Skip to content
2000
Volume 23, Issue 4
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Background

Diabetes, a widespread chronic metabolic disease, is projected to affect 783 million people globally by 2045. Recent studies emphasize the neuroprotective potential of dipeptidyl peptidase 4 (DPP4i) inhibitors, pointing toward a promising avenue for intervention in addressing cognitive challenges associated with diabetes. Due to limited data on the effect of DPP4i on brain pathways involvedin diabetes-related neurocognitive disorders, the decision was made to conduct this study to fill existing knowledge gaps on this topic.

Methods

The primary aim of our study was to evaluate the potential of DPP4 inhibitors (DPP4i) in preventing cognitive decline in mice with type 2 diabetes (T2D), placing special emphasis on gaining insight into the complex molecular mechanisms underlying this action.

Results

We examined drug efficacy in modulating neurotrophic factors, calcium levels, and the expression of key genes (HIF1α, APP, ) crucial for neural plasticity. Conducting cognitive assessments with the hole board and passive avoidance tests, we discerned a remarkable influence of short-term gliptin usage on the limiting progress of cognitive dysfunction in diabetic mice. The administration of DPP4 inhibitors ledto heightened neurotrophin levels, increased HIF1α in the prefrontal cortex, and a significant elevation in mRNA levels.

Conclusion

Our findings reveal that DPP4 inhibitors effectively limit the progression of diabetes-related cognitive disorders. This breakthrough discovery not only opens new research avenues but also constitutes a potential starting point for creating innovative strategies for the treatment of central nervous system disorders focused on improving cognitive abilities.

Loading

Article metrics loading...

/content/journals/cn/10.2174/1570159X22666240517094428
2024-06-10
2025-03-30
Loading full text...

Full text loading...

References

  1. UN. World Population Aging 2015United Nations 2015, San Francisco, CA, USA. https://www.un.org/en/development/desa/population/publications/pdf/ageing/WPA2015_Report.pdf (Accessed May 29,2023).
  2. Sáez de AsteasuM.L. Martínez-VelillaN. Zambom-FerraresiF. Casas-HerreroÁ. IzquierdoM. Role of physical exercise on cognitive function in healthy older adults: A systematic review of randomized clinical trials.Ageing Res. Rev.20173711713410.1016/j.arr.2017.05.007 28587957
    [Google Scholar]
  3. CrimminsE.M. KimJ.K. LangaK.M. WeirD.R. Assessment of cognition using surveys and neuropsychological assessment: The health and retirement study and the aging, demographics, and memory study.J. Gerontol. B Psychol. Sci. Soc. Sci.201166Suppl 1i162i17110.1093/geronb/gbr048 21743047
    [Google Scholar]
  4. LuchsingerJ.A. Type 2 diabetes and cognitive impairment: Linking mechanisms.J. Alzheimers Dis.201230Suppl. 2S185S19810.3233/JAD‑2012‑111433 22433668
    [Google Scholar]
  5. LangaK.M. LevineD.A. The diagnosis and management of mild cognitive impairment: A clinical review.JAMA2014312232551256110.1001/jama.2014.13806 25514304
    [Google Scholar]
  6. LinC.F. LiuH.C. LinS.Y. Kidney function and risk of physical and cognitive impairment in older persons with type 2 diabetes at an outpatient clinic with geriatric assessment implementation.Diabetes Metab. Syndr. Obes.202215799110.2147/DMSO.S341935 35046679
    [Google Scholar]
  7. ParkM.H. KwonD.Y. JungJ.M. HanC. JoI. JoS.A. Mini-Mental Status Examination as predictors of mortality in the elderly.Acta Psychiatr. Scand.2013127429830410.1111/j.1600‑0447.2012.01918.x 22901036
    [Google Scholar]
  8. Millán-CalentiJ.C. TubíoJ. Pita-FernándezS. González-AbraldesI. LorenzoT. MasedaA. Prevalence of cognitive impairment: Effects of level of education, age, sex and associated factors.Dement. Geriatr. Cogn. Disord.200928545546010.1159/000257086 19907183
    [Google Scholar]
  9. ShaikhF.A. BhuvanK.C. HtarT.T. GuptaM. Cognitive Dysfunction in Diabetes Mellitus. Type 2 Diabetes - From Pathophysiology to Modern Management. SiderovaM. 201910.5772/intechopen.85940
    [Google Scholar]
  10. NgT.P. FengL. NyuntM.S.Z. FengL. GaoQ. LimM.L. CollinsonS.L. ChongM.S. LimW.S. LeeT.S. YapP. YapK.B. Metabolic syndrome and the risk of mild cognitive impairment and progression to dementia follow-up of the Singapore longitudinal aging study cohort.JAMA Neurol.201673445646310.1001/jamaneurol.2015.4899 26926205
    [Google Scholar]
  11. XuW. CaraccioloB. WangH.X. WinbladB. BäckmanL. QiuC. FratiglioniL. Accelerated progression from mild cognitive impairment to dementia in people with diabetes.Diabetes201059112928293510.2337/db10‑0539 20713684
    [Google Scholar]
  12. VelayudhanL. PoppeM. ArcherN. ProitsiP. BrownR.G. LovestoneS. Risk of developing dementia in people with diabetes and mild cognitive impairment.Br. J. Psychiatry20101961364010.1192/bjp.bp.109.067942 20044657
    [Google Scholar]
  13. DamanikJ. YunirE. Type 2 diabetes and cognitive impairment.Acta Med. Indones.2021532213220 34251351
    [Google Scholar]
  14. DoveA. ShangY. XuW. GrandeG. LaukkaE.J. FratiglioniL. MarsegliaA. The impact of diabetes on cognitive impairment and its progression to dementia.Alzheimers Dement.202117111769177810.1002/alz.12482 34636485
    [Google Scholar]
  15. LalithambikaC.V. ArunC.S. SaraswathyL.A. BhaskaranR. Cognitive impairment and its association with glycemic control in type 2 diabetes mellitus patients.Indian J. Endocrinol. Metab.201923335335610.4103/ijem.IJEM_24_19 31641638
    [Google Scholar]
  16. BiesselsG.J. StaekenborgS. BrunnerE. BrayneC. ScheltensP. Risk of dementia in diabetes mellitus: A systematic review.Lancet Neurol.200651647410.1016/S1474‑4422(05)70284‑2 16361024
    [Google Scholar]
  17. JustinB.N. TurekM. HakimA.M. Heart disease as a risk factor for dementia.Clin. Epidemiol.2013513514510.2147/CLEP.S30621 23658499
    [Google Scholar]
  18. ChenR. OvbiageleB. FengW. Diabetes and stroke: Epidemiology, pathophysiology, pharmaceuticals and outcomes.Am. J. Med. Sci.2016351438038610.1016/j.amjms.2016.01.011 27079344
    [Google Scholar]
  19. GuptaM. PandeyS. RummanM. SinghB. MahdiA.A. Molecular mechanisms underlying hyperglycemia associated cognitive decline.IBRO Neuroscience Reports202214576310.1016/j.ibneur.2022.12.006 36590246
    [Google Scholar]
  20. PaulA. KoK.W.S. LiL. YechoorV. McCroryM.A. SzalaiA.J. ChanL. C-reactive protein accelerates the progression of atherosclerosis in apolipoprotein E-deficient mice.Circulation2004109564765510.1161/01.CIR.0000114526.50618.24 14744975
    [Google Scholar]
  21. RazN. RodrigueK.M. Differential aging of the brain: Patterns, cognitive correlates and modifiers.Neurosci. Biobehav. Rev.200630673074810.1016/j.neubiorev.2006.07.001 16919333
    [Google Scholar]
  22. VerdileG. KeaneK.N. CruzatV.F. MedicS. SabaleM. RowlesJ. WijesekaraN. MartinsR.N. FraserP.E. NewsholmeP. Inflammation and oxidative stress: The molecular connectivity between insulin resistance, obesity, and Alzheimer’s disease.Mediators Inflamm.2015201510582810.1155/2015/105828 26693205
    [Google Scholar]
  23. NaguibR. SolimanE.S. NeimatallahF.M. AlKhudhairyN.S. ALGhamdiA.M. AlmosaR.S. AldashashK.A. AlkhalifahB.Y. ElmorshedyH. Cognitive impairment among patients with diabetes in Saudi Arabia: A cross-sectional study.Middle East Current Psychiatry20202714910.1186/s43045‑020‑00058‑5
    [Google Scholar]
  24. UryashA. FloresV. AdamsJ.A. AllenP.D. LopezJ.R. Memory and learning deficits are associated with Ca2+ dyshomeostasis in normal aging.Front. Aging Neurosci.20201222410.3389/fnagi.2020.00224 32765253
    [Google Scholar]
  25. KumarA. Calcium signaling during brain aging and its influence on the hippocampal synaptic plasticity.Adv. Exp. Med. Biol.20201131985101210.1007/978‑3‑030‑12457‑1_39 31646542
    [Google Scholar]
  26. ThibaultO. AndersonK.L. DeMollC. BrewerL.D. LandfieldP.W. PorterN.M. Hippocampal calcium dysregulation at the nexus of diabetes and brain aging.Eur. J. Pharmacol.20137191-3344310.1016/j.ejphar.2013.07.024 23872402
    [Google Scholar]
  27. ChandranR. KumarM. KesavanL. JacobR.S. GunasekaranS. LakshmiS. SadasivanC. OmkumarR.V. Cellular calcium signaling in the aging brain.J. Chem. Neuroanat.2019959511410.1016/j.jchemneu.2017.11.008 29129748
    [Google Scholar]
  28. VoitenkoN. Calcium signaling in diabetic neuropathy.Neurophysiology200436431031410.1007/s11062‑005‑0022‑6
    [Google Scholar]
  29. FonsecaA.C.R.G. MoreiraP.I. OliveiraC.R. CardosoS.M. PintonP. PereiraC.F. Amyloid-beta disrupts calcium and redox homeostasis in brain endothelial cells.Mol. Neurobiol.201551261062210.1007/s12035‑014‑8740‑7 24833600
    [Google Scholar]
  30. Eban-RothschildA. BaudryM. The role of calcium in synaptic plasticity.Neuroscientist2011174365378
    [Google Scholar]
  31. FosterT.C. CaiL. RobertsonH.A. Intracellular calcium and neuronal death.Prog. Neurobiol.2006794143166
    [Google Scholar]
  32. BaudryM. BiX. WuJ.Y. ThompsonR.F. Calcium dysregulation and synaptic dysfunction in Alzheimer’s disease.Trends Neurosci.20062911600607
    [Google Scholar]
  33. ObrietanK. van den PolA.N. Calcium signaling in brain function.Annu. Rev. Physiol.200062439466
    [Google Scholar]
  34. OsekiK.T. MonteforteP.T. PereiraG.J.S. HirataH. UreshinoR.P. BincolettoC. HsuY.T. SmailiS.S. Apoptosis induced by Aβ25-35 peptide is Ca(2+) -IP3 signaling-dependent in murine astrocytes.Eur. J. Neurosci.20144032471247810.1111/ejn.12599 24827147
    [Google Scholar]
  35. ContrerasL. DragoI. ZampeseE. PozzanT. Mitochondria: The calcium connection.Biochim. Biophys. Acta201017976-760761810.1016/j.bbabio.2010.05.005 20470749
    [Google Scholar]
  36. LeloupC. WiesnerR.J. HIF-1α in diabetic complications: More than just hypoxia.Diabetes201564619171926
    [Google Scholar]
  37. FanY. ZhangJ. ZhangX. ChenY. QiuS. HIF-1α: A potential target for prevention and treatment of diabetic complications.BioMed Res. Int.201718
    [Google Scholar]
  38. HouY. KuoC.C. HIF-1α and its implications in diabetic complications.Biochem. Biophys. Res. Commun.20164702365371 27644878
    [Google Scholar]
  39. GasparJ.M. VellosoL.A. Hypoxia inducible factor as a central regulator of metabolism - implications for the development of obesity.Front. Neurosci.20181281310.3389/fnins.2018.00813 30443205
    [Google Scholar]
  40. ChavezJ.C. AlmhannaK. Berti-MatteraL.N. Transient expression of hypoxia-inducible factor-1 alpha and target genes in peripheral nerves from diabetic rats.Neurosci. Lett.2005374317918210.1016/j.neulet.2004.10.050 15663958
    [Google Scholar]
  41. NakaA. RiedlM. LugerA. HummelT. MuellerC.A. Clinical significance of smell and taste disorders in patients with diabetes mellitus.Eur. Arch. Otorhinolaryngol.2010267454755010.1007/s00405‑009‑1123‑4 19826828
    [Google Scholar]
  42. SankeH. MitaT. YoshiiH. YokotaA. YamashiroK. IngakiN. OnumaT. SomeyaY. KomiyaK. TamuraY. ShimizuT. OhmuraC. KanazawaA. FujitaniY. WatadaH. Relationship between olfactory dysfunction and cognitive impairment in elderly patients with type 2 diabetes mellitus.Diabetes Res. Clin. Pract.2014106346547310.1016/j.diabres.2014.09.039 25451914
    [Google Scholar]
  43. LietzauG. DavidssonW. ÖstensonC.G. ChiazzaF. NathansonD. PintanaH. SkogsbergJ. KleinT. NyströmT. DarsaliaV. PatroneC. Type 2 diabetes impairs odour detection, olfactory memory and olfactory neuroplasticity; effects partly reversed by the DPP-4 inhibitor Linagliptin.Acta Neuropathol. Commun.2018611410.1186/s40478‑018‑0517‑1 29471869
    [Google Scholar]
  44. Piątkowska-ChmielI. Gawrońska-GrzywaczM. PopiołekŁ. HerbetM. DudkaJ. The novel adamantane derivatives as potential mediators of inflammation and neural plasticity in diabetes mice with cognitive impairment.Sci. Rep.2022121670810.1038/s41598‑022‑10187‑y 35468904
    [Google Scholar]
  45. LeeJ.H. LeeJ.Y. KimH.Y. The effects of dipeptidyl peptidase-4 inhibitors on cognitive function in patients with type 2 diabetes mellitus: A meta-analysis.Diabetes Metab. J.2017412107114
    [Google Scholar]
  46. AertgeertsK. YeS. ShiL. PrasadS.G. WitmerD. ChiE. SangB-C. WijnandsR.A. WebbD.R. SwansonR.V. N-linked glycosylation of dipeptidyl peptidase IV (CD26): Effects on enzyme activity, homodimer formation, and adenosine deaminase binding.Protein Sci.200413114515410.1110/ps.03352504 14691230
    [Google Scholar]
  47. ElabiO.F. KarampatsiD. VercalsterenE. LietzauG. NyströmT. KleinT. DarsaliaV. PatroneC. PaulG. DPP-4 inhibitor and sulfonylurea differentially reverse type 2 diabetes-induced blood-brain barrier leakage and normalize capillary pericyte coverage.Diabetes202372340541410.2337/db22‑0674 36448982
    [Google Scholar]
  48. AbdelsaidM. WilliamsR. HardiganT. ErgulA. Linagliptin attenuates diabetes-induced cerebral pathological neovascularization in a blood glucose-independent manner: Potential role of ET-1.Life Sci.2016159838910.1016/j.lfs.2015.11.026 26631506
    [Google Scholar]
  49. HardiganT. YasirA. AbdelsaidM. CouchaM. El-ShaffeyS. LiW. JohnsonM.H. ErgulA. Linagliptin treatment improves cerebrovascular function and remodeling and restores reduced cerebral perfusion in Type 2 diabetes.Am. J. Physiol. Regul. Integr. Comp. Physiol.20163113R466R47710.1152/ajpregu.00057.2016 27357799
    [Google Scholar]
  50. YasirA. HardiganT. ErgulA. Diabetes-mediated middle cerebral artery remodeling is restored by linagliptin: Interaction with the vascular smooth muscle cell endothelin system.Life Sci.2016159768210.1016/j.lfs.2016.02.096 26944436
    [Google Scholar]
  51. YazbeckR. HowarthG.S. AbbottC.A. Dipeptidyl peptidase inhibitors, an emerging drug class for inflammatory disease?Trends Pharmacol. Sci.2009301160060710.1016/j.tips.2009.08.003 19837468
    [Google Scholar]
  52. TremblayA.J. LamarcheB. DeaconC.F. WeisnagelS.J. CoutureP. Effects of sitagliptin therapy on markers of low-grade inflammation and cell adhesion molecules in patients with type 2 diabetes.Metabolism20146391141114810.1016/j.metabol.2014.06.004 25034387
    [Google Scholar]
  53. RizzoM.R. BarbieriM. MarfellaR. PaolissoG. Reduction of oxidative stress and inflammation by blunting daily acute glucose fluctuations in patients with type 2 diabetes: Role of dipeptidyl peptidase-IV inhibition.Diabetes Care201235102076208210.2337/dc12‑0199 22688551
    [Google Scholar]
  54. FerreiraL. Teixeira-de-LemosE. PintoF. ParadaB. MegaC. ValaH. PintoR. GarridoP. SerenoJ. FernandesR. SantosP. VeladaI. MeloA. NunesS. TeixeiraF. ReisF. Effects of sitagliptin treatment on dysmetabolism, inflammation, and oxidative stress in an animal model of type 2 diabetes (ZDF rat).Mediators Inflamm.2010201059276010.1155/2010/592760 20652060
    [Google Scholar]
  55. LiuX. MenP. WangB. CaiG. ZhaoZ. Effect of dipeptidyl-peptidase-4 inhibitors on C-reactive protein in patients with type 2 diabetes: A systematic review and meta-analysis.Lipids Health Dis.201918114410.1186/s12944‑019‑1086‑4 31208420
    [Google Scholar]
  56. MatsubaraJ. SugiyamaS. AkiyamaE. IwashitaS. KurokawaH. OhbaK. MaedaH. FujisueK. YamamotoE. KaikitaK. HokimotoS. JinnouchiH. OgawaH. Dipeptidyl peptidase-4 inhibitor, sitagliptin, improves endothelial dysfunction in association with its anti-inflammatory effects in patients with coronary artery disease and uncontrolled diabetes.Circ. J.20137751337134410.1253/circj.CJ‑12‑1168 23386232
    [Google Scholar]
  57. KimY.J. KimY.J. LeeS.H. KimH.J. DPP-4 inhibitor vildagliptin enhances the expression of BDNF and synapsin I in the hippocampus of diabetic mice.Neurosci. Lett.20166194651
    [Google Scholar]
  58. KouX. QiuS. ChenY. KuoC.C. DPP-4 inhibitors in diabetic complications: from molecular mechanisms to clinical implications.Biochem. Biophys. Res. Commun.20164702365371 27644878
    [Google Scholar]
  59. ShimJ.H. LeeS.H. KimY.J. KimH.J. DPP-4 inhibitor vildagliptin enhances the expression of Arc in the hippocampus of diabetic mice.Exp. Ther. Med.201917318571863
    [Google Scholar]
  60. SimA.Y. BaruaS. KimJ.Y. LeeY.H. LeeJ.E. Role of DPP-4 and SGLT2 inhibitors connected to Alzheimer disease in type 2 diabetes mellitus.Front. Neurosci.20211570854710.3389/fnins.2021.708547 34489627
    [Google Scholar]
  61. PariyarR. BastolaT. LeeD.H. SeoJ. Neuroprotective effects of the DPP4 inhibitor vildagliptin in in vivo and in vitro models of Parkinson’s disease.Int. J. Mol. Sci.2022234238810.3390/ijms23042388 35216503
    [Google Scholar]
  62. Sa-NguanmooP. TanajakP. KerdphooS. JaiwongkamT. PratchayasakulW. ChattipakornN. ChattipakornS.C. SGLT2-inhibitor and DPP-4 inhibitor improve brain function via attenuating mitochondrial dysfunction, insulin resistance, inflammation, and apoptosis in HFD-induced obese rats.Toxicol. Appl. Pharmacol.2017333435010.1016/j.taap.2017.08.005 28807765
    [Google Scholar]
  63. LietzauG. MagniG. KehrJ. YoshitakeT. CandeiasE. DuarteA.I. PetterssonH. SkogsbergJ. AbbracchioM.P. KleinT. NyströmT. CerutiS. DarsaliaV. PatroneC. Dipeptidyl peptidase-4 inhibitors and sulfonylureas prevent the progressive impairment of the nigrostriatal dopaminergic system induced by diabetes during aging.Neurobiol. Aging202089122310.1016/j.neurobiolaging.2020.01.004 32143981
    [Google Scholar]
  64. IsikA.T. SoysalP. YayA. UsarelC. The effects of sitagliptin, a DPP-4 inhibitor, on cognitive functions in elderly diabetic patients with or without Alzheimer’s disease.Diabetes Res. Clin. Pract.201712319219810.1016/j.diabres.2016.12.010 28056430
    [Google Scholar]
  65. d’IsaR. ComiG. LeocaniL. The 4-hole-board test for assessment of long-term spatial memory in mice.Curr. Protoc.202118e22810.1002/cpz1.228 34432376
    [Google Scholar]
  66. SatyanK.S. RaiA. JaiswalA.K. AcharyaS.B. BhattacharyaS.K. Isatin, a putative anxiogenic endocoid, induces memory dysfunction in rats.Indian J. Exp. Biol.1995338576579 8543325
    [Google Scholar]
  67. BradfordM.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem.1976721-224825410.1016/0003‑2697(76)90527‑3 942051
    [Google Scholar]
  68. Piatkowska-ChmielI. HerbetM. Gawrońska-GrzywaczM. Ostrowska-LeśkoM. DudkaJ. The role of molecular and inflammatory indicators in the assessment of cognitive dysfunction in a mouse model of diabetes.Int. J. Mol. Sci.2021228387810.3390/ijms22083878 33918576
    [Google Scholar]
  69. BanksW.A. RheaE.M. The blood–brain barrier, oxidative stress, and insulin resistance.Antioxidants20211011169510.3390/antiox10111695 34829566
    [Google Scholar]
  70. MoranC. PhanT.G. ChenJ. BlizzardL. BeareR. VennA. MünchG. WoodA.G. ForbesJ. GreenawayT.M. PearsonS. SrikanthV. Brain atrophy in type 2 diabetes: Regional distribution and influence on cognition.Diabetes Care201336124036404210.2337/dc13‑0143 23939539
    [Google Scholar]
  71. MoranC. BeareR. WangW. CallisayaM. SrikanthV. WeinerM. AisenP. WeinerM. AisenP. PetersenR. JackC.R.Jr JagustW. TrojanowkiJ.Q. TogaA.W. BeckettL. GreenR.C. SaykinA.J. MorrisJ. LiuE. GreenR.C. MontineT. PetersenR. AisenP. GamstA. ThomasR.G. DonohueM. WalterS. GessertD. SatherT. BeckettL. HarveyD. GamstA. DonohueM. KornakJ. JackC.R.Jr DaleA. BernsteinM. FelmleeJ. FoxN. ThompsonP. SchuffN. AlexanderG. DeCarliC. JagustW. BandyD. KoeppeR.A. FosterN. ReimanE.M. ChenK. MathisC. MorrisJ. CairnsN.J. Taylor-ReinwaldL. TrojanowkiJ.Q. ShawL. LeeV.M.Y. KoreckaM. TogaA.W. CrawfordK. NeuS. SaykinA.J. ForoudT.M. PotkinS. ShenL. KachaturianZ. FrankR. SnyderP.J. MolchanS. KayeJ. QuinnJ. LindB. DolenS. SchneiderL.S. PawluczykS. SpannB.M. BrewerJ. VanderswagH. HeidebrinkJ.L. LordJ.L. PetersenR. JohnsonK. DoodyR.S. Villanueva-MeyerJ. ChowdhuryM. SternY. HonigL.S. BellK.L. MorrisJ.C. AncesB. CarrollM. LeonS. MintunM.A. SchneiderS. MarsonD. GriffithR. ClarkD. GrossmanH. MitsisE. RomirowskyA. deToledo-MorrellL. ShahR.C. DuaraR. VaronD. RobertsP. AlbertM. OnyikeC. KielbS. RusinekH. de LeonM.J. GlodzikL. De SantiS. DoraiswamyP.M. PetrellaJ.R. ColemanR.E. ArnoldS.E. KarlawishJ.H. WolkD. SmithC.D. JichaG. HardyP. LopezO.L. OakleyM.A. SimpsonD.M. PorsteinssonA.P. GoldsteinB.S. MartinK. MakinoK.M. IsmailM.S. BrandC. MulnardR.A. ThaiG. McAdams-OrtizC. WomackK. MathewsD. QuicenoM. Diaz-ArrastiaR. KingR. WeinerM. Martin-CookK. DeVousM. LeveyA.I. LahJ.J. CellarJ.S. BurnsJ.M. AndersonH.S. SwerdlowR.H. ApostolovaL. LuP.H. BartzokisG. SilvermanD.H.S. Graff-RadfordN.R. ParfittF. JohnsonH. FarlowM.R. HakeA.M. MatthewsB.R. HerringS. van DyckC.H. CarsonR.E. MacAvoyM.G. ChertkowH. BergmanH. HoseinC. BlackS. StefanovicB. CaldwellC. Robin HsiungG-Y. FeldmanH. MudgeB. AssalyM. KerteszA. RogersJ. TrostD. BernickC. MunicD. KerwinD. MesulamM-M. LipowskiK. WuC-K. JohnsonN. SadowskyC. MartinezW. VillenaT. TurnerR.S. JohnsonK. ReynoldsB. SperlingR.A. JohnsonK.A. MarshallG. FreyM. YesavageJ. TaylorJ.L. LaneB. RosenA. TinklenbergJ. SabbaghM. BeldenC. JacobsonS. KowallN. KillianyR. BudsonA.E. NorbashA. JohnsonP.L. ObisesanT.O. WoldayS. BwayoS.K. LernerA. HudsonL. OgrockiP. FletcherE. CarmichaelO. OlichneyJ. DeCarliC. KitturS. BorrieM. LeeT-Y. BarthaD.R. JohnsonS. AsthanaS. CarlssonC.M. PotkinS.G. PredaA. NguyenD. TariotP. FleisherA. ReederS. BatesV. CapoteH. RainkaM. ScharreD.W. KatakiM. ZimmermanE.A. CelminsD. BrownA.D. PearlsonG.D. BlankK. AndersonK. SaykinA.J. SantulliR.B. SchwartzE.S. SinkK.M. WilliamsonJ.D. GargP. WatkinsF. OttB.R. QuerfurthH. TremontG. SallowayS. MalloyP. CorreiaS. RosenH.J. MillerB.L. MintzerJ. LongmireC.F. SpicerK. FingerE. RachinskyI. RogersJ. KerteszA. DrostD. PomaraN. HernandoR. SarraelA. SchultzS.K. Boles PontoL.L. ShimH. SmithK.E. RelkinN. ChaingG. RaudinL. SmithA. FargherK. RajB.A. Type 2 diabetes mellitus, brain atrophy, and cognitive decline.Neurology2019928e823e83010.1212/WNL.0000000000006955 30674592
    [Google Scholar]
  72. PlathN. OhanaO. DammermannB. ErringtonM.L. SchmitzD. GrossC. MaoX. EngelsbergA. MahlkeC. WelzlH. KobalzU. StawrakakisA. FernandezE. WaltereitR. Bick-SanderA. TherstappenE. CookeS.F. BlanquetV. WurstW. SalmenB. BöslM.R. LippH-P. GrantS.G.N. BlissT.V.P. WolferD.P. KuhlD. Arc/Arg3.1 is essential for the consolidation of synaptic plasticity and memories.Neuron200652343744410.1016/j.neuron.2006.08.024 17088210
    [Google Scholar]
  73. JayarajR.L. AzimullahS. BeiramR. Diabetes as a risk factor for Alzheimer’s disease in the Middle East and its shared pathological mediators.Saudi J. Biol. Sci.202027273675010.1016/j.sjbs.2019.12.028 32210695
    [Google Scholar]
  74. EggertS. KinsS. EndresK. BrigadskiT. Brothers in arms: proBDNF/BDNF and sAPPα/Aβ-signaling and their common interplay with ADAM10, TrkB, p75NTR, sortilin, and sorLA in the progression of Alzheimer’s disease.Biol. Chem.20214031437110.1515/hsz‑2021‑0330 34619027
    [Google Scholar]
  75. VilarM. MiraH. Regulation of neurogenesis by neurotrophins during adulthood: Expected and unexpected roles.Front. Neurosci.2016102610.3389/fnins.2016.00026 26903794
    [Google Scholar]
  76. PloskiJ.E. PierreV.J. SmucnyJ. ParkK. MonseyM.S. OvereemK.A. SchafeG.E. The activity-regulated cytoskeletal-associated protein (Arc/Arg3.1) is required for memory consolidation of pavlovian fear conditioning in the lateral amygdala.J. Neurosci.20082847123831239510.1523/JNEUROSCI.1662‑08.2008 19020031
    [Google Scholar]
  77. GuzowskiJ.F. LyfordG.L. StevensonG.D. HoustonF.P. McGaughJ.L. WorleyP.F. BarnesC.A. Inhibition of activity-dependent arc protein expression in the rat hippocampus impairs the maintenance of long-term potentiation and the consolidation of long-term memory.J. Neurosci.200020113993400110.1523/JNEUROSCI.20‑11‑03993.2000 10818134
    [Google Scholar]
  78. BarkerG.R.I. BirdF. AlexanderV. WarburtonE.C. Recognition memory for objects, place, and temporal order: A disconnection analysis of the role of the medial prefrontal cortex and perirhinal cortex.J. Neurosci.200727112948295710.1523/JNEUROSCI.5289‑06.2007 17360918
    [Google Scholar]
  79. ReidJ.M. JacklinD.L. WintersB.D. Delineating prefrontal cortex region contributions to crossmodal object recognition in rats.Cereb. Cortex20142482108211910.1093/cercor/bht061 23505287
    [Google Scholar]
  80. LivingstoneR.W. ElderM.K. BarrettM.C. WestlakeC.M. PeppercornK. TateW.P. AbrahamW.C. WilliamsJ.M. Secreted amyloid precursor protein-alpha promotes arc protein synthesis in hippocampal neurons.Front. Mol. Neurosci.20191219810.3389/fnmol.2019.00198 31474829
    [Google Scholar]
  81. XiongM. JonesO.D. PeppercornK. OhlineS.M. TateW.P. AbrahamW.C. Secreted amyloid precursor protein-alpha can restore novel object location memory and hippocampal LTP in aged rats.Neurobiol. Learn. Mem.201713829129910.1016/j.nlm.2016.08.002 27521248
    [Google Scholar]
  82. D’AmicoM. Di FilippoC. MarfellaR. AbbatecolaA.M. FerraraccioF. RossiF. PaolissoG. Long-term inhibition of dipeptidyl peptidase-4 in Alzheimer’s prone mice.Exp. Gerontol.201045320220710.1016/j.exger.2009.12.004 20005285
    [Google Scholar]
  83. KosarajuJ. GaliC.C. KhatwalR.B. DubalaA. ChinniS. HolsingerR.M.D. MadhunapantulaV.S.R. Muthureddy NatarajS.K. BasavanD. Saxagliptin: A dipeptidyl peptidase-4 inhibitor ameliorates streptozotocin induced Alzheimer’s disease.Neuropharmacology20137229130010.1016/j.neuropharm.2013.04.008 23603201
    [Google Scholar]
  84. KosarajuJ. HolsingerR.M.D. GuoL. TamK.Y. Linagliptin, a Dipeptidyl peptidase-4 inhibitor, mitigates cognitive deficits and pathology in the 3xTg-AD mouse model of Alzheimer’s disease.Mol. Neurobiol.20175486074608410.1007/s12035‑016‑0125‑7 27699599
    [Google Scholar]
  85. ZhouJ.B. TangX. HanM. YangJ. SimóR. Impact of antidiabetic agents on dementia risk: A Bayesian network meta-analysis.Metabolism202010915426510.1016/j.metabol.2020.154265 32446679
    [Google Scholar]
  86. BiesselsG.J. VerhagenC. JanssenJ. van den BergE. ZinmanB. RosenstockJ. GeorgeJ.T. PasseraA. SchnaidtS. JohansenO.E. Effect of linagliptin on cognitive performance in patients with type 2 diabetes and cardiorenal comorbidities: The CARMELINA randomized trial.Diabetes Care201942101930193810.2337/dc19‑0783 31399442
    [Google Scholar]
  87. IshiguroN. ShimizuH. KishimotoW. EbnerT. SchaeferO. Evaluation and prediction of potential drug-drug interactions of linagliptin using in vitro cell culture methods.Drug Metab. Dispos.201341114915810.1124/dmd.112.048470 23073734
    [Google Scholar]
  88. FuchsH. BinderR. GreischelA. Tissue distribution of the novel DPP-4 inhibitor BI 1356 is dominated by saturable binding to its target in rats.Biopharm. Drug Dispos.200930522924010.1002/bdd.662 19562682
    [Google Scholar]
  89. StarrJ.M. WardlawJ. FergusonK. MacLullichA. DearyI.J. MarshallI. Increased blood-brain barrier permeability in type II diabetes demonstrated by gadolinium magnetic resonance imaging.J. Neurol. Neurosurg. Psychiatry2003741707610.1136/jnnp.74.1.70 12486269
    [Google Scholar]
  90. QiaoJ. LawsonC.M. RentrupK.F.G. KulkarniP. FerrisC.F. Evaluating blood-brain barrier permeability in a rat model of type 2 diabetes.J. Transl. Med.202018125610.1186/s12967‑020‑02428‑3 32580725
    [Google Scholar]
  91. YanJ. ZhangZ. ShiH. HIF-1 is involved in high glucose-induced paracellular permeability of brain endothelial cells.Cell. Mol. Life Sci.201269111512810.1007/s00018‑011‑0731‑5 21617913
    [Google Scholar]
  92. XiaoQ. ZengS. LingS. LvM. Up-regulation of HIF-1α and VEGF expression by elevated glucose concentration and hypoxia in cultured human retinal pigment epithelial cells.J. Huazhong Univ. Sci. Technolog. Med. Sci.200626446346510.1007/s11596‑006‑0422‑x 17120749
    [Google Scholar]
  93. MiD.H. FangH.J. ZhengG.H. LiangX.H. DingY.R. LiuX. LiuL.P. DPP-4 inhibitors promote proliferation and migration of rat brain microvascular endothelial cells under hypoxic/high-glucose conditions, potentially through the SIRT1/HIF-1/VEGF pathway.CNS Neurosci. Ther.201925332333210.1111/cns.13042 30136405
    [Google Scholar]
  94. ChenC. HuO. YanJ. LeiJ. QinL. ShiX. LuanL. YangL. Wang, Ke, Han, J, Nanda, A, Zhou, C Multiple effects of 2ME2 and D609 on the cortical expression of HIF-1α and apoptotic genes in a middle cerebral a rtery occlusion-induced focal ischemia rat model.JNC200710261831184110.1111/j.1471‑4159.2007.04652.x 17532791
    [Google Scholar]
  95. GuoS. MiyakeM. LiuK.J. ShiH. Specific inhibition of hypoxia inducible factor 1 exaggerates cell injury induced by in vitro ischemia through deteriorating cellular redox environment.J. Neurochem.200910851309132110.1111/j.1471‑4159.2009.05877.x 19183269
    [Google Scholar]
  96. Kröller-SchönS. KnorrM. HausdingM. OelzeM. SchuffA. SchellR. SudoweS. ScholzA. DaubS. KarbachS. KossmannS. GoriT. WenzelP. SchulzE. GrabbeS. KleinT. MünzelT. DaiberA. Glucose-independent improvement of vascular dysfunction in experimental sepsis by dipeptidyl-peptidase 4 inhibition.Cardiovasc. Res.201296114014910.1093/cvr/cvs246 22843705
    [Google Scholar]
  97. HasegawaY. HayashiK. TakemotoY. ChengC. TakaneK. LinB. KomoharaY. Kim-MitsuyamaS. DPP-4 inhibition with linagliptin ameliorates the progression of premature aging in klotho-/- mice.Cardiovasc. Diabetol.201716115410.1186/s12933‑017‑0639‑y 29195509
    [Google Scholar]
  98. ThomasL. EckhardtM. LangkopfE. TadayyonM. HimmelsbachF. MarkM. (R)-8-(3-amino-piperidin-1-yl)-7-but-2-ynyl-3-methyl-1-(4-methyl-quinazolin-2-ylmethyl)-3,7-dihydro-purine -2,6-dione (BI 1356), a new xanthine-based dipeptidyl peptidase 4 inhibitor, is of higher potency and longer duration of action than other dipeptidyl peptidase 4 inhibitors.J. Pharmacol. Exp. Ther.200832517518210.1124/jpet.107.135723 18223196
    [Google Scholar]
  99. DarsaliaV. JohansenO.E. LietzauG. NyströmT. KleinT. PatroneC. Dipeptidyl peptidase-4 inhibitors for the potential treatment of brain disorders; a mini-review with special focus on linagliptin and stroke.Front. Neurol.20191049310.3389/fneur.2019.00493 31139140
    [Google Scholar]
  100. DuringM.J. CaoL. ZuzgaD.S. FrancisJ.S. FitzsimonsH.L. JiaoX. BlandR.J. KlugmannM. BanksW.A. DruckerD.J. HaileC.N. Glucagon-like peptide-1 receptor is involved in learning and neuroprotection.Nat. Med.2003991173117910.1038/nm919 12925848
    [Google Scholar]
  101. HölscherC. Potential role of glucagon-like peptide-1 (GLP-1) in neuroprotection.CNS Drugs2012261087188210.2165/11635890‑000000000‑00000 22938097
    [Google Scholar]
  102. IsacsonR. NielsenE. DannaeusK. BertilssonG. PatroneC. ZachrissonO. WikströmL. The glucagon-like peptide 1 receptor agonist exendin-4 improves reference memory performance and decreases immobility in the forced swim test.Eur. J. Pharmacol.2011650124925510.1016/j.ejphar.2010.10.008 20951130
    [Google Scholar]
/content/journals/cn/10.2174/1570159X22666240517094428
Loading
/content/journals/cn/10.2174/1570159X22666240517094428
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): APP; Arc; diabetes; Dipeptidyl peptidase 4 inhibitors; HIF1α; neurotrophins
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test