Skip to content
2000
Volume 23, Issue 4
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Background

With the frequent use of antipsychotics, the metabolic disorder (MetD) caused by drugs has received increasing attention. However, the mechanism of drug-induced MetD is still unclear and is being explored. Keeping abreast of the progress and trending knowledge in this area is conducive to further work.

Objective

The aim of this study is to analyze the latest status and trends of research on antipsychotic-induced metabolic disorder (AIMetD) by bibliometric and visual analysis.

Methods

3478 publications of AIMetD from 2006 to 2021 were retrieved from the Web of Science Core Collection database. R-biblioshiny was used for descriptive analysis, CiteSpace for cooperative network, co-citation analysis and burst detection, and VOSviewer for co-occurrence keywords was used.

Results

Since 2006, the publications have been growing fluctuantly. These studies have extensive cooperation among countries/regions. The most influential country/region, institution and author are the USA, King's College London and Christoph U Correll. Analysis of references shows the largest cluster of “antipsychotic-induced metabolic dysfunction”, which is an important basis for MetD. The recent contents of the burst citation are related to “glucose homeostasis” and “cardiovascular metabolism”. Several bursting keywords were discerned at the forefront, including “LC-MS/MS”, “major depressive disorder”, “expression”, and “homeostasis”.

Conclusion

The AIMetD study is in a state of sustained development. Close cooperation between countries/regions has promoted progress. For grasping the foundation, development, and latest trends of AIMetD, it is recommended to focus on active institutions and authors. Based on AIMetD, subdivision areas such as “LC-MS/MS”, “expression”, and “homeostasis” are forefronts that deserve constant attention.

Loading

Article metrics loading...

/content/journals/cn/10.2174/1570159X23666241016090634
2024-10-16
2025-03-30
Loading full text...

Full text loading...

References

  1. MiyamotoS. MiyakeN. JarskogL.F. FleischhackerW.W. LiebermanJ.A. Pharmacological treatment of schizophrenia: A critical review of the pharmacology and clinical effects of current and future therapeutic agents.Mol. Psychiatry201217121206122710.1038/mp.2012.47 22584864
    [Google Scholar]
  2. MeltzerH.Y. Update on typical and atypical antipsychotic drugs.Annu. Rev. Med.201364139340610.1146/annurev‑med‑050911‑161504 23020880
    [Google Scholar]
  3. ShenW.W. A history of antipsychotic drug development.Compr. Psychiatry199940640741410.1016/S0010‑440X(99)90082‑2 10579370
    [Google Scholar]
  4. LeuchtS. CiprianiA. SpineliL. MavridisD. ÖreyD. RichterF. SamaraM. BarbuiC. EngelR.R. GeddesJ.R. KisslingW. StapfM.P. LässigB. SalantiG. DavisJ.M. Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: A multiple-treatments meta-analysis.Lancet2013382989695196210.1016/S0140‑6736(13)60733‑3 23810019
    [Google Scholar]
  5. AringhieriS. CarliM. KolachalamS. VerdescaV. CiniE. RossiM. McCormickP.J. CorsiniG.U. MaggioR. ScarselliM. Molecular targets of atypical antipsychotics: From mechanism of action to clinical differences.Pharmacol. Ther.2018192204110.1016/j.pharmthera.2018.06.012 29953902
    [Google Scholar]
  6. De HertM.A. van WinkelR. Van EyckD. HanssensL. WampersM. ScheenA. PeuskensJ. Prevalence of the metabolic syndrome in patients with schizophrenia treated with antipsychotic medication.Schizophr. Res.2006831879310.1016/j.schres.2005.12.855 16481149
    [Google Scholar]
  7. Doménech-MatamorosP. Influence of the use of atypical antipsychotics in metabolic syndrome.Rev. Esp. Sanid. Penit.2020222808610.18176/resp.00014 32697278
    [Google Scholar]
  8. HermidaT. FrancoK. HadiF. DouyonK. Weight gain associated with atypical antipsychotics.J. Am. Acad. Child Adolesc. Psychiatry20024111127210.1097/00004583‑200211000‑00006 12410068
    [Google Scholar]
  9. TuzcuA. BahceciM. DursunM. TurgutC. BahceciS. Insulin sensitivity and hyperprolactinemia.J. Endocrinol. Invest.200326434134610.1007/BF03345182 12841542
    [Google Scholar]
  10. SimonV. van WinkelR. De HertM. Are weight gain and metabolic side effects of atypical antipsychotics dose dependent? A literature review.J. Clin. Psychiatry20097071041105010.4088/JCP.08r04392 19653979
    [Google Scholar]
  11. YoshidaK. TakeuchiH. Dose-dependent effects of antipsychotics on efficacy and adverse effects in schizophrenia.Behav. Brain Res.202140211309810.1016/j.bbr.2020.113098 33417992
    [Google Scholar]
  12. IjazS. BoleaB. DaviesS. SavovićJ. RichardsA. SullivanS. MoranP. Antipsychotic polypharmacy and metabolic syndrome in schizophrenia: A review of systematic reviews.BMC Psychiatry201818127510.1186/s12888‑018‑1848‑y 30176844
    [Google Scholar]
  13. CarliM. KolachalamS. LongoniB. PintaudiA. BaldiniM. AringhieriS. FascianiI. AnnibaleP. MaggioR. ScarselliM. Atypical antipsychotics and metabolic syndrome: From molecular mechanisms to clinical differences.Pharmaceuticals202114323810.3390/ph14030238 33800403
    [Google Scholar]
  14. MazereelV. DetrauxJ. VancampfortD. van WinkelR. De HertM. Impact of psychotropic medication effects on obesity and the metabolic syndrome in people with serious mental illness.Front. Endocrinol.20201157347910.3389/fendo.2020.573479 33162935
    [Google Scholar]
  15. MolinaJ.D. AvilaS. RubioG. López-MuñozF. Metabolomic connections between schizophrenia, antipsychotic drugs and metabolic syndrome: A variety of players.Curr. Pharm. Des.202127394049406110.2174/1381612827666210804110139 34348619
    [Google Scholar]
  16. ChenC. Searching for intellectual turning points: Progressive knowledge domain visualization.Proc. Natl. Acad. Sci. USA.2004101Suppl 15303531010.1073/pnas.0307513100
    [Google Scholar]
  17. ThompsonD.F. WalkerC.K. A descriptive and historical review of bibliometrics with applications to medical sciences.Pharmacotherapy201535655155910.1002/phar.1586 25940769
    [Google Scholar]
  18. WángY.X. AroraR. ChoiY. ChungH.W. EgorovV.I. FrahmJ. KudoH. KuyumcuS. LaurentS. LoffroyR. MaureaS. MorcosS.K. NiY. OeiE.H. SabarudinA. YuX. Implications of Web of Science journal impact factor for scientific output evaluation in 16 institutions and investigators’ opinion.Quant. Imaging Med. Surg.20144645346110.3978/j.issn.2223‑4292.2014.11.16 25525577
    [Google Scholar]
  19. ShenL. XiongB. LiW. LanF. EvansR. ZhangW. Visualizing collaboration characteristics and topic burst on international mobile health research: bibliometric analysis.JMIR Mhealth Uhealth201866e13510.2196/mhealth.9581 29871851
    [Google Scholar]
  20. XuX. MishraG.D. JonesM. Mapping the global research landscape and knowledge gaps on multimorbidity: A bibliometric study.J. Glob. Health20177101041410.7189/jogh.07.010414 28685036
    [Google Scholar]
  21. HirschJ.E. An index to quantify an individual’s scientific research output.Proc. Natl. Acad. Sci. USA200510246165691657210.1073/pnas.0507655102 16275915
    [Google Scholar]
  22. GarfieldE. The history and meaning of the journal impact factor.JAMA20062951909310.1001/jama.295.1.90 16391221
    [Google Scholar]
  23. CaneJ. O’ConnorD. MichieS. Validation of the theoretical domains framework for use in behaviour change and implementation research.Implement. Sci.2012713710.1186/1748‑5908‑7‑37 22530986
    [Google Scholar]
  24. LiebermanJ.A. StroupT.S. McEvoyJ.P. SwartzM.S. RosenheckR.A. PerkinsD.O. KeefeR.S.E. DavisS.M. DavisC.E. LebowitzB.D. SevereJ. HsiaoJ.K. Effectiveness of antipsychotic drugs in patients with chronic schizophrenia.N. Engl. J. Med.2005353121209122310.1056/NEJMoa051688 16172203
    [Google Scholar]
  25. NewcomerJ.W. Second-generation (atypical) antipsychotics and metabolic effects: A comprehensive literature review.CNS Drugs200519Suppl. 119310.2165/00023210‑200519001‑00001 15998156
    [Google Scholar]
  26. McEvoyJ.P. MeyerJ.M. GoffD.C. NasrallahH.A. DavisS.M. SullivanL. MeltzerH.Y. HsiaoJ. Scott StroupT. LiebermanJ.A. Prevalence of the metabolic syndrome in patients with schizophrenia: Baseline results from the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) schizophrenia trial and comparison with national estimates from NHANES III.Schizophr. Res.2005801193210.1016/j.schres.2005.07.014 16137860
    [Google Scholar]
  27. De HertM. DetrauxJ. van WinkelR. YuW. CorrellC.U. Metabolic and cardiovascular adverse effects associated with antipsychotic drugs.Nat. Rev. Endocrinol.20128211412610.1038/nrendo.2011.156 22009159
    [Google Scholar]
  28. Consensus development conference on antipsychotic drugs and obesity and diabetes.Obes. Res.200412236236810.1038/oby.2004.46 14981231
    [Google Scholar]
  29. MitchellA.J. VancampfortD. SweersK. van WinkelR. YuW. De HertM. Prevalence of metabolic syndrome and metabolic abnormalities in schizophrenia and related disorders--a systematic review and meta-analysis.Schizophr. Bull.201339230631810.1093/schbul/sbr148 22207632
    [Google Scholar]
  30. VancampfortD. StubbsB. MitchellA.J. De HertM. WampersM. WardP.B. RosenbaumS. CorrellC.U. Risk of metabolic syndrome and its components in people with schizophrenia and related psychotic disorders, bipolar disorder and major depressive disorder: A systematic review and meta‐analysis.World Psychiatry201514333934710.1002/wps.20252 26407790
    [Google Scholar]
  31. CorrellC.U. ManuP. OlshanskiyV. NapolitanoB. KaneJ.M. MalhotraA.K. Cardiometabolic risk of second-generation antipsychotic medications during first-time use in children and adolescents.JAMA2009302161765177310.1001/jama.2009.1549 19861668
    [Google Scholar]
  32. LeuchtS. CorvesC. ArbterD. EngelR.R. LiC. DavisJ.M. Second-generation versus first-generation antipsychotic drugs for schizophrenia: A meta-analysis.Lancet20093739657314110.1016/S0140‑6736(08)61764‑X 19058842
    [Google Scholar]
  33. AriaM. AlterisioA. ScandurraA. PinelliC. D’AnielloB. The scholar’s best friend: Research trends in dog cognitive and behavioral studies.Anim. Cogn.202124354155310.1007/s10071‑020‑01448‑2 33219880
    [Google Scholar]
  34. CoboM.J. López-HerreraA.G. Herrera-ViedmaE. HerreraF. An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field.J. Informetrics20115114616610.1016/j.joi.2010.10.002
    [Google Scholar]
  35. CorrellC.U. DetrauxJ. De LepeleireJ. De HertM. Effects of antipsychotics, antidepressants and mood stabilizers on risk for physical diseases in people with schizophrenia, depression and bipolar disorder.World Psychiatry201514211913610.1002/wps.20204 26043321
    [Google Scholar]
  36. PillingerT. BeckK. GobjilaC. DonocikJ.G. JauharS. HowesO.D. Impaired glucose homeostasis in first-episode schizophrenia: A systematic review and meta-analysis.JAMA Psychiatry201774326126910.1001/jamapsychiatry.2016.3803 28097367
    [Google Scholar]
  37. CorrellC.U. SolmiM. VeroneseN. BortolatoB. RossonS. SantonastasoP. Thapa-ChhetriN. FornaroM. GallicchioD. CollantoniE. PigatoG. FavaroA. MonacoF. KohlerC. VancampfortD. WardP.B. GaughranF. CarvalhoA.F. StubbsB. Prevalence, incidence and mortality from cardiovascular disease in patients with pooled and specific severe mental illness: A large‐scale meta‐analysis of 3,211,768 patients and 113,383,368 controls.World Psychiatry201716216318010.1002/wps.20420 28498599
    [Google Scholar]
  38. PirasM. DubathC. GholamM. LaaboubN. GrosuC. GammaF. SolidaA. PlessenK.J. GuntenA. ConusP. EapC.B. Daily dose effects of risperidone on weight and other metabolic parameters: A prospective cohort study.J. Clin. Psychiatry202283421m1411010.4088/JCP.21m1411035551499
    [Google Scholar]
  39. SabéM. PallisK. SolmiM. CrippaA. SentissiO. KaiserS. Comparative effects of 11 antipsychotics on weight gain and metabolic function in patients with acute schizophrenia: A doseresponse meta-analysis.J. Clin. Psychiatry202384222r1449010.4088/JCP.22r1449036752753
    [Google Scholar]
  40. SeguraÀ.G. Martínez-PinteñoA. GassóP. RodríguezN. BioqueM. CuestaM.J. González-PeñasJ. García-RizoC. LoboA. González-PintoA. García-AlcónA. RoldánA. VietaE. Castro-FornielesJ. ManéA. SaizJ. BernardoM. MasS. Metabolic polygenic risk scores effect on antipsychotic-induced metabolic dysregulation: A longitudinal study in a first episode psychosis cohort.Schizophr. Res.202224410111010.1016/j.schres.2022.05.021 35659654
    [Google Scholar]
  41. ShymkoG. DobsonL. AcacioM.C. GraceT. TadierS. WatersF. Weight changes in people with early psychosis treated with oral or long-acting injectable aripiprazole.Schizophr. Res.2023251748110.1016/j.schres.2022.11.018 36587541
    [Google Scholar]
  42. GaoY.N. OlfsonM. National trends in metabolic risk of psychiatric inpatients in the United States during the atypical antipsychotic era.Schizophr. Res.202224832032810.1016/j.schres.2022.09.023 36155305
    [Google Scholar]
  43. CorrellC.U. RobinsonD.G. SchoolerN.R. BrunetteM.F. MueserK.T. RosenheckR.A. MarcyP. AddingtonJ. EstroffS.E. RobinsonJ. PennD.L. AzrinS. GoldsteinA. SevereJ. HeinssenR. KaneJ.M. Cardiometabolic risk in patients with first-episode schizophrenia spectrum disorders: baseline results from the RAISE-ETP study.JAMA Psychiatry201471121350136310.1001/jamapsychiatry.2014.1314 25321337
    [Google Scholar]
  44. CorrellC.U. SteinE. GrahamC. DiPetrilloL. AkermanS. StanfordA.D. JiangY. YagodaS. McDonnellD. HopkinsonC. Reduction in multiple cardiometabolic risk factors with combined olanzapine/samidorphan compared with olanzapine: post hoc analyses from a 24-week phase 3 study.Schizophr. Bull.202349245446310.1093/schbul/sbac144 36305696
    [Google Scholar]
  45. KiviniemiM. SuvisaariJ. Koivumaa-HonkanenH. HäkkinenU. IsohanniM. HakkoH. Antipsychotics and mortality in first-onset schizophrenia: Prospective Finnish register study with 5-year follow-up.Schizophr. Res.2013150127428010.1016/j.schres.2013.07.043 23953217
    [Google Scholar]
  46. TiihonenJ. Mittendorfer-RutzE. TorniainenM. AlexandersonK. TanskanenA. Mortality and cumulative exposure to antipsychotics, antidepressants, and benzodiazepines in patients with schizophrenia: An observational follow-up study.Am. J. Psychiatry2016173660060610.1176/appi.ajp.2015.15050618 26651392
    [Google Scholar]
  47. SegerC. SalzmannL. After another decade: LC–MS/MS became routine in clinical diagnostics.Clin. Biochem.20208221110.1016/j.clinbiochem.2020.03.004 32188572
    [Google Scholar]
  48. JinH.E. JinS.E. MaengH.J. Recent bioanalytical methods for quantification of third‐generation cephalosporins using HPLC and LC‐MS(/MS) and their applications in pharmacokinetic studies.Biomed. Chromatogr.201428111565158710.1002/bmc.3330 25294385
    [Google Scholar]
  49. LeungK.S.Y. FongB.M.W. LC–MS/MS in the routine clinical laboratory: has its time come?Anal. Bioanal. Chem.20144069-102289230110.1007/s00216‑013‑7542‑5 24337187
    [Google Scholar]
  50. CaoY. ZhaoF. ChenJ. HuangT. ZengJ. WangL. SunX. MiaoY. WangS. ChenC. A simple and rapid LC-MS/MS method for the simultaneous determination of eight antipsychotics in human serum, and its application to therapeutic drug monitoring.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2020114712212910.1016/j.jchromb.2020.122129 32416590
    [Google Scholar]
  51. MiroshnichenkoI.I. BaymeevaN.V. Simultaneous determination of antipsychotic drugs and their active metabolites by LC-MS-MS and its application to therapeutic drug monitoring.J. Chromatogr. Sci.201856651051710.1093/chromsci/bmy024 29635397
    [Google Scholar]
  52. DeebS. McKeownD.A. TorranceH.J. WylieF.M. LoganB.K. ScottK.S. Simultaneous analysis of 22 antiepileptic drugs in postmortem blood, serum and plasma using LC-MS-MS with a focus on their role in forensic cases.J. Anal. Toxicol.201438848549410.1093/jat/bku070 25217536
    [Google Scholar]
  53. ZhuR. DongX. ZhangD. LiuX. YeY. JiangY. Simultaneous quantification of 38 psychotropic drugs and relevant metabolites in blood using LC-MS-MS.J. Anal. Toxicol.202145439740910.1093/jat/bkaa085 32754749
    [Google Scholar]
  54. MisiakB. StańczykiewiczB. ŁaczmańskiŁ. FrydeckaD. Lipid profile disturbances in antipsychotic-naive patients with first-episode non-affective psychosis: A systematic review and meta-analysis.Schizophr. Res.2017190182710.1016/j.schres.2017.03.031 28325572
    [Google Scholar]
  55. LeppikL. ParkseppM. JannoS. KoidoK. HaringL. VasarE. ZilmerM. Profiling of lipidomics before and after antipsychotic treatment in first-episode psychosis.Eur. Arch. Psychiatry Clin. Neurosci.20202701597010.1007/s00406‑018‑0971‑6 30604052
    [Google Scholar]
  56. WoodP.L. Targeted lipidomics and metabolomics evaluations of cortical neuronal stress in schizophrenia.Schizophr. Res.201921210711210.1016/j.schres.2019.08.003 31434624
    [Google Scholar]
  57. de AlmeidaV. AlexandrinoG.L. AquinoA. GomesA.F. MurguM. DobrowolnyH. GuestP.C. SteinerJ. Martins-de-SouzaD. Changes in the blood plasma lipidome associated with effective or poor response to atypical antipsychotic treatments in schizophrenia patients.Prog. Neuropsychopharmacol. Biol. Psychiatry202010110994510.1016/j.pnpbp.2020.109945 32304808
    [Google Scholar]
  58. CaiH.L. TanQ.Y. JiangP. DangR.L. XueY. TangM.M. XuP. DengY. LiH.D. YaoJ.K. A potential mechanism underlying atypical antipsychotics-induced lipid disturbances.Transl. Psychiatry2015510e66110.1038/tp.2015.161 26485545
    [Google Scholar]
  59. KhelfiA. AzzouzM. AbtrounR. ReggabiM. AlamirB. Determination of chlorpromazine, haloperidol, levomepromazine, olanzapine, risperidone, and sulpiride in human plasma by liquid chromatography/tandem mass spectrometry (LC-MS/MS).Int. J. Anal. Chem.2018201811310.1155/2018/5807218 30245722
    [Google Scholar]
  60. HamptonK.K. AndersonK. FrazierH. ThibaultO. CravenR.J. Insulin receptor plasma membrane levels increased by the progesterone receptor membrane component 1.Mol. Pharmacol.201894166567310.1124/mol.117.110510 29674524
    [Google Scholar]
  61. ZhangM. RobitailleM. ShowalterA.D. HuangX. LiuY. BhattacharjeeA. WillardF.S. HanJ. FroeseS. WeiL. GaisanoH.Y. AngersS. SloopK.W. DaiF.F. WheelerM.B. Progesterone receptor membrane component 1 is a functional part of the glucagon-like peptide-1 (GLP-1) receptor complex in pancreatic β cells.Mol. Cell. Proteomics201413113049306210.1074/mcp.M114.040196 25044020
    [Google Scholar]
  62. CaoT. ChenQ. ZhangB. WuX. ZengC. ZhangS. CaiH. Clozapine induced disturbances in hepatic glucose metabolism: the potential role of PGRMC1 signaling.Front. Endocrinol. (Lausanne)20211272737110.3389/fendo.2021.727371 34970218
    [Google Scholar]
  63. MeyerC. SchmidR. ScribaP.C. WehlingM. Purification and partial sequencing of high-affinity progesterone-binding site(s) from porcine liver membranes.Eur. J. Biochem.1996239372673110.1111/j.1432‑1033.1996.0726u.x 8774719
    [Google Scholar]
  64. StroupT.S. LiebermanJ.A. McEvoyJ.P. SwartzM.S. DavisS.M. CapuanoG.A. RosenheckR.A. KeefeR.S.E. MillerA.L. BelzI. HsiaoJ.K. Effectiveness of olanzapine, quetiapine, and risperidone in patients with chronic schizophrenia after discontinuing perphenazine: A CATIE study.Am. J. Psychiatry2007164341542710.1176/ajp.2007.164.3.415 17329466
    [Google Scholar]
  65. StroupT.S. LiebermanJ.A. McEvoyJ.P. SwartzM.S. DavisS.M. RosenheckR.A. PerkinsD.O. KeefeR.S.E. DavisC.E. SevereJ. HsiaoJ.K. Effectiveness of olanzapine, quetiapine, risperidone, and ziprasidone in patients with chronic schizophrenia following discontinuation of a previous atypical antipsychotic.Am. J. Psychiatry2006163461162210.1176/ajp.2006.163.4.611 16585435
    [Google Scholar]
  66. MaesM.S. LuJ.Y. TiwariA.K. FreemanN. de LucaV. MüllerD.J. VoineskosA.N. PotkinS.G. LiebermanJ.A. MeltzerH.Y. RemingtonG. KennedyJ.L. ZaiC.C. Schizophrenia‐associated gene dysbindin‐1 and tardive dyskinesia.Drug Dev. Res.202182567868410.1002/ddr.21681 32394511
    [Google Scholar]
  67. SainzJ. PrietoC. Crespo-FacorroB. Sex differences in gene expression related to antipsychotic induced weight gain.PLoS One2019144e021547710.1371/journal.pone.0215477 30986260
    [Google Scholar]
  68. Crespo-FacorroB. PrietoC. SainzJ. Altered gene expression in antipsychotic-induced weight gain.NPJ Schizophr.2019517710.1038/s41537‑019‑0075‑y30971689
    [Google Scholar]
  69. WangK.Y. TanimotoA. YamadaS. GuoX. DingY. WatanabeT. WatanabeT. KohnoK. HiranoK.I. TsukadaH. SasaguriY. Histamine regulation in glucose and lipid metabolism via histamine receptors: model for nonalcoholic steatohepatitis in mice.Am. J. Pathol.2010177271372310.2353/ajpath.2010.091198 20566747
    [Google Scholar]
  70. GrajalesD. FerreiraV. ValverdeÁ.M. Second-generation antipsychotics and dysregulation of glucose metabolism: beyond weight gain.Cells2019811133610.3390/cells8111336 31671770
    [Google Scholar]
  71. EnglJ. LaimerM. NiederwangerA. KranebitterM. StarzingerM. PedriniM.T. FleischhackerW.W. PatschJ.R. EbenbichlerC.F. Olanzapine impairs glycogen synthesis and insulin signaling in L6 skeletal muscle cells.Mol. Psychiatry200510121089109610.1038/sj.mp.4001729 16130009
    [Google Scholar]
  72. Al-ZoairyR. RessC. TschonerA. KaserS. EbenbichlerC. The effects of psychotropic drugs on the regulation of glucose metabolism.Curr. Diabetes Rev.20139536237010.2174/15733998113099990067 23845076
    [Google Scholar]
  73. SilvestreJ.S. ProusJ. Research on adverse drug events. I. Muscarinic M3 receptor binding affinity could predict the risk of antipsychotics to induce type 2 diabetes.Methods Find. Exp. Clin. Pharmacol.200527528930410.1358/mf.2005.27.5.908643 16082416
    [Google Scholar]
  74. HahnM. ChintohA. GiaccaA. XuL. LamL. MannS. FletcherP. GuenetteM. CohnT. WoleverT. ArenovichT. RemingtonG. Atypical antipsychotics and effects of muscarinic, serotonergic, dopaminergic and histaminergic receptor binding on insulin secretion in vivo: An animal model.Schizophr. Res.20111311-3909510.1016/j.schres.2011.06.004 21696923
    [Google Scholar]
  75. BeaulieuJ.M. GainetdinovR.R. The physiology, signaling, and pharmacology of dopamine receptors.Pharmacol. Rev.201163118221710.1124/pr.110.002642 21303898
    [Google Scholar]
  76. ÇakiciN. BotM. LamersF. JanssenT. van der SpekP.J. de HaanL. BahnS. PenninxB.W.J.H. van BeverenN.J.M. Increased serum levels of leptin and insulin in both schizophrenia and major depressive disorder: A cross-disorder proteomics analysis.Eur. Neuropsychopharmacol.201929783584610.1016/j.euroneuro.2019.05.010 31230885
    [Google Scholar]
  77. ZhouS. ZhaoK. ShiX. SunH. DuS. MiaoX. ChenJ. YangF. XingM. RanW. LaoJ. ZhangX. WangW. TangW. Serum lipid levels and suicide attempts within 2 weeks in patients with major depressive disorder: is there a relationship?Front. Psychiatry20211267604010.3389/fpsyt.2021.676040 34163387
    [Google Scholar]
  78. DongR. HaqueA. WuH.E. PlacideJ. YuL. ZhangX. Sex differences in the association between suicide attempts and glucose disturbances in first-episode and drug naive patients with major depressive disorder.J. Affect. Disord.202129255956410.1016/j.jad.2021.05.110 34147968
    [Google Scholar]
  79. VázquezG.H. BahjiA. UndurragaJ. TondoL. BaldessariniR.J. Efficacy and tolerability of combination treatments for major depression: Antidepressants plus second-generation antipsychotics vs. esketamine vs. lithium.J. Psychopharmacol.202135889090010.1177/02698811211013579 34238049
    [Google Scholar]
  80. KimY.K. ShinC. The microbiota-gut-brain axis in neuropsychiatric disorders: pathophysiological mechanisms and novel treatments.Curr. Neuropharmacol.201816555957310.2174/1570159X15666170915141036 28925886
    [Google Scholar]
  81. SocałaK. DoboszewskaU. SzopaA. SerefkoA. WłodarczykM. ZielińskaA. PoleszakE. FichnaJ. WlaźP. The role of microbiota-gut-brain axis in neuropsychiatric and neurological disorders.Pharmacol. Res.202117210584010.1016/j.phrs.2021.105840 34450312
    [Google Scholar]
  82. ZhuF. JuY. WangW. WangQ. GuoR. MaQ. SunQ. FanY. XieY. YangZ. JieZ. ZhaoB. XiaoL. YangL. ZhangT. FengJ. GuoL. HeX. ChenY. ChenC. GaoC. XuX. YangH. WangJ. DangY. MadsenL. BrixS. KristiansenK. JiaH. MaX. Metagenome-wide association of gut microbiome features for schizophrenia.Nat. Commun.2020111161210.1038/s41467‑020‑15457‑9 32235826
    [Google Scholar]
  83. CsászárN. BókkonI. Gut serotonin as a general membrane permeability regulator.Curr. Neuropharmacol.202220226927110.2174/1570159X19666210921100542 34548000
    [Google Scholar]
  84. YinF. ShiZ. MaX. DingK. ZhangY. MaS. Impact of clozapine monotherapy on gut microbiota and metabolism in people with schizophrenia.Front. Microbiol.202314125315610.3389/fmicb.2023.1253156 37744899
    [Google Scholar]
  85. BretlerT. WeisbergH. KorenO. NeumanH. The effects of antipsychotic medications on microbiome and weight gain in children and adolescents.BMC Med.201917111210.1186/s12916‑019‑1346‑1 31215494
    [Google Scholar]
/content/journals/cn/10.2174/1570159X23666241016090634
Loading
/content/journals/cn/10.2174/1570159X23666241016090634
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Antipsychotics; bibliometrics; homeostasis; LC-MS/MS; metabolic disorder; visual analysis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test