Skip to content
2000
Volume 23, Issue 4
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Background

Alterations of dopamine (DA) transmission in the brain reward system can be associated with an addictive-like state defined as food addiction (FA), common in obese individuals. Subjects affected by FA experience negative feelings when abstinent from their preferred diet and may develop mood disorders, including depression, sustained by alterations in brain DA pathways.

Objective

This study aims to investigate the impact of long-term abstinence from a palatable diet on depressive-like behavior in rats, exploring neurochemical alterations in monoamine and endocannabinoid signaling in DA-enriched brain regions, including ventral tegmental area, dorsolateral striatum, substantia nigra and medial prefrontal cortex.

Methods

Rats underwent exposure and subsequent abstinence from a palatable cafeteria diet. During abstinence, animals were treated with fatty acid amide hydrolase (FAAH) inhibitor PF-3845 (10 mg/kg, intraperitoneal administration every other day). Lastly, animals were subjected to a forced swimming test, and their brains were dissected and processed for high-performance liquid chromatography measurement of monoamines and western blot analyses of markers of the endocannabinoid machinery.

Results

After the withdrawal from the palatable diet, animals showed depressive-like behavior, coupled with significant variations in the concentration of brain monoamines and in the expression of endocannabinoid signalling machinery proteins in cited brain areas. Treatment with PF-3845 exerted an antidepressant-like effect and restored part of the alterations in monoaminergic and endocannabinoid systems.

Conclusion

Overall, our results suggest that abstinence from a cafeteria diet provokes emotional disturbances linked to neuroadaptive changes in monoamines and endocannabinoid signalling in brain areas partaking to DA transmission that could partially be restored by the enhancement of endocannabinoid signalling through FAAH inhibition.

Loading

Article metrics loading...

/content/journals/cn/10.2174/1570159X23666241107160840
2024-11-22
2025-03-30
Loading full text...

Full text loading...

References

  1. FoundationW. O. World Obesity AtlasAvailable from: https://data.worldobesity.org/publications/?cat=19 (accessed 24/08/2023).2023
  2. VolkowN.D. WiseR.A. BalerR. The dopamine motive system: Implications for drug and food addiction.Nat. Rev. Neurosci.2017181274175210.1038/nrn.2017.130 29142296
    [Google Scholar]
  3. VolkowN.D. WangG.J. BalerR.D. Reward, dopamine and the control of food intake: Implications for obesity.Trends Cogn. Sci.2011151374610.1016/j.tics.2010.11.001 21109477
    [Google Scholar]
  4. BotticelliL. Micioni Di BonaventuraE. Del BelloF. GiorgioniG. PiergentiliA. RomanoA. QuagliaW. CifaniC. Micioni Di BonaventuraM.V. Underlying susceptibility to eating disorders and drug abuse: Genetic and pharmacological aspects of dopamine D4 receptors.Nutrients2020128228810.3390/nu12082288 32751662
    [Google Scholar]
  5. HauckC. CookB. EllrottT. Food addiction, eating addiction and eating disorders.Proc. Nutr. Soc.202079110311210.1017/S0029665119001162 31744566
    [Google Scholar]
  6. D’AddarioC. Micioni Di BonaventuraM.V. PucciM. RomanoA. GaetaniS. CiccocioppoR. CifaniC. MaccarroneM. Endocannabinoid signaling and food addiction.Neurosci. Biobehav. Rev.20144720322410.1016/j.neubiorev.2014.08.008 25173635
    [Google Scholar]
  7. VolkowN.D. WangG.J. MaynardL. JayneM. FowlerJ.S. ZhuW. LoganJ. GatleyS.J. DingY.S. WongC. PappasN. Brain dopamine is associated with eating behaviors in humans.Int. J. Eat. Disord.200333213614210.1002/eat.10118 12616579
    [Google Scholar]
  8. AlsiöJ. OlszewskiP.K. NorbäckA.H. GunnarssonZ.E.A. LevineA.S. PickeringC. SchiöthH.B. Dopamine D1 receptor gene expression decreases in the nucleus accumbens upon long-term exposure to palatable food and differs depending on diet-induced obesity phenotype in rats.Neuroscience2010171377978710.1016/j.neuroscience.2010.09.046 20875839
    [Google Scholar]
  9. AvenaN.M. RadaP. HoebelB.G. Sugar and fat bingeing have notable differences in addictive-like behavior.J. Nutr.2009139362362810.3945/jn.108.097584 19176748
    [Google Scholar]
  10. BorisenkovM.F. TserneT.A. BakutovaL.A. Food addiction in Russian adolescents: Associations with age, sex, weight, and depression.Eur. Eat. Disord. Rev.201826667167610.1002/erv.2644 30318852
    [Google Scholar]
  11. da Silva JúniorA.E. de Lima MacenaM. de OliveiraA.D.S. PraxedesD.R.S. de Oliveira Maranhão PurezaI.R. de Menezes Toledo FlorêncioT.M. GearhardtA.N. BuenoN.B. Prevalence of food addiction and its association with anxiety, depression, and adherence to social distancing measures in Brazilian university students during the COVID-19 pandemic: A nationwide study.Eat. Weight Disord.20222762027203510.1007/s40519‑021‑01344‑9 34997553
    [Google Scholar]
  12. HongH.J. KimR. KimA.S. KimJ.H. KimH.J. SongJ.H. ShinS.H. Correlations between stress, depression, body mass index, and food addiction among Korean nursing students.J. Addict. Nurs.202031423624210.1097/JAN.0000000000000362 33264195
    [Google Scholar]
  13. KayaoğluK. GöküstünK.K. AyE. Evaluation of the relationship between food addiction and depression, anxiety, and stress in university students: A cross-sectional survey.J. Child Adolesc. Psychiatr. Nurs.202336325626210.1111/jcap.12428 37212020
    [Google Scholar]
  14. MillsJ.G. ThomasS.J. LarkinT.A. DengC. Overeating and food addiction in major depressive disorder: Links to peripheral dopamine.Appetite202014810458610.1016/j.appet.2020.104586 31926176
    [Google Scholar]
  15. Romero-BlancoC. Hernández-MartínezA. Parra-FernándezM.L. Onieva-ZafraM.D. Prado-LagunaM.C. Rodríguez-AlmagroJ. Food addiction and lifestyle habits among university students.Nutrients2021134135210.3390/nu13041352 33919610
    [Google Scholar]
  16. SkinnerJ. JebeileH. BurrowsT. Food addiction and mental health in adolescents: A systematic review.Lancet Child Adolesc. Health202151075176610.1016/S2352‑4642(21)00126‑7 34174201
    [Google Scholar]
  17. MalhiG.S. MannJ.J. Depression.Lancet2018392101612299231210.1016/S0140‑6736(18)31948‑2 30396512
    [Google Scholar]
  18. Perez-CaballeroL. Torres-SanchezS. Romero-López-AlbercaC. González-SaizF. MicoJ.A. BerrocosoE. Monoaminergic system and depression.Cell Tissue Res.2019377110711310.1007/s00441‑018‑2978‑8 30627806
    [Google Scholar]
  19. CoppenA. The biochemistry of affective disorders.Br. J. Psychiatry19671135041237126410.1192/bjp.113.504.1237 4169954
    [Google Scholar]
  20. ArtigasF. Serotonin receptors involved in antidepressant effects.Pharmacol. Ther.2013137111913110.1016/j.pharmthera.2012.09.006 23022360
    [Google Scholar]
  21. HamonM. BlierP. Monoamine neurocircuitry in depression and strategies for new treatments.Prog. Neuropsychopharmacol. Biol. Psychiatry201345546310.1016/j.pnpbp.2013.04.009 23602950
    [Google Scholar]
  22. CabibS. Puglisi-AllegraS. Stress, depression and the mesolimbic dopamine system.Psychopharmacology1996128433134210.1007/s002130050142 8986003
    [Google Scholar]
  23. CarlssonA. LindqvistM. MagnussonT. 3,4-dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists.Nature19571804596120010.1038/1801200a0 13483658
    [Google Scholar]
  24. KleinM.O. BattagelloD.S. CardosoA.R. HauserD.N. BittencourtJ.C. CorreaR.G. Dopamine: Functions, signaling, and association with neurological diseases.Cell. Mol. Neurobiol.2019391315910.1007/s10571‑018‑0632‑3 30446950
    [Google Scholar]
  25. HernandezG. CheerJ.F. To act or not to act: Endocannabinoid/dopamine interactions in decision-making.Front. Behav. Neurosci.2015933610.3389/fnbeh.2015.00336 26733830
    [Google Scholar]
  26. SpanagelR. Cannabinoids and the endocannabinoid system in reward processing and addiction: From mechanisms to interventions.Dialogues Clin. Neurosci.202022324125010.31887/DCNS.2020.22.3/rspanagel 33162767
    [Google Scholar]
  27. KibretB.G. Canseco-AlbaA. OnaiviE.S. EngidaworkE. Crosstalk between the endocannabinoid and mid-brain dopaminergic systems: Implication in dopamine dysregulation.Front. Behav. Neurosci.202317113795710.3389/fnbeh.2023.1137957 37009000
    [Google Scholar]
  28. GardnerE. Endocannabinoid signaling system and brain reward: Emphasis on dopamine.Pharmacol. Biochem. Behav.200581226328410.1016/j.pbb.2005.01.032 15936806
    [Google Scholar]
  29. de CegliaM. DecaraJ. GaetaniS. Rodríguez de FonsecaF. Obesity as a condition determined by food addiction: Should brain endocannabinoid system alterations be the cause and its modulation the solution?Pharmaceuticals20211410100210.3390/ph14101002 34681224
    [Google Scholar]
  30. GaetaniS. DipasqualeP. RomanoA. RighettiL. CassanoT. PiomelliD. CuomoV. The endocannabinoid system as a target for novel anxiolytic and antidepressant drugs.Int. Rev. Neurobiol.200985577210.1016/S0074‑7742(09)85005‑8 19607961
    [Google Scholar]
  31. PucciM. ZaplaticE. Micioni Di BonaventuraM.V. Micioni Di BonaventuraE. De CristofaroP. MaccarroneM. CifaniC. D’AddarioC. On the role of central type-1 cannabinoid receptor gene regulation in food intake and eating behaviors.Int. J. Mol. Sci.202122139810.3390/ijms22010398 33401515
    [Google Scholar]
  32. LuH.C. MackieK. An introduction to the endogenous cannabinoid system.Biol. Psychiatry201679751652510.1016/j.biopsych.2015.07.028 26698193
    [Google Scholar]
  33. de CegliaM. Micioni Di BonaventuraM.V. RomanoA. FriuliM. Micioni Di BonaventuraE. GavitoA.L. BotticelliL. GaetaniS. de FonsecaF.R. CifaniC. Anxiety associated with palatable food withdrawal is reversed by the selective FAAH inhibitor PF-3845: A regional analysis of the contribution of endocannabinoid signaling machinery.Int. J. Eat. Disord.20235661098111310.1002/eat.23917 36840536
    [Google Scholar]
  34. BogerD.L. SatoH. LernerA.E. HedrickM.P. FecikR.A. MiyauchiH. WilkieG.D. AustinB.J. PatricelliM.P. CravattB.F. Exceptionally potent inhibitors of fatty acid amide hydrolase: The enzyme responsible for degradation of endogenous oleamide and anandamide.Proc. Natl. Acad. Sci.200097105044504910.1073/pnas.97.10.5044 10805767
    [Google Scholar]
  35. MathesonJ. ZhouX.M.M. BourgaultZ. Le FollB. Potential of fatty acid amide hydrolase (FAAH), monoacylglycerol lipase (MAGL), and diacylglycerol lipase (DAGL) enzymes as targets for obesity treatment: A narrative review.Pharmaceuticals20211412131610.3390/ph14121316 34959715
    [Google Scholar]
  36. CifaniC. AvaglianoC. Micioni Di BonaventuraE. GiusepponiM.E. De CaroC. CristianoC. La RanaG. BotticelliL. RomanoA. CalignanoA. GaetaniS. Micioni Di BonaventuraM.V. RussoR. Modulation of pain sensitivity by chronic consumption of highly palatable food followed by abstinence: Emerging role of fatty acid amide hydrolase.Front. Pharmacol.20201126610.3389/fphar.2020.00266 32231568
    [Google Scholar]
  37. Micioni Di BonaventuraM.V. ComanM.M. TomassoniD. Micioni Di BonaventuraE. BotticelliL. GabrielliM.G. RossoliniG.M. Di PilatoV. CecchiniC. AmedeiA. SilviS. VerdenelliM.C. CifaniC. Supplementation with Lactiplantibacillus plantarum IMC 510 modifies microbiota composition and prevents body weight gain induced by cafeteria diet in rats.Int. J. Mol. Sci.202122201117110.3390/ijms222011171 34681831
    [Google Scholar]
  38. GiudettiA.M. Micioni Di BonaventuraM.V. FerramoscaA. LongoS. Micioni Di BonaventuraE. FriuliM. RomanoA. GaetaniS. CifaniC. Brief daily access to cafeteria-style diet impairs hepatic metabolism even in the absence of excessive body weight gain in rats.FASEB J.20203479358937110.1096/fj.201902757R 32463138
    [Google Scholar]
  39. CifaniC. Micioni Di BonaventuraE. BotticelliL. Del BelloF. GiorgioniG. PavletićP. PiergentiliA. QuagliaW. BonifaziA. SchepmannD. WünschB. VistoliG. Micioni Di BonaventuraM.V. Novel highly potent and selective sigma1 receptor antagonists effectively block the binge eating episode in female rats.ACS Chem. Neurosci.202011193107311610.1021/acschemneuro.0c00456 32886484
    [Google Scholar]
  40. VitaleG. FilaferroM. Micioni Di BonaventuraM.V. RuggieriV. CifaniC. GuerriniR. SimonatoM. ZucchiniS. Effects of [Nphe1, Arg14, Lys15]N/OFQ-NH2 (UFP-101), a potent NOP receptor antagonist, on molecular, cellular and behavioural alterations associated with chronic mild stress.J. Psychopharmacol.201731669170310.1177/0269881117691456 28417659
    [Google Scholar]
  41. CassanoT. GaetaniS. MorgeseM.G. MachedaT. LaconcaL. DipasqualeP. TaltavullJ. ShippenbergT.S. CuomoV. GobbiG. Monoaminergic changes in locus coeruleus and dorsal raphe nucleus following noradrenaline depletion.Neurochem. Res.20093481417142610.1007/s11064‑009‑9928‑5 19229609
    [Google Scholar]
  42. RomanoA. Micioni Di BonaventuraM.V. GallelliC.A. KoczwaraJ.B. SmeetsD. GiusepponiM.E. De CegliaM. FriuliM. Micioni Di BonaventuraE. ScuderiC. VitaloneA. TramutolaA. AltieriF. LutzT.A. GiudettiA.M. CassanoT. CifaniC. GaetaniS. Oleoylethanolamide decreases frustration stress-induced binge-like eating in female rats: A novel potential treatment for binge eating disorder.Neuropsychopharmacology202045111931194110.1038/s41386‑020‑0686‑z 32353860
    [Google Scholar]
  43. Ruiz-VirogaV. de CegliaM. MorelliL. CastañoE.M. CalvoE.B. SuárezJ. Rodríguez de FonsecaF. GaleanoP. LagosP. Acute intrahippocampal administration of melanin-concentrating hormone impairs memory consolidation and decreases the expression of MCHR-1 and TrkB receptors.Prog. Neuropsychopharmacol. Biol. Psychiatry202312311070310.1016/j.pnpbp.2022.110703 36565982
    [Google Scholar]
  44. TovarR. de CegliaM. UbaldiM. Rodríguez-PozoM. SoverchiaL. CifaniC. RojoG. GavitoA. Hernandez-FolgadoL. JagerovicN. CiccocioppoR. BaixerasE. Rodríguez de FonsecaF. DecaraJ. Administration of linoleoylethanolamide reduced weight gain, dyslipidemia, and inflammation associated with high-fat-diet-induced obesity.Nutrients20231520444810.3390/nu15204448 37892524
    [Google Scholar]
  45. LiuY. ZhaoJ. GuoW. Emotional roles of mono-aminergic neurotransmitters in major depressive disorder and anxiety disorders.Front. Psychol.20189220110.3389/fpsyg.2018.02201 30524332
    [Google Scholar]
  46. FitoussiA. Dellu-HagedornF. De DeurwaerdèreP. Monoamines tissue content analysis reveals restricted and site-specific correlations in brain regions involved in cognition.Neuroscience201325523324510.1016/j.neuroscience.2013.09.059 24120557
    [Google Scholar]
  47. De DeurwaerdèreP. RamosM. BharatiyaR. PuginierE. ChagraouiA. ManemJ. CuboniE. PierucciM. DeiddaG. CasarrubeaM. Di GiovanniG. Lorcaserin bidirectionally regulates dopaminergic function site-dependently and disrupts dopamine brain area correlations in rats.Neuropharmacology202016610791510.1016/j.neuropharm.2019.107915 31862271
    [Google Scholar]
  48. García-de la CruzL. Galvan-GoizY. Caballero-CaballeroS. ZamudioS. AlfaroA. NavarreteA. Hypericum silenoides Juss. and Hypericum philonotis Cham. & Schlecht. extracts: in-vivo hypolipidaemic and weight-reducing effects in obese rats.J. Pharm. Pharmacol.201365459160310.1111/jphp.12015 23488789
    [Google Scholar]
  49. Mota-RamírezL.D. EscobarC. Postweaning cafeteria diet induces a short-term metabolic disfunction and a differential vulnerability to develop anxiety-like and depressive-like behaviors in male but not female rats.Dev. Psychobiol.2023654e2239210.1002/dev.22392 37073591
    [Google Scholar]
  50. Trujillo-VillarrealL.A. Romero-DíazV.J. Marino-MartínezI.A. Fuentes-MeraL. Ponce-CamachoM.A. DevenyiG.A. Mallar ChakravartyM. Camacho-MoralesA. Garza-VillarrealE.E. Maternal cafeteria diet exposure primes depression-like behavior in the offspring evoking lower brain volume related to changes in synaptic terminals and gliosis.Transl. Psychiatry20211115310.1038/s41398‑020‑01157‑x 33446642
    [Google Scholar]
  51. MurroughJ.W. HenryS. HuJ. GallezotJ.D. Planeta-WilsonB. NeumaierJ.F. NeumeisterA. Reduced ventral striatal/ventral pallidal serotonin1B receptor binding potential in major depressive disorder.Psychopharmacology20112132-354755310.1007/s00213‑010‑1881‑0 20480149
    [Google Scholar]
  52. MuneokaK. OdaY. IwataM. IyoM. HashimotoK. ShirayamaY. Monoaminergic balances predict non-depression-like phenotype in learned helplessness paradigm.Neuroscience202044029029810.1016/j.neuroscience.2020.03.033 32222554
    [Google Scholar]
  53. LiuX. HeJ. JiangW. WenS. XiaoZ. The roles of periaqueductal gray and dorsal raphe nucleus dopaminergic systems in the mechanisms of thermal hypersensitivity and depression in mice.J. Pain20232471213122810.1016/j.jpain.2023.02.004 36796500
    [Google Scholar]
  54. WangY. ZhangX. FAAH inhibition produces antidepressant-like efforts of mice to acute stress via synaptic long-term depression.Behav. Brain Res.201732413814510.1016/j.bbr.2017.01.054 28193523
    [Google Scholar]
  55. TripathiR.K.P. A perspective review on fatty acid amide hydrolase (FAAH) inhibitors as potential therapeutic agents.Eur. J. Med. Chem.202018811195310.1016/j.ejmech.2019.111953 31945644
    [Google Scholar]
  56. RenS. WangZ. ZhangY. ChenN. Potential application of endocannabinoid system agents in neuropsychiatric and neurodegenerative diseases—focusing on FAAH/MAGL inhibitors.Acta Pharmacol. Sin.202041101263127110.1038/s41401‑020‑0385‑7 32203086
    [Google Scholar]
  57. OgawaS. KunugiH. Inhibitors of fatty acid amide hydrolase and monoacylglycerol lipase: New targets for future antidepressants.Curr. Neuropharmacol.201513676077510.2174/1570159X13666150612225212 26630956
    [Google Scholar]
  58. MarquesN.F. BinderL.B. RoversiK. SampaioT.B. ConstantinoL.C. PredigerR.D. TascaC.I. Guanosine prevents depressive-like behaviors in rats following bilateral dorsolateral striatum lesion induced by 6-hydroxydopamine.Behav. Brain Res.201937211201410.1016/j.bbr.2019.112014 31212060
    [Google Scholar]
  59. Cléry-MelinM.L. JollantF. GorwoodP. Reward systems and cognitions in major depressive disorder.CNS Spectr.2019241647710.1017/S1092852918001335 30472971
    [Google Scholar]
  60. BelujonP. GraceA.A. Dopamine system dysregulation in major depressive disorders.Int. J. Neuropsychopharmacol.201720121036104610.1093/ijnp/pyx056 29106542
    [Google Scholar]
  61. MorelC. MontgomeryS.E. LiL. Durand-de CuttoliR. TeichmanE.M. JuarezB. TzavarasN. KuS.M. FlaniganM.E. CaiM. WalshJ.J. RussoS.J. NestlerE.J. CalipariE.S. FriedmanA.K. HanM.H. Midbrain projection to the basolateral amygdala encodes anxiety-like but not depression-like behaviors.Nat. Commun.2022131153210.1038/s41467‑022‑29155‑1 35318315
    [Google Scholar]
  62. MineurY.S. CahuzacE.L. MoseT.N. BenthamM.P. PlantengaM.E. ThompsonD.C. PicciottoM.R. Interaction between noradrenergic and cholinergic signaling in amygdala regulates anxiety- and depression-related behaviors in mice.Neuropsychopharmacology201843102118212510.1038/s41386‑018‑0024‑x 29472646
    [Google Scholar]
  63. PortugalovA. ZaidanH. Gaisler-SalomonI. HillardC.J. AkiravI. FAAH inhibition restores early life stress-induced alterations in PFC microRNAs associated with depressive-like behavior in male and female rats.Int. J. Mol. Sci.202223241610110.3390/ijms232416101 36555739
    [Google Scholar]
  64. GobbiG. BambicoF.R. MangieriR. BortolatoM. CampolongoP. SolinasM. CassanoT. MorgeseM.G. DebonnelG. DurantiA. TontiniA. TarziaG. MorM. TrezzaV. GoldbergS.R. CuomoV. PiomelliD. Antidepressant-like activity and modulation of brain monoaminergic transmission by blockade of anandamide hydrolysis.Proc. Natl. Acad. Sci.200510251186201862510.1073/pnas.0509591102 16352709
    [Google Scholar]
  65. OubraimS. WangR. HausknechtK.A. ShenR.Y. Haj-DahmaneS. Tonic endocannabinoid signaling gates synaptic plasticity in dorsal raphe nucleus serotonin neurons through peroxisome proliferator-activated receptors.Front. Pharmacol.20211269121910.3389/fphar.2021.691219 34262460
    [Google Scholar]
  66. ChagraouiA. WhitestoneS. BaassiriL. ManemJ. Di GiovanniG. De DeurwaerdèreP. Neurochemical impact of the 5-HT2C receptor agonist WAY-163909 on monoamine tissue content in the rat brain.Neurochem. Int.201912424525510.1016/j.neuint.2019.01.019 30685320
    [Google Scholar]
  67. Murillo-RodríguezE. Palomero-RiveroM. Millán-AldacoD. Arias-CarriónO. Drucker-ColínR. Administration of URB597, oleoylethanolamide or palmitoylethanolamide increases waking and dopamine in rats.PLoS One201167e2076610.1371/journal.pone.0020766 21779318
    [Google Scholar]
  68. CrittendenJ.R. YoshidaT. VenuS. MaharA. GraybielA.M. Cannabinoid receptor 1 is required for neurodevelopment of striosome-dendron bouquets.eNeuro20229210.1523/ENEURO.0318‑21.2022 35361667
    [Google Scholar]
  69. FitzgeraldM.L. ShobinE. PickelV.M. Cannabinoid modulation of the dopaminergic circuitry: Implications for limbic and striatal output.Prog. Neuropsychopharmacol. Biol. Psychiatry2012381212910.1016/j.pnpbp.2011.12.004 22265889
    [Google Scholar]
  70. SzaboB. WallmichrathI. MathoniaP. PfreundtnerC. Cannabinoids inhibit excitatory neurotransmission in the substantia nigra pars reticulata.Neuroscience2000971899710.1016/S0306‑4522(00)00036‑1 10771342
    [Google Scholar]
  71. MaZ. GaoF. LarsenB. GaoM. LuoZ. ChenD. MaX. QiuS. ZhouY. XieJ. XiZ.X. WuJ. Mechanisms of cannabinoid CB2 receptor-mediated reduction of dopamine neuronal excitability in mouse ventral tegmental area.EBioMedicine20194222523710.1016/j.ebiom.2019.03.040 30952618
    [Google Scholar]
  72. BourdyR. HertzA. FilliolD. AndryV. GoumonY. MendozaJ. OlmsteadM.C. BefortK. The endocannabinoid system is modulated in reward and homeostatic brain regions following diet-induced obesity in rats: A cluster analysis approach.Eur. J. Nutr.20216084621463310.1007/s00394‑021‑02613‑0 34165614
    [Google Scholar]
  73. DigiovanniG. DimatteoV. PierucciM. EspositoE. Serotonin–dopamine interaction: Electrophysiological evidence.Prog. Brain Res.2008172457110.1016/S0079‑6123(08)00903‑518772027
    [Google Scholar]
  74. DimatteoV. PierucciM. EspositoE. CrescimannoG. BenignoA. DigiovanniG. Serotonin modulation of the basal ganglia circuitry: Therapeutic implication for Parkinson’s disease and other motor disorders.Prog. Brain Res.200817242346310.1016/S0079‑6123(08)00921‑718772045
    [Google Scholar]
  75. EdwardsA. AbizaidA. Driving the need to feed: Insight into the collaborative interaction between ghrelin and endocannabinoid systems in modulating brain reward systems.Neurosci. Biobehav. Rev.201666335310.1016/j.neubiorev.2016.03.032 27136126
    [Google Scholar]
  76. LauB.K. CotaD. CristinoL. BorglandS.L. Endocannabinoid modulation of homeostatic and non-homeostatic feeding circuits.Neuropharmacology2017124385110.1016/j.neuropharm.2017.05.033 28579186
    [Google Scholar]
  77. López-MorenoJ.A. González-CuevasG. MorenoG. NavarroM. The pharmacology of the endocannabinoid system: Functional and structural interactions with other neurotransmitter systems and their repercussions in behavioral addiction.Addict. Biol.200813216018710.1111/j.1369‑1600.2008.00105.x 18422831
    [Google Scholar]
  78. GarcíaC. Palomo-GaroC. Gómez-GálvezY. Fernández-RuizJ. Cannabinoid–dopamine interactions in the physiology and physiopathology of the basal ganglia.Br. J. Pharmacol.2016173132069207910.1111/bph.13215 26059564
    [Google Scholar]
  79. GiuffridaA. ParsonsL.H. KerrT.M. de FonsecaF.R. NavarroM. PiomelliD. Dopamine activation of endogenous cannabinoid signaling in dorsal striatum.Nat. Neurosci.19992435836310.1038/7268 10204543
    [Google Scholar]
  80. López-ArnauR. Buenrostro-JáureguiM. CamarasaJ. PubillD. EscubedoE. Effect of the combination of mephedrone plus ethanol on serotonin and dopamine release in the nucleus accumbens and medial prefrontal cortex of awake rats.Naunyn Schmiedebergs Arch. Pharmacol.2018391324725410.1007/s00210‑018‑1464‑x 29349706
    [Google Scholar]
  81. DaiwileA.P. SullivanP. JayanthiS. GoldsteinD.S. CadetJ.L. Sex-specific alterations in dopamine metabolism in the brain after methamphetamine self-administration.Int. J. Mol. Sci.2022238435310.3390/ijms23084353 35457170
    [Google Scholar]
  82. SharmaT.R. ChanW.C. GintzlerA.R. Effect of chronic naltrexone administration and its withdrawal on the regional activity of neurons that contain norepinephrine, dopamine and serotonin.Brain Res.1988442237938610.1016/0006‑8993(88)91530‑2 3370455
    [Google Scholar]
  83. BestL.M. HendershotC.S. BuckmanJ.F. JagasarS. McPheeM.D. MuzumdarN. TyndaleR.F. HouleS. LoganR. SanchesM. KishS.J. Le FollB. BoileauI. Association between fatty acid amide hydrolase and alcohol response phenotypes: A positron emission tomography imaging study with [11C]CURB in heavy-drinking youth.Biol. Psychiatry202394540541510.1016/j.biopsych.2022.11.022 36868890
    [Google Scholar]
  84. BystrowskaB. FrankowskaM. SmagaI. Pomierny-ChamiołoL. FilipM. Effects of cocaine self-administration and its extinction on the rat brain cannabinoid CB1 and CB2 receptors.Neurotox. Res.201834354755810.1007/s12640‑018‑9910‑6 29754307
    [Google Scholar]
  85. ChenD. GaoM. GaoF. SuQ. WuJ. Brain cannabinoid receptor 2: Expression, function and modulation.Acta Pharmacol. Sin.201738331231610.1038/aps.2016.149 28065934
    [Google Scholar]
  86. NavarreteF. García-GutiérrezM.S. ManzanaresJ. Pharmacological regulation of cannabinoid CB2 receptor modulates the reinforcing and motivational actions of ethanol.Biochem. Pharmacol.201815722723410.1016/j.bcp.2018.07.041 30063884
    [Google Scholar]
  87. NavarreteF. Rodríguez-AriasM. Martín-GarcíaE. NavarroD. García-GutiérrezM.S. AguilarM.A. Aracil-FernándezA. BerbelP. MiñarroJ. MaldonadoR. ManzanaresJ. Role of CB2 cannabinoid receptors in the rewarding, reinforcing, and physical effects of nicotine.Neuropsychopharmacology201338122515252410.1038/npp.2013.157 23817165
    [Google Scholar]
  88. MerrillC.B. FriendL.N. NewtonS.T. HopkinsZ.H. EdwardsJ.G. Ventral tegmental area dopamine and GABA neurons: Physiological properties and expression of mRNA for endocannabinoid biosynthetic elements.Sci. Rep.2015511617610.1038/srep16176 26553597
    [Google Scholar]
  89. LazenkaM.F. TomarchioA.J. LichtmanA.H. GreengardP. FlajoletM. SelleyD.E. Sim-SelleyL.J. Role of dopamine type 1 receptors and dopamine- and cAMP-regulated phosphoprotein Mr 32 kDa in Δ9-tetrahydrocannabinol-mediated induction of ΔFosB in the mouse forebrain.J. Pharmacol. Exp. Ther.2015354331632710.1124/jpet.115.224428 26099530
    [Google Scholar]
  90. NestlerE.J. BarrotM. SelfD.W. ΔFosB: A sustained molecular switch for addiction.Proc. Natl. Acad. Sci.20019820110421104610.1073/pnas.191352698 11572966
    [Google Scholar]
  91. SharmaS. FernandesM.F. FultonS. Adaptations in brain reward circuitry underlie palatable food cravings and anxiety induced by high-fat diet withdrawal.Int. J. Obes.20133791183119110.1038/ijo.2012.197 23229740
    [Google Scholar]
  92. Salaya-VelazquezN.F. López-MuciñoL.A. Mejía-ChávezS. Sánchez-AparicioP. Domínguez-GuadarramaA.A. Venebra-MuñozA. Anandamide and sucralose change ΔFosB expression in the reward system.Neuroreport202031324024410.1097/WNR.0000000000001400 31923023
    [Google Scholar]
  93. HuiM. BeierK.T. Defining the interconnectivity of the medial prefrontal cortex and ventral midbrain.Front. Mol. Neurosci.20221597134910.3389/fnmol.2022.971349 35935333
    [Google Scholar]
  94. WeeleC.M.V. SicilianoC.A. TyeK.M. Dopamine tunes prefrontal outputs to orchestrate aversive processing.Brain Res.20191713163110.1016/j.brainres.2018.11.044 30513287
    [Google Scholar]
  95. McLaughlinR.J. HillM.N. GorzalkaB.B. A critical role for prefrontocortical endocannabinoid signaling in the regulation of stress and emotional behavior.Neurosci. Biobehav. Rev.20144211613110.1016/j.neubiorev.2014.02.006 24582908
    [Google Scholar]
  96. Sánchez-MarínL. Flores-LópezM. GavitoA.L. SuárezJ. Pavón-MorónF.J. de FonsecaF.R. SerranoA. Repeated restraint stress and binge alcohol during adolescence induce long-term effects on anxiety-like behavior and the expression of the endocannabinoid system in male rats.Biomedicines202210359310.3390/biomedicines10030593 35327395
    [Google Scholar]
/content/journals/cn/10.2174/1570159X23666241107160840
Loading
/content/journals/cn/10.2174/1570159X23666241107160840
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test