Skip to content
2000
Volume 23, Issue 2
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Background

This study investigates the connection between gut microbiota and poisoning caused by narcotics and psychodysleptics, using Mendelian randomization (MR) to explore possible causal relationships.

Methods

The study employed the MR analysis, leveraging genetic variants as instrumental variables to facilitate robust causal inference. Data for gut microbiota was extracted from the MiBioGen study, integrating genome-wide genotyping data with 16S fecal microbiota profiles. Outcome metrics were based on the Finngen study. Genetic instruments were meticulously extracted based on stringent criteria, and harmonized with SNP outcomes associated with “Poisoning by narcotics and psychodysleptics (hallucinogens)”. The inverse-variance weighted (IVW) method was utilized for MR analysis, supplemented by sensitivity analyses including MR-Egger Regression, Weighted Median Approach, and Leave-One-Out Cross-Validation.

Results

Among various microbial groups, nine showed significant statistical links. Specifically, Class Negativicutes (OR 5.68, 95% CI 2.13-15.16, = 0.0005) and Order Selenomonadales (OR 5.68, 95% CI 2.13-15.16, = 0.0005) were notably associated. These findings were consistent across different sensitivity analyses.

Conclusion

The relationship between gut microbiota and the adverse effects of narcotics and psychodysleptics is an emerging area of research. Our MR study identifies certain microbes that might influence the body's response to these substances. These insights could help in predicting and treating the effects of narcotics and psychodysleptics in the future.

Loading

Article metrics loading...

/content/journals/cn/10.2174/1570159X22999240729092453
2024-07-30
2024-12-26
Loading full text...

Full text loading...

References

  1. FoleyK.M. Opioids.Neurol. Clin.199311350352210.1016/S0733‑8619(18)30135‑X 8377740
    [Google Scholar]
  2. JohannesC.B. LeT.K. ZhouX. JohnstonJ.A. DworkinR.H. The prevalence of chronic pain in United States adults: Results of an Internet-based survey.J. Pain201011111230123910.1016/j.jpain.2010.07.002 20797916
    [Google Scholar]
  3. SteinC. New concepts in opioid analgesia.Expert Opin. Investig. Drugs2018271076577510.1080/13543784.2018.1516204 30148648
    [Google Scholar]
  4. NafzigerA.N. BarkinR.L. Opioid therapy in acute and chronic pain.J. Clin. Pharmacol.20185891111112210.1002/jcph.1276 29985526
    [Google Scholar]
  5. VollenweiderF.X. Brain mechanisms of hallucinogens and entactogens.Dialogues Clin. Neurosci.20013426527910.31887/DCNS.2001.3.4/fxvollenweider 22033605
    [Google Scholar]
  6. VolginA.D. YakovlevO.A. DeminK.A. AlekseevaP.A. KyzarE.J. CollinsC. NicholsD.E. KalueffA.V. Understanding central nervous system effects of deliriant hallucinogenic drugs through experimental animal models.ACS Chem. Neurosci.201910114315410.1021/acschemneuro.8b00433 30252437
    [Google Scholar]
  7. LiechtiM.E. Modern clinical research on LSD.Neuropsychopharmacology201742112114212710.1038/npp.2017.86 28447622
    [Google Scholar]
  8. LingS. CebanF. LuiL.M.W. LeeY. TeopizK.M. RodriguesN.B. LipsitzO. GillH. SubramaniapillaiM. MansurR.B. LinK. HoR. RosenblatJ.D. CastleD. McIntyreR.S. Molecular mechanisms of psilocybin and implications for the treatment of depression.CNS Drugs2022361173010.1007/s40263‑021‑00877‑y 34791625
    [Google Scholar]
  9. KayeA.D. JonesM.R. KayeA.M. RipollJ.G. GalanV. BeakleyB.D. CalixtoF. BoldenJ.L. UrmanR.D. ManchikantiL. Prescription opioid abuse in chronic pain: An updated review of opioid abuse predictors and strategies to curb opioid abuse: Part 1.Pain Physician2017220;2s93s10910.36076/ppj.2017.s109 28226333
    [Google Scholar]
  10. BradyK.T. McCauleyJ.L. BackS.E. Prescription opioid misuse, abuse, and treatment in the United States: An update.Am. J. Psychiatry20161731182610.1176/appi.ajp.2015.15020262 26337039
    [Google Scholar]
  11. VearrierD. GrundmannO. Clinical pharmacology, toxicity, and abuse potential of opioids.J. Clin. Pharmacol.202161S2Suppl. 2S70S8810.1002/jcph.1923 34396552
    [Google Scholar]
  12. NicholsD.E. GrobC.S. Is LSD toxic?Forensic Sci. Int.201828414114510.1016/j.forsciint.2018.01.006 29408722
    [Google Scholar]
  13. HardawayR. SchweitzerJ. SuzukiJ. Hallucinogen use disorders.Child Adolesc. Psychiatr. Clin. N. Am.201625348949610.1016/j.chc.2016.03.006 27338969
    [Google Scholar]
  14. DartR.C. SurrattH.L. CiceroT.J. ParrinoM.W. SevertsonS.G. Bucher-BartelsonB. GreenJ.L. Trends in opioid analgesic abuse and mortality in the United States.N. Engl. J. Med.2015372324124810.1056/NEJMsa1406143 25587948
    [Google Scholar]
  15. PaulozziL.J. BudnitzD.S. XiY. Increasing deaths from opioid analgesics in the United States.Pharmacoepidemiol. Drug Saf.200615961862710.1002/pds.1276 16862602
    [Google Scholar]
  16. BoyerE.W. Management of opioid analgesic overdose.N. Engl. J. Med.2012367214615510.1056/NEJMra1202561 22784117
    [Google Scholar]
  17. WangL. WuY. YinP. ChengP. LiuY. SchwebelD.C. QiJ. NingP. LiuJ. ChengX. ZhouM. HuG. Poisoning deaths in China, 2006–2016.Bull. World Health Organ.2018965314326A10.2471/BLT.17.203943 29875516
    [Google Scholar]
  18. InocencioT.J. CarrollN.V. ReadE.J. HoldfordD.A. The economic burden of opioid-related poisoning in the United States.Pain Med.201314101534154710.1111/pme.12183 23841538
    [Google Scholar]
  19. AdakA. KhanM.R. An insight into gut microbiota and its functionalities.Cell. Mol. Life Sci.201976347349310.1007/s00018‑018‑2943‑4 30317530
    [Google Scholar]
  20. GillS.R. PopM. DeBoyR.T. EckburgP.B. TurnbaughP.J. SamuelB.S. GordonJ.I. RelmanD.A. Fraser-LiggettC.M. NelsonK.E. Metagenomic analysis of the human distal gut microbiome.Science200631257781355135910.1126/science.1124234 16741115
    [Google Scholar]
  21. FanY. PedersenO. Gut microbiota in human metabolic health and disease.Nat. Rev. Microbiol.2021191557110.1038/s41579‑020‑0433‑9 32887946
    [Google Scholar]
  22. WangZ. WangY. XiongJ. GanX. BaoY. JiangA. ZhouY. HuangfuZ. YangY. LiuZ. XiaD. WangL. Causal effects of hypertension on risk of erectile dysfunction: A two-sample Mendelian randomization study.Front. Cardiovasc. Med.202310112134010.3389/fcvm.2023.1121340 37025676
    [Google Scholar]
  23. MichaudelC. SokolH. The Gut Microbiota at the Service of Immunometabolism.Cell Metab.202032451452310.1016/j.cmet.2020.09.004 32946809
    [Google Scholar]
  24. HondaK. LittmanD.R. The microbiota in adaptive immune homeostasis and disease.Nature20165357610758410.1038/nature18848 27383982
    [Google Scholar]
  25. Järbrink-SehgalE. AndreassonA. The gut microbiota and mental health in adults.Curr. Opin. Neurobiol.20206210211410.1016/j.conb.2020.01.016 32163822
    [Google Scholar]
  26. LiH. HeJ. JiaW. The influence of gut microbiota on drug metabolism and toxicity.Expert Opin. Drug Metab. Toxicol.2016121314010.1517/17425255.2016.1121234 26569070
    [Google Scholar]
  27. KangM.J. KimH.G. KimJ.S. OhD.G. UmY.J. SeoC.S. HanJ.W. ChoH.J. KimG.H. JeongT.C. JeongH.G. The effect of gut microbiota on drug metabolism.Expert Opin. Drug Metab. Toxicol.20139101295130810.1517/17425255.2013.807798 24033282
    [Google Scholar]
  28. ThanassoulisG. O’DonnellC.J. Mendelian Randomization.JAMA2009301222386238810.1001/jama.2009.812 19509388
    [Google Scholar]
  29. DaviesN.M. HolmesM.V. Davey SmithG. Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians.BMJ2018362k60110.1136/bmj.k601 30002074
    [Google Scholar]
  30. Davey SmithG. PaternosterL. ReltonC. When will mendelian randomization become relevant for clinical practice and public health?JAMA2017317658959110.1001/jama.2016.21189 28196238
    [Google Scholar]
  31. LiN. WangY. WeiP. MinY. YuM. ZhouG. YuanG. SunJ. DaiH. ZhouE. HeW. ShengM. GaoK. ZhengM. SunW. ZhouD. ZhangL. Causal effects of specific gut microbiota on chronic kidney diseases and renal function—a two-sample mendelian randomization study.Nutrients202315236010.3390/nu15020360 36678231
    [Google Scholar]
  32. JinQ. RenF. DaiD. SunN. QianY. SongP. The causality between intestinal flora and allergic diseases: Insights from a bi-directional two-sample Mendelian randomization analysis.Front. Immunol.202314112127310.3389/fimmu.2023.1121273 36969260
    [Google Scholar]
  33. YangM. LuoP. ZhangF. XuK. FengR. XuP. Large-scale correlation analysis of deep venous thrombosis and gut microbiota.Front. Cardiovasc. Med.20229102591810.3389/fcvm.2022.1025918 36419497
    [Google Scholar]
  34. LuoS. LiW. LiQ. ZhangM. WangX. WuS. LiY. Causal effects of gut microbiota on the risk of periodontitis: a two-sample Mendelian randomization study.Front. Cell. Infect. Microbiol.202313116099310.3389/fcimb.2023.1160993 37305424
    [Google Scholar]
  35. LiuD. BuD. LiH. WangQ. DingX. FangX. Intestinal metabolites and the risk of autistic spectrum disorder: A two-sample Mendelian randomization study.Front. Psychiatry202313103421410.3389/fpsyt.2022.1034214 36713927
    [Google Scholar]
  36. WangF. LiN. NiS. MinY. WeiK. SunH. FuY. LiuY. LvD. The effects of specific gut microbiota and metabolites on IgA nephropathy-based on mendelian randomization and clinical validation.Nutrients20231510240710.3390/nu15102407 37242290
    [Google Scholar]
  37. LiY. FuR. LiR. ZengJ. LiuT. LiX. JiangW. Causality of gut microbiome and hypertension: A bidirectional mendelian randomization study.Front. Cardiovasc. Med.202310116734610.3389/fcvm.2023.1167346 37215554
    [Google Scholar]
  38. ZengY. CaoS. YangH. Roles of gut microbiome in epilepsy risk: A Mendelian randomization study.Front. Microbiol.202314111501410.3389/fmicb.2023.1115014 36922970
    [Google Scholar]
  39. SkrivankovaV.W. RichmondR.C. WoolfB.A.R. YarmolinskyJ. DaviesN.M. SwansonS.A. VanderWeeleT.J. HigginsJ.P.T. TimpsonN.J. DimouN. LangenbergC. GolubR.M. LoderE.W. GalloV. Tybjaerg-HansenA. Davey SmithG. EggerM. RichardsJ.B. Strengthening the reporting of observational studies in epidemiology using mendelian randomization.JAMA2021326161614162110.1001/jama.2021.18236 34698778
    [Google Scholar]
  40. KurilshikovA. Medina-GomezC. BacigalupeR. RadjabzadehD. WangJ. DemirkanA. Le RoyC.I. Raygoza GarayJ.A. FinnicumC.T. LiuX. ZhernakovaD.V. BonderM.J. HansenT.H. FrostF. RühlemannM.C. TurpinW. MoonJ.Y. KimH.N. LüllK. BarkanE. ShahS.A. FornageM. Szopinska-TokovJ. WallenZ.D. BorisevichD. AgreusL. AndreassonA. BangC. BedraniL. BellJ.T. BisgaardH. BoehnkeM. BoomsmaD.I. BurkR.D. ClaringbouldA. CroitoruK. DaviesG.E. van DuijnC.M. DuijtsL. FalonyG. FuJ. van der GraafA. HansenT. HomuthG. HughesD.A. IjzermanR.G. JacksonM.A. JaddoeV.W.V. JoossensM. JørgensenT. KeszthelyiD. KnightR. LaaksoM. LaudesM. LaunerL.J. LiebW. LusisA.J. MascleeA.A.M. MollH.A. MujagicZ. QibinQ. RothschildD. ShinH. SørensenS.J. StevesC.J. ThorsenJ. TimpsonN.J. TitoR.Y. Vieira-SilvaS. VölkerU. VölzkeH. VõsaU. WadeK.H. WalterS. WatanabeK. WeissS. WeissF.U. WeissbrodO. WestraH.J. WillemsenG. PayamiH. JonkersD.M.A.E. Arias VasquezA. de GeusE.J.C. MeyerK.A. StokholmJ. SegalE. OrgE. WijmengaC. KimH.L. KaplanR.C. SpectorT.D. UitterlindenA.G. RivadeneiraF. FrankeA. LerchM.M. FrankeL. SannaS. D’AmatoM. PedersenO. PatersonA.D. KraaijR. RaesJ. ZhernakovaA. Large-scale association analyses identify host factors influencing human gut microbiome composition.Nat. Genet.202153215616510.1038/s41588‑020‑00763‑1 33462485
    [Google Scholar]
  41. ConsortiumM. MiBioGen2022Available from: https://mibiogen.gcc.rug.nl/
  42. FinnGenST19_POISO_NARCOT_PSYCHOD_HALLUCINOG – Poisoning by narcotics and psychodysleptics (hallucinogens). Risteys v2.1.0.2022Available from: https://risteys.finregistry.fi/endpoints/ST19_POISO_NARCOT_PSYCHOD_HALLUCINOG
  43. PierceB.L. AhsanH. VanderWeeleT.J. Power and instrument strength requirements for Mendelian randomization studies using multiple genetic variants.Int. J. Epidemiol.201140374075210.1093/ije/dyq151 20813862
    [Google Scholar]
  44. VerbanckM. ChenC.Y. NealeB. DoR. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases.Nat. Genet.201850569369810.1038/s41588‑018‑0099‑7 29686387
    [Google Scholar]
  45. WangF. MengJ. ZhangL. JohnsonT. ChenC. RoyS. Morphine induces changes in the gut microbiome and metabolome in a morphine dependence model.Sci. Rep.201881359610.1038/s41598‑018‑21915‑8 29483538
    [Google Scholar]
  46. BanerjeeS. SindbergG. WangF. MengJ. SharmaU. ZhangL. DauerP. ChenC. DallugeJ. JohnsonT. RoyS. Opioid-induced gut microbial disruption and bile dysregulation leads to gut barrier compromise and sustained systemic inflammation.Mucosal Immunol.2016961418142810.1038/mi.2016.9 26906406
    [Google Scholar]
  47. ZhangL. MengJ. BanY. JalodiaR. ChupikovaI. FernandezI. BritoN. SharmaU. AbreuM.T. RamakrishnanS. RoyS. Morphine tolerance is attenuated in germfree mice and reversed by probiotics, implicating the role of gut microbiome.Proc. Natl. Acad. Sci. USA201911627135231353210.1073/pnas.1901182116 31209039
    [Google Scholar]
  48. WangF. RoyS. Gut Homeostasis, Microbial Dysbiosis, and Opioids.Toxicol. Pathol.201745115015610.1177/0192623316679898 27895265
    [Google Scholar]
  49. AkbaraliH.I. DeweyW.L. Gastrointestinal motility, dysbiosis and opioid-induced tolerance: is there a link?Nat. Rev. Gastroenterol. Hepatol.201916632332410.1038/s41575‑019‑0150‑x 31024090
    [Google Scholar]
  50. MayerE.A. NanceK. ChenS. The Gut–Brain Axis.Annu. Rev. Med.202273143945310.1146/annurev‑med‑042320‑014032 34669431
    [Google Scholar]
  51. XieZ. ZhangX. ZhaoM. HuoL. HuangM. LiD. ZhangS. ChengX. GuH. ZhangC. ZhanC. WangF. ShangC. CaoP. The gut-to-brain axis for toxin-induced defensive responses.Cell20221852342984316.e2110.1016/j.cell.2022.10.001 36323317
    [Google Scholar]
  52. Rueda-RuzafaL. CruzF. CardonaD. HoneA.J. Molina-TorresG. Sánchez-LabracaN. RomanP. Opioid system influences gut-brain axis: Dysbiosis and related alterations.Pharmacol. Res.202015910492810.1016/j.phrs.2020.104928 32504837
    [Google Scholar]
  53. SantoniM. MicciniF. BattelliN. Gut microbiota, immunity and pain.Immunol. Lett.2021229444710.1016/j.imlet.2020.11.010 33248167
    [Google Scholar]
  54. ZádoriZ.S. KirályK. Al-KhrasaniM. GyiresK. Interactions between NSAIDs, opioids and the gut microbiota - Future perspectives in the management of inflammation and pain.Pharmacol. Ther.202324110832710.1016/j.pharmthera.2022.108327 36473615
    [Google Scholar]
  55. LuoX. LiH. FanX. WuX. ZhouR. LeiY. XueD. YangF. XuY. WangK. The gut microbiota-brain Axis: Potential mechanism of drug addiction.Curr. Top. Med. Chem.202323181782179210.2174/1568026623666230418114133 37106510
    [Google Scholar]
  56. JiJ. YanN. ZhangZ. LiB. XueR. DangY. Characterized profiles of gut microbiota in morphine abstinence-induced depressive-like behavior.Neurosci. Lett.202278813685710.1016/j.neulet.2022.136857 36038030
    [Google Scholar]
  57. KienzlM. StorrM. SchichoR. Cannabinoids and opioids in the treatment of inflammatory bowel diseases.Clin. Transl. Gastroenterol.2020111e0012010.14309/ctg.0000000000000120 31899693
    [Google Scholar]
  58. CampbellC. AdeoluM. GuptaR.S. Genome-based taxonomic framework for the class Negativicutes: division of the class Negativicutes into the orders Selenomonadales emend., Acidaminococcales ord. nov. and Veillonellales ord. nov.Int. J. Syst. Evol. Microbiol.201565Pt_93203321510.1099/ijs.0.000347 25999592
    [Google Scholar]
  59. ChiuF.C. TsaiC.F. HuangP.S. ShihC.Y. TsaiM.H. HwangJ.J. WangY.C. ChuangE.Y. TsaiC.T. ChangS.N. The gut microbiome, seleno-compounds, and acute myocardial infarction.J. Clin. Med.2022115146210.3390/jcm11051462 35268552
    [Google Scholar]
  60. ChenH. JiaZ. HeM. ChenA. ZhangX. XuJ. WangC. Arula-7 powder improves diarrhea and intestinal epithelial tight junction function associated with its regulation of intestinal flora in calves infected with pathogenic Escherichia coli O1.Microbiome202311117210.1186/s40168‑023‑01616‑9 37542271
    [Google Scholar]
  61. SongP. YangD. WangH. CuiX. SiX. ZhangX. ZhangL. Relationship between intestinal flora structure and metabolite analysis and immunotherapy efficacy in Chinese NSCLC patients.Thorac. Cancer20201161621163210.1111/1759‑7714.13442 32329229
    [Google Scholar]
  62. TogoA.H. KhelaifiaS. ValeroR. CadoretF. RaoultD. MillionM. ‘Negativicoccus massiliensis’, a new species identified from human stool from an obese patient after bariatric surgery.New Microbes New Infect.201613434410.1016/j.nmni.2016.05.018 27408741
    [Google Scholar]
  63. MarchandinH. TeyssierC. CamposJ. Jean-PierreH. RogerF. GayB. CarlierJ.P. Jumas-BilakE. Negativicoccus succinicivorans gen. nov., sp. nov., isolated from human clinical samples, emended description of the family Veillonellaceae and description of Negativicutes classis nov., Selenomonadales ord. nov. and Acidaminococcaceae fam. nov. in the bacterial phylum Firmicutes.Int. J. Syst. Evol. Microbiol.20106061271127910.1099/ijs.0.013102‑0 19667386
    [Google Scholar]
  64. ReichardtN. DuncanS.H. YoungP. BelenguerA. McWilliam LeitchC. ScottK.P. FlintH.J. LouisP. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota.ISME J.2014861323133510.1038/ismej.2014.14 24553467
    [Google Scholar]
  65. ZiesenitzV.C. VaughnsJ.D. KochG. MikusG. van den AnkerJ.N. Pharmacokinetics of fentanyl and its derivatives in children: A comprehensive review.Clin. Pharmacokinet.201857212514910.1007/s40262‑017‑0569‑6 28688027
    [Google Scholar]
  66. PerryR.J. BordersC.B. ClineG.W. ZhangX.M. AlvesT.C. PetersenK.F. RothmanD.L. KibbeyR.G. ShulmanG.I. Propionate increases hepatic pyruvate cycling and anaplerosis and alters mitochondrial metabolism.J. Biol. Chem.201629123121611217010.1074/jbc.M116.720631 27002151
    [Google Scholar]
  67. LouisP. FlintH.J. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine.FEMS Microbiol. Lett.200929411810.1111/j.1574‑6968.2009.01514.x 19222573
    [Google Scholar]
  68. SinhaS.R. HaileselassieY. NguyenL.P. TropiniC. WangM. BeckerL.S. SimD. JarrK. SpearE.T. SinghG. NamkoongH. BittingerK. FischbachM.A. SonnenburgJ.L. HabtezionA. Dysbiosis-induced secondary bile acid deficiency promotes intestinal inflammation.Cell Host Microbe2020274659670.e510.1016/j.chom.2020.01.021 32101703
    [Google Scholar]
  69. KeshteliA. ValchevaR. NickurakC. ParkH. MandalR. van DiepenK. KroekerK. van ZantenS. HalloranB. WishartD. MadsenK. DielemanL. Anti-inflammatory diet prevents subclinical colonic inflammation and alters metabolomic profile of ulcerative colitis patients in clinical remission.Nutrients20221416329410.3390/nu14163294 36014800
    [Google Scholar]
/content/journals/cn/10.2174/1570159X22999240729092453
Loading
/content/journals/cn/10.2174/1570159X22999240729092453
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test