Skip to content
2000
Volume 23, Issue 2
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Background

Inflammasome overactivation, multiprotein complexes that trigger inflammatory responses, plays a critical role in Major Depressive Disorder (MDD) pathogenesis and treatment responses. Indeed, different antidepressants alleviate depression-related behaviours by specifically counteracting the NLRP3 inflammasome signalling pathway. The immunomodulatory effects of vortioxetine (VTX), a multimodal antidepressant with cognitive benefits, were recently revealed to counter memory impairment induced by a peripheral lipopolysaccharide (LPS) injection 24 hours (h) post-challenge. The potential link between VTX and NLRP3, along with other inflammasomes, remains 
un-explored.

Methods

The potential link between VTX and NLRP3, along with other inflammasomes, remains unexplored. Hence, adult C57BL/6J male mice (n = 73) were fed with a standard or VTX-enriched diet (600 mg/kg of food, 28 days), injected with LPS (830 μg/kg) or saline, and sacrificed 6/24 h post-LPS. At these time-points, transcriptional effects of LPS and VTX on NLRP3, NLRP1, NLRC4, AIM2 (inflammasomes), ASC and CASP1 (related subunits) and NEK7 mediator (NLRP3 regulator) were assessed in dorsal and ventral hippocampal subregions, frontal-prefrontal cortex and hypothalamus, brain regions serving behavioural-cognitive functions impaired in MDD.

Results

Varied expression patterns of inflammasomes were revealed, with long-term NLRP3 and ASC transcriptional changes observed in response to LPS. It was demonstrated that VTX counteracted the LPS-mediated NLRP3 and ASC upregulation in memory-related brain areas like the dorsal hippocampus at 24 h time-point, potentially regulating NEK7 expression. No VTX-mediated transcriptional effects were observed on other inflammasomes, reinforcing a potentially specific modulation on the NLRP3 inflammasome signalling pathway.

Conclusion

Thus, a novel VTX molecular mechanism in modulating the NLRP3 inflammasome in a time- and area-specific manner in the brain was highlighted, with significant clinical implications in treating depression and cognitive impairments.

Loading

Article metrics loading...

/content/journals/cn/10.2174/1570159X22666240705143649
2024-07-12
2024-12-26
Loading full text...

Full text loading...

References

  1. LiuQ. HeH. YangJ. FengX. ZhaoF. LyuJ. Changes in the global burden of depression from 1990 to 2017: Findings from the Global Burden of Disease study.J. Psychiatr. Res.202012613414010.1016/j.jpsychires.2019.08.002 31439359
    [Google Scholar]
  2. ShoreyS. NgE.D. WongC.H.J. Global prevalence of depression and elevated depressive symptoms among adolescents: A systematic review and meta‐analysis.Br. J. Clin. Psychol.202261228730510.1111/bjc.12333 34569066
    [Google Scholar]
  3. CulpepperL. LamR.W. McIntyreR.S. Cognitive impairment in patients with depression: Awareness, assessment, and management.J. Clin. Psychiatry20177891383139410.4088/JCP.tk16043ah5c 29345866
    [Google Scholar]
  4. PanZ. ParkC. BrietzkeE. ZuckermanH. RongC. MansurR.B. FusD. SubramaniapillaiM. LeeY. McIntyreR.S. Cognitive impairment in major depressive disorder.CNS Spectr.2019241222910.1017/S1092852918001207 30468135
    [Google Scholar]
  5. VargheseS. FreyB.N. SchneiderM.A. KapczinskiF. de Azevedo CardosoT. Functional and cognitive impairment in the first episode of depression: A systematic review.Acta Psychiatr. Scand.2022145215618510.1111/acps.13385 34758106
    [Google Scholar]
  6. RosenblatJ.D. KakarR. McIntyreR.S. The cognitive effects of antidepressants in major depressive disorder: A systematic review and meta-analysis of randomized clinical trials.Int. J. Neuropsychopharmacol.2016192pyv08210.1093/ijnp/pyv082 26209859
    [Google Scholar]
  7. Kopschina FeltesP. DoorduinJ. KleinH.C. Juárez-OrozcoL.E. DierckxR.A.J.O. Moriguchi-JeckelC.M. de VriesE.F.J. Anti-inflammatory treatment for major depressive disorder: implications for patients with an elevated immune profile and non-responders to standard antidepressant therapy.J. Psychopharmacol.20173191149116510.1177/0269881117711708 28653857
    [Google Scholar]
  8. XiaC.Y. GuoY.X. LianW.W. YanY. MaB.Z. ChengY.C. XuJ.K. HeJ. ZhangW.K. The NLRP3 inflammasome in depression: Potential mechanisms and therapies.Pharmacol. Res.202318710662510.1016/j.phrs.2022.106625 36563870
    [Google Scholar]
  9. RoyS. Arif AnsariM. ChoudharyK. SinghS. NLRP3 inflammasome in depression: A review.Int. Immunopharmacol.202311710991610.1016/j.intimp.2023.109916 36827927
    [Google Scholar]
  10. Alcocer-GómezE. de MiguelM. Casas-BarqueroN. Núñez-VascoJ. Sánchez-AlcazarJ.A. Fernández-RodríguezA. CorderoM.D. NLRP3 inflammasome is activated in mononuclear blood cells from patients with major depressive disorder.Brain Behav. Immun.20143611111710.1016/j.bbi.2013.10.017 24513871
    [Google Scholar]
  11. Alcocer-GómezE. Casas-BarqueroN. WilliamsM.R. Romero-GuillenaS.L. Cañadas-LozanoD. BullónP. Sánchez-AlcazarJ.A. Navarro-PandoJ.M. CorderoM.D. Antidepressants induce autophagy dependent-NLRP3-inflammasome inhibition in Major depressive disorder.Pharmacol. Res.201712111412110.1016/j.phrs.2017.04.028 28465217
    [Google Scholar]
  12. GuoH. CallawayJ.B. TingJ.P.Y. Inflammasomes: Mechanism of action, role in disease, and therapeutics.Nat. Med.201521767768710.1038/nm.3893 26121197
    [Google Scholar]
  13. DuR.H. TanJ. SunX.Y. LuM. DingJ.H. HuG. Fluoxetine inhibits NLRP3 inflammasome activation: Implication in depression.Int. J. Neuropsychopharmacol.2016199pyw03710.1093/ijnp/pyw037 27207922
    [Google Scholar]
  14. AriozB.I. TastanB. TarakciogluE. TufekciK.U. OlcumM. ErsoyN. BagriyanikA. GencK. GencS. Melatonin attenuates LPS-induced acute depressive-like behaviors and microglial NLRP3 inflammasome activation through the SIRT1/Nrf2 pathway.Front. Immunol.201910151110.3389/fimmu.2019.01511 31327964
    [Google Scholar]
  15. TsaiS.J. Effects of interleukin-1beta polymorphisms on brain function and behavior in healthy and psychiatric disease conditions.Cytokine Growth Factor Rev.201737899710.1016/j.cytogfr.2017.06.001 28599834
    [Google Scholar]
  16. AlboniS. CerviaD. SugamaS. ContiB. Interleukin 18 in the CNS.J. Neuroinflammation201071910.1186/1742‑2094‑7‑9 20113500
    [Google Scholar]
  17. MilnerM.T. MaddugodaM. GötzJ. BurgenerS.S. SchroderK. The NLRP3 inflammasome triggers sterile neuroinflammation and Alzheimer’s disease.Curr. Opin. Immunol.20216811612410.1016/j.coi.2020.10.011 33181351
    [Google Scholar]
  18. PanickerN. KamT.I. WangH. NeifertS. ChouS.C. KumarM. BrahmachariS. JhaldiyalA. HinkleJ.T. AkkentliF. MaoX. XuE. KaruppagounderS.S. HsuE.T. KangS.U. PletnikovaO. TroncosoJ. DawsonV.L. DawsonT.M. Neuronal NLRP3 is a parkin substrate that drives neurodegeneration in Parkinson’s disease.Neuron20221101524222437.e910.1016/j.neuron.2022.05.009 35654037
    [Google Scholar]
  19. VoetS. SrinivasanS. LamkanfiM. van LooG. Inflammasomes in neuroinflammatory and neurodegenerative diseases.EMBO Mol. Med.2019116e1024810.15252/emmm.201810248 31015277
    [Google Scholar]
  20. SongA.Q. GaoB. FanJ.J. ZhuY.J. ZhouJ. WangY.L. XuL.Z. WuW.N. WuW.N. NLRP1 inflammasome contributes to chronic stress-induced depressive-like behaviors in mice.J. Neuroinflammation202017117810.1186/s12974‑020‑01848‑8 32513185
    [Google Scholar]
  21. LiY.K. ChenJ.G. WangF. The emerging roles of absent in melanoma 2 (AIM2) inflammasome in central nervous system disorders.Neurochem. Int.202114910512210.1016/j.neuint.2021.105122 34284076
    [Google Scholar]
  22. Iban-AriasR. Sebastian-ValverdeM. WuH. LyuW. WuQ. SimonJ. PasinettiG.M. Role of polyphenol-derived phenolic acid in mitigation of inflammasome-mediated anxiety and depression.Biomedicines2022106126410.3390/biomedicines10061264 35740286
    [Google Scholar]
  23. FloresJ. NoëlA. FillionM.L. LeBlancA.C. Therapeutic potential of Nlrp1 inflammasome, caspase-1, or caspase-6 against alzheimer disease cognitive impairment.Cell Death Differ.202229365766910.1038/s41418‑021‑00881‑1 34625662
    [Google Scholar]
  24. LiJ.M. LiuL.L. SuW.J. WangB. ZhangT. ZhangY. JiangC.L. Ketamine may exert antidepressant effects via suppressing NLRP3 inflammasome to upregulate AMPA receptors.Neuropharmacology201914614915310.1016/j.neuropharm.2018.11.022 30496753
    [Google Scholar]
  25. LeeH. ParkJ.H. HoeH.S. Idebenone regulates Aβ and LPS-induced neurogliosis and cognitive function through inhibition of NLRP3 Inflammasome/IL-1β axis activation.Front. Immunol.20221374933610.3389/fimmu.2022.749336 35222363
    [Google Scholar]
  26. LonnemannN. HosseiniS. MarchettiC. SkourasD.B. StefanoniD. DinarelloC.A. KorteM. The NLRP3 inflammasome inhibitor OLT1177 rescues cognitive impairment in a mouse model of Alzheimer’s disease.Proc Natl Acad Sci202011750321453215410.1073/pnas.2009680117
    [Google Scholar]
  27. WuX.L. DengM.Z. GaoZ.J. DangY.Y. LiY.C. LiC.W. Neferine alleviates memory and cognitive dysfunction in diabetic mice through modulation of the NLRP3 inflammasome pathway and alleviation of endoplasmic-reticulum stress.Int. Immunopharmacol.20208410655910.1016/j.intimp.2020.106559 32402951
    [Google Scholar]
  28. LiP. HeY. YangQ. GuoH. LiN. ZhangD. NEK7 inhibition attenuates Aβ42-induced cognitive impairment by regulating TLR4/NF-κB and the NLRP3 inflammasome in mice.J. Clin. Biochem. Nutr.202373214515310.3164/jcbn.22‑105 37700846
    [Google Scholar]
  29. XuY. YangY. ChenX. JiangD. ZhangF. GuoY. HuB. XuG. PengS. WuL. HuJ. NLRP3 inflammasome in cognitive impairment and pharmacological properties of its inhibitors.Transl. Neurodegener.20231214910.1186/s40035‑023‑00381‑x 37915104
    [Google Scholar]
  30. BrunoA. ZoccaliR.A. TroiliG.M. ScalaL. PandolfoG. CedroC. MentoC. SantoroV. SpinaE. MuscatelloM.R.A. Vortioxetine on cognition in schizophrenia.J. Clin. Psychopharmacol.202040438138510.1097/JCP.0000000000001242 32639291
    [Google Scholar]
  31. JeongH.W. YoonK.H. LeeC.H. MoonY.S. KimD.H. Vortioxetine treatment for depression in alzheimer’s disease: A randomized, double-blind, placebo-controlled study.Clin. Psychopharmacol. Neurosci.202220231131910.9758/cpn.2022.20.2.311 35466102
    [Google Scholar]
  32. Nemutlu SamurD. AkçayG. YıldırımS. ÖzkanA. ÇekerT. DerinN. TanrıöverG. AslanM. AğarA. ÖzbeyG. Vortioxetine ameliorates motor and cognitive impairments in the rotenone-induced Parkinson’s disease via targeting TLR-2 mediated neuroinflammation.Neuropharmacology202220810897710.1016/j.neuropharm.2022.108977 35092748
    [Google Scholar]
  33. BennabiD. HaffenE. Van WaesV. Vortioxetine for cognitive enhancement in major depression: From animal models to clinical research.Front. Psychiatry20191077110.3389/fpsyt.2019.00771 31780961
    [Google Scholar]
  34. Santos GarcíaD. Alonso LosadaM.G. Cimas HernandoI. Cabo LópezI. Yáñez BañaR. Alonso RedondoR. Paz GonzálezJ.M. Cores BartoloméC. Feal PainceirasM.J. Íñiguez AlvaradoM.C. LabandeiraC. García DíazI. Vortioxetine improves depressive symptoms and cognition in parkinson’s disease patients with major depression: An open-label prospective study.Brain Sci.20221211146610.3390/brainsci12111466 36358393
    [Google Scholar]
  35. AlboniS. BenattiC. CollivaC. RadighieriG. BlomJ.M.C. BrunelloN. TasceddaF. Vortioxetine prevents lipopolysaccharide-induced memory impairment without inhibiting the initial inflammatory cascade.Front. Pharmacol.20211160397910.3389/fphar.2020.603979 33613281
    [Google Scholar]
  36. LiuG. ChenX. WangQ. YuanL. NEK7: A potential therapy target for NLRP3-related diseases.Biosci. Trends2020142748210.5582/bst.2020.01029 32295992
    [Google Scholar]
  37. LiY. AbdourahmanA. TammJ.A. PehrsonA.L. SánchezC. GulinelloM. Reversal of age-associated cognitive deficits is accompanied by increased plasticity-related gene expression after chronic antidepressant administration in middle-aged mice.Pharmacol. Biochem. Behav.2015135708210.1016/j.pbb.2015.05.013 26046533
    [Google Scholar]
  38. RigilloG. VilellaA. BenattiC. SchaefferL. BrunelloN. BlomJ.M.C. ZoliM. TasceddaF. LPS-induced histone H3 phospho(Ser10)-acetylation(Lys14) regulates neuronal and microglial neuroinflammatory response.Brain Behav. Immun.20187427729010.1016/j.bbi.2018.09.019 30244035
    [Google Scholar]
  39. ZakariaR. Wan YaacobW.M.H. OthmanZ. LongI. AhmadA.H. Al-RahbiB. Lipopolysaccharide-induced memory impairment in rats: A model of Alzheimer’s disease.Physiol. Res.201766455356510.33549/physiolres.933480 28406691
    [Google Scholar]
  40. CunninghamC. WilcocksonD.C. CampionS. LunnonK. PerryV.H. Central and systemic endotoxin challenges exacerbate the local inflammatory response and increase neuronal death during chronic neurodegeneration.J. Neurosci.200525409275928410.1523/JNEUROSCI.2614‑05.2005 16207887
    [Google Scholar]
  41. TarrA.J. McLindenK.A. KranjacD. KohmanR.A. AmaralW. BoehmG.W. The effects of age on lipopolysaccharide-induced cognitive deficits and interleukin-1β expression.Behav. Brain Res.2011217248148510.1016/j.bbr.2010.10.036 21055422
    [Google Scholar]
  42. ZhaoJ. BiW. XiaoS. LanX. ChengX. ZhangJ. LuD. WeiW. WangY. LiH. FuY. ZhuL. Neuroinflammation induced by lipopolysaccharide causes cognitive impairment in mice.Sci. Rep.201991579010.1038/s41598‑019‑42286‑8 30962497
    [Google Scholar]
  43. JacewiczM. CzapskiG.A. KatkowskaI. StrosznajderR.P. Systemic administration of lipopolysaccharide impairs glutathione redox state and object recognition in male mice.Folia Neuropathol.2009474321328
    [Google Scholar]
  44. ValeroJ. MastrellaG. NeivaI. SánchezS. MalvaJ.O. Long-term effects of an acute and systemic administration of LPS on adult neurogenesis and spatial memory.Front. Neurosci.201488310.3389/fnins.2014.00083 24795557
    [Google Scholar]
  45. FrenoisF. MoreauM. O’ ConnorJ. LawsonM. MiconC. LestageJ. KelleyK.W. DantzerR. CastanonN. Lipopolysaccharide induces delayed FosB/DeltaFosB immunostaining within the mouse extended amygdala, hippocampus and hypothalamus, that parallel the expression of depressive-like behavior.Psychoneuroendocrinology2007325516531
    [Google Scholar]
  46. O’ConnorJ.C. LawsonM.A. AndréC. MoreauM. LestageJ. CastanonN. KelleyK.W. DantzerR. Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice.Mol. Psychiatry200914551152210.1038/sj.mp.4002148 18195714
    [Google Scholar]
  47. ZhaoL.R. XingR.L. WangP.M. ZhangN.S. YinS.J. LiX.C. ZhangL. NLRP1 and NLRP3 inflammasomes mediate LPS/ATP induced pyroptosis in knee osteoarthritis.Mol. Med. Rep.20181745463546910.3892/mmr.2018.8520 29393464
    [Google Scholar]
  48. XieL. GuZ. LiuH. JiaB. WangY. CaoM. SongR. ZhangZ. BianY. The anti-depressive effects of hesperidin and the relative mechanisms based on the NLRP3 inflammatory signaling pathway.Front. Pharmacol.2020110125110.3389/fphar.2020.01251
    [Google Scholar]
  49. LiM.M. WangX. ChenX.D. YangH.L. XuH.S. ZhouP. GaoR. ZhangN. WangJ. JiangL. LiuN. Lysosomal dysfunction is associated with NLRP3 inflammasome activation in chronic unpredictable mild stress-induced depressive mice.Behav. Brain Res.202243211398710.1016/j.bbr.2022.113987 35780959
    [Google Scholar]
  50. SilvermanH.A. DanchoM. Regnier-GolanovA. NasimM. OchaniM. OlofssonP.S. AhmedM. MillerE.J. ChavanS.S. GolanovE. MetzC.N. TraceyK.J. PavlovV.A. Brain region-specific alterations in the gene expression of cytokines, immune cell markers and cholinergic system components during peripheral endotoxin-induced inflammation.Mol. Med.201420160161110.2119/molmed.2014.00147 25299421
    [Google Scholar]
  51. JungH. LeeH. KimD. CheongE. HyunY.M. YuJ.W. UmJ.W. Differential regional vulnerability of the brain to mild neuroinflammation induced by systemic LPS treatment in mice.J. Inflamm. Res.2022153053306310.2147/JIR.S362006 35645573
    [Google Scholar]
  52. de HaasA.H. BoddekeH.W.G.M. BiberK. Region‐specific expression of immunoregulatory proteins on microglia in the healthy CNS.Glia200856888889410.1002/glia.20663 18338796
    [Google Scholar]
  53. GrabertK. MichoelT. KaravolosM.H. ClohiseyS. BaillieJ.K. StevensM.P. FreemanT.C. SummersK.M. McCollB.W. Microglial brain region−dependent diversity and selective regional sensitivities to aging.Nat. Neurosci.201619350451610.1038/nn.4222 26780511
    [Google Scholar]
  54. De BiaseL.M. SchuebelK.E. FusfeldZ.H. JairK. HawesI.A. CimbroR. ZhangH.Y. LiuQ.R. ShenH. XiZ.X. GoldmanD. BonciA. Local cues establish and maintain region-specific phenotypes of basal ganglia microglia.Neuron2017952341356.e610.1016/j.neuron.2017.06.020 28689984
    [Google Scholar]
  55. AyataP. BadimonA. StrasburgerH.J. DuffM.K. MontgomeryS.E. LohY.H.E. EbertA. PimenovaA.A. RamirezB.R. ChanA.T. SullivanJ.M. PurushothamanI. ScarpaJ.R. GoateA.M. BusslingerM. ShenL. LosicB. SchaeferA. Epigenetic regulation of brain region-specific microglia clearance activity.Nat. Neurosci.20182181049106010.1038/s41593‑018‑0192‑3 30038282
    [Google Scholar]
  56. FurubeE. KawaiS. InagakiH. TakagiS. MiyataS. Brain region-dependent heterogeneity and dose-dependent difference in transient microglia population increase during lipopolysaccharide-induced inflammation.Sci. Rep.201881220310.1038/s41598‑018‑20643‑3 29396567
    [Google Scholar]
  57. MasudaT. SankowskiR. StaszewskiO. PrinzM. Microglia heterogeneity in the single-cell era.Cell Rep.20203051271128110.1016/j.celrep.2020.01.010 32023447
    [Google Scholar]
  58. BrandiE. Torres-GarciaL. SvanbergssonA. HaikalC. LiuD. LiW. LiJ.Y. Brain region-specific microglial and astrocytic activation in response to systemic lipopolysaccharides exposure.Front. Aging Neurosci.20221491098810.3389/fnagi.2022.910988 36092814
    [Google Scholar]
  59. StutzA. KolbeC.C. StahlR. HorvathG.L. FranklinB.S. van RayO. BrinkschulteR. GeyerM. MeissnerF. LatzE. NLRP3 inflammasome assembly is regulated by phosphorylation of the pyrin domain.J. Exp. Med.201721461725173610.1084/jem.20160933 28465465
    [Google Scholar]
  60. FranklinB.S. BossallerL. De NardoD. RatterJ.M. StutzA. EngelsG. BrenkerC. NordhoffM. MirandolaS.R. Al-AmoudiA. ManganM.S. ZimmerS. MonksB.G. FrickeM. SchmidtR.E. EspevikT. JonesB. JarnickiA.G. HansbroP.M. BustoP. Marshak-RothsteinA. HornemannS. AguzziA. KastenmüllerW. LatzE. The adaptor ASC has extracellular and ‘prionoid’ activities that propagate inflammation.Nat. Immunol.201415872773710.1038/ni.2913 24952505
    [Google Scholar]
  61. DickM.S. SborgiL. RühlS. HillerS. BrozP. ASC filament formation serves as a signal amplification mechanism for inflammasomes.Nat. Commun.2016711192910.1038/ncomms11929 27329339
    [Google Scholar]
  62. NagarA. RahmanT. HartonJ.A. The ASC speck and NLRP3 inflammasome function are spatially and temporally distinct.Front. Immunol.20211275248210.3389/fimmu.2021.752482
    [Google Scholar]
  63. LyuD. WangF. ZhangM. YangW. HuangH. HuangQ. WuC. QianN. WangM. ZhangH. ZhengS. ChenJ. FuY. ZhangC. LiZ. HongW. Ketamine induces rapid antidepressant effects via the autophagy-NLRP3 inflammasome pathway.Psychopharmacology2022239103201321210.1007/s00213‑022‑06201‑w 35925279
    [Google Scholar]
  64. LeeI. KesnerR.P. Time-dependent relationship between the dorsal hippocampus and the prefrontal cortex in spatial memory.J. Neurosci.20032341517152310.1523/JNEUROSCI.23‑04‑01517.2003
    [Google Scholar]
  65. YavasE. GonzalezS. FanselowM.S. Interactions between the hippocampus, prefrontal cortex, and amygdala support complex learning and memory.F1000 Res.2019F1000Rev-129210.12688/f1000research.19317.1
    [Google Scholar]
  66. JimenezJ.C. SuK. GoldbergA.R. LunaV.M. BianeJ.S. OrdekG. ZhouP. OngS.K. WrightM.A. ZweifelL. PaninskiL. HenR. KheirbekM.A. Anxiety cells in a hippocampal-hypothalamic circuit.Neuron2018973670683.e610.1016/j.neuron.2018.01.016 29397273
    [Google Scholar]
  67. MoserM-B. MoserE.I. Functional differentiation in the hippocampus.Hippocampus199886608619
    [Google Scholar]
  68. SanninoS. RussoF. TorrominoG. PendolinoV. CalabresiP. De LeonibusE. Role of the dorsal hippocampus in object memory load.Learn. Mem.201219521121810.1101/lm.025213.111 22523415
    [Google Scholar]
  69. Gálvez-MárquezD.K. Salgado-MénezM. Moreno-CastillaP. Rodríguez-DuránL. EscobarM.L. TecuapetlaF. Bermudez-RattoniF. Spatial contextual recognition memory updating is modulated by dopamine release in the dorsal hippocampus from the locus coeruleus.Proc. Natl. Acad. Sci.202211949e220825411910.1073/pnas.2208254119 36442129
    [Google Scholar]
  70. TrojanE. ChameraK. BryniarskaN. KotarskaK. LeśkiewiczM. RegulskaM. Basta-KaimA. Role of chronic administration of antidepressant drugs in the prenatal stress-evoked inflammatory response in the brain of adult offspring rats: Involvement of the NLRP3 inflammasome-related pathway.Mol. Neurobiol.20195685365538010.1007/s12035‑018‑1458‑1 30610610
    [Google Scholar]
  71. ZhaoN. LiC. DiB. XuL. Recent advances in the NEK7-licensed NLRP3 inflammasome activation: Mechanisms, role in diseases and related inhibitors.J. Autoimmun.202011310251510.1016/j.jaut.2020.102515 32703754
    [Google Scholar]
  72. SchmackeN.A. GaidtM.M. SzymanskaI. O’duillF. StaffordC.A. ChauhanD. FröhlichA.L. NaglD. PinciF. Schmid-BurgkJ.L. HornungV. Priming enables a NEK7-independent route of NLRP3 activation.bioRxiv201910.1101/799320
    [Google Scholar]
  73. LiangL. WangH. HuY. BianH. XiaoL. WangG. Oridonin relieves depressive‐like behaviors by inhibiting neuroinflammation and autophagy impairment in rats subjected to chronic unpredictable mild stress.Phytother. Res.20223683335335110.1002/ptr.7518 35686337
    [Google Scholar]
  74. FangZ.E. WangY. BianS. QinS. ZhaoH. WenJ. LiuT. RenL. LiQ. ShiW. ZhaoJ. YangH. PengR. WangQ. BaiZ. XuG. Helenine blocks NLRP3 activation by disrupting the NEK7-NLRP3 interaction and ameliorates inflammatory diseases.Phytomedicine202412215515910.1016/j.phymed.2023.155159 37931457
    [Google Scholar]
  75. RigilloG. CianiM. BenattiC. BlomJ.M.C. TasceddaF. PaniL. AlboniS. BrunelloN. Vortioxetine attenuates neuroinflammation by modulating the NOD-like receptor family pyrin domain containing 3 inflammasome activation in microglia: implications for cognitive function.Neurosci. Appl.2023210372810.1016/j.nsa.2023.103728
    [Google Scholar]
/content/journals/cn/10.2174/1570159X22666240705143649
Loading
/content/journals/cn/10.2174/1570159X22666240705143649
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test