2010 11 5 468 482 10.2174/138920010791526042 20540700
    [Google Scholar]
  29. National Institute on Drug Abuse (NIDA) Prevention programmes. 2018 Available from: https://www.drugabuse.gov/publications/drugfacts/prevention-programs
  30. McCance-Katz E.F. The substance abuse and mental health services administration (SAMHSA): New directions. Psychiatr. Serv. 2018 69 10 1046 1048 10.1176/appi.ps.201800281 30099944
    [Google Scholar]
/content/journals/cn/10.2174/011570159X387589250318041633
Loading
/content/journals/cn/10.2174/011570159X387589250318041633
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test