Skip to content
2000
Volume 23, Issue 2
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Ghrelin is a gut peptide hormone associated with feeding behavior and energy homeostasis. Acylated ghrelin binds to the growth hormone secretagogue receptor 1a subtype (GHS-R1a) in the hippocampus, leading to GH release from the anterior pituitary. However, in recent years, ghrelin and its receptor have also been implicated in other processes, including the regulation of cardiomyocyte function, muscle trophism, and bone metabolism. Moreover, GHS-R1a is distributed throughout the brain and is expressed in brain areas that regulate the stress response and emotional behavior. Consistently, a growing body of evidence supports the role of ghrelin in regulating stress response and mood. Stress has consistently been shown to increase ghrelin levels, and despite some inconsistencies, both human and rodent studies suggested antidepressant effects of ghrelin. Nevertheless, the precise mechanism by which ghrelin influences stress response and mood remains largely unknown. Intriguingly, ghrelin and GHS-R1a were consistently reported to exert anti-inflammatory, antioxidant, and neurotrophic effects both and , although this has never been directly assessed in relation to psychopathology. In the present review we will discuss available literature linking ghrelin with the stress response and depressive-like behavior in animal models as well as evidence describing the interplay between ghrelin and neuroinflammation/oxidative stress. Although further studies are required to understand the mechanisms involved in the action of ghrelin on mood, we hypothesize that the anti-inflammatory and anti-oxidative properties of ghrelin may give a key contribution.

Loading

Article metrics loading...

/content/journals/cn/10.2174/1570159X22999240722095039
2024-07-22
2024-12-26
Loading full text...

Full text loading...

References

  1. JamesS.L. AbateD. AbateK.H. AbayS.M. AbbafatiC. AbbasiN. AbbastabarH. Abd-AllahF. AbdelaJ. AbdelalimA. AbdollahpourI. AbdulkaderR.S. AbebeZ. AberaS.F. AbilO.Z. AbrahaH.N. Abu-RaddadL.J. Abu-RmeilehN.M.E. AccrombessiM.M.K. AcharyaD. AcharyaP. AckermanI.N. AdamuA.A. AdebayoO.M. AdekanmbiV. AdetokunbohO.O. AdibM.G. AdsuarJ.C. AfanviK.A. AfaridehM. AfshinA. AgarwalG. AgesaK.M. AggarwalR. AghayanS.A. AgrawalS. AhmadiA. AhmadiM. AhmadiehH. AhmedM.B. AichourA.N. AichourI. AichourM.T.E. AkinyemijuT. AkseerN. Al-AlyZ. Al-EyadhyA. Al-MekhlafiH.M. Al-RaddadiR.M. AlahdabF. AlamK. AlamT. AlashiA. AlavianS.M. AleneK.A. AlijanzadehM. NavaeiA.R. AljunidS.M. AlkerwiA. AllaF. AllebeckP. AlouaniM.M.L. AltirkawiK. GuzmanA.N. AmareA.T. AmindeL.N. AmmarW. AmoakoY.A. AnberN.H. AndreiC.L. AndroudiS. AnimutM.D. AnjomshoaM. AnshaM.G. AntonioC.A.T. AnwariP. ArablooJ. ArauzA. AremuO. ArianiF. ArmoonB. ÄrnlövJ. AroraA. ArtamanA. AryalK.K. AsayeshH. AsgharR.J. AtaroZ. AtreS.R. AusloosM. Avila-BurgosL. AvokpahoE.F.G.A. AwasthiA. QuintanillaA.B.P. AyerR. AzzopardiP.S. BabazadehA. BadaliH. BadawiA. BaliA.G. BallesterosK.E. BallewS.H. BanachM. BanoubJ.A.M. BanstolaA. BaracA. BarbozaM.A. Barker-ColloS.L. BärnighausenT.W. BarreroL.H. BauneB.T. HejaziB.S. BediN. BeghiE. BehzadifarM. BehzadifarM. BéjotY. BelachewA.B. BelayY.A. BellM.L. BelloA.K. BensenorI.M. BernabeE. BernsteinR.S. BeuranM. BeyranvandT. BhalaN. BhattaraiS. BhaumikS. BhuttaZ.A. BiadgoB. BijaniA. BikbovB. BilanoV. BililignN. Bin SayeedM.S. BisanzioD. BlackerB.F. BlythF.M. Bou-OrmI.R. BoufousS. BourneR. BradyO.J. BraininM. BrantL.C. BrazinovaA. BreitbordeN.J.K. BrennerH. BriantP.S. BriggsA.M. BrikoA.N. BrittonG. BrughaT. BuchbinderR. BusseR. ButtZ.A. HurtadoC.L. CanoJ. CárdenasR. CarreroJ.J. CarterA. CarvalhoF. OrjuelaC.C.A. RivasC.J. CastroF. LópezC.F. CercyK.M. CerinE. ChaiahY. ChangA.R. ChangH-Y. ChangJ-C. CharlsonF.J. ChattopadhyayA. ChattuV.K. ChaturvediP. ChiangP.P-C. ChinK.L. ChitheerA. ChoiJ-Y.J. ChowdhuryR. ChristensenH. ChristopherD.J. CicuttiniF.M. CiobanuL.G. CirilloM. ClaroR.M. Collado-MateoD. CooperC. CoreshJ. CortesiP.A. CortinovisM. CostaM. CousinE. CriquiM.H. CromwellE.A. CrossM. CrumpJ.A. DadiA.F. DandonaL. DandonaR. DarganP.I. DaryaniA. Das GuptaR. Das NevesJ. DasaT.T. DaveyG. DavisA.C. DavitoiuD.V. De CourtenB. De La HozF.P. De LeoD. De NeveJ-W. DegefaM.G. DegenhardtL. DeiparineS. DellavalleR.P. DemozG.T. DeribeK. DervenisN. Des JarlaisD.C. DessieG.A. DeyS. DharmaratneS.D. DinberuM.T. DiracM.A. DjalaliniaS. DoanL. DokovaK. DokuD.T. DorseyE.R. DoyleK.E. DriscollT.R. DubeyM. DubljaninE. DukenE.E. DuncanB.B. DuraesA.R. EbrahimiH. EbrahimpourS. EchkoM.M. EdvardssonD. EffiongA. EhrlichJ.R. El BcheraouiC. ZakiE.S.M. El-KhatibZ. ElkoutH. ElyazarI.R.F. EnayatiA. EndriesA.Y. ErB. ErskineH.E. EshratiB. EskandariehS. EsteghamatiA. EsteghamatiS. FakhimH. Fallah OmraniV. FaramarziM. FareedM. FarhadiF. FaridT.A. FarinhaC.S.E. FarioliA. FaroA. FarvidM.S. FarzadfarF. FeiginV.L. FentahunN. FereshtehnejadS-M. FernandesE. FernandesJ.C. FerrariA.J. FeyissaG.T. FilipI. FischerF. FitzmauriceC. FoigtN.A. ForemanK.J. FoxJ. FrankT.D. FukumotoT. FullmanN. FürstT. FurtadoJ.M. FutranN.D. GallS. GanjiM. GankpeF.G. BasteiroG.A.L. GardnerW.M. GebreA.K. GebremedhinA.T. GebremichaelT.G. GelanoT.F. GeleijnseJ.M. MalerasG.R. GeramoY.C.D. GethingP.W. GezaeK.E. GhadiriK. FalavarjaniG.K. KasmanG.M. GhimireM. GhoshR. GhoshalA.G. GiampaoliS. GillP.S. GillT.K. GinawiI.A. GiussaniG. GnedovskayaE.V. GoldbergE.M. GoliS. DantésG.H. GonaP.N. GopalaniS.V. GormanT.M. GoulartA.C. GoulartB.N.G. GradaA. GramsM.E. GrossoG. GugnaniH.C. GuoY. GuptaP.C. GuptaR. GuptaR. GuptaT. GyawaliB. HaagsmaJ.A. HachinskiV. NejadH.N. BidgoliG.H. HagosT.B. HailuG.B. MirzaianH.A. MirzaianH.A. HamadehR.R. HamidiS. HandalA.J. HankeyG.J. HaoY. HarbH.L. HarikrishnanS. HaroJ.M. HasanM. HassankhaniH. HassenH.Y. HavmoellerR. HawleyC.N. HayR.J. HayS.I. OmranH.A. HeibatiB. HendrieD. HenokA. HerteliuC. HeydarpourS. HibstuD.T. HoangH.T. HoekH.W. HoffmanH.J. HoleM.K. Homaie RadE. HoogarP. HosgoodH.D. HosseiniS.M. HosseinzadehM. HostiucM. HostiucS. HotezP.J. HoyD.G. HsairiM. HtetA.S. HuG. HuangJ.J. HuynhC.K. IburgK.M. IkedaC.T. IleanuB. IlesanmiO.S. IqbalU. IrvaniS.S.N. IrvineC.M.S. IslamS.M.S. IslamiF. JacobsenK.H. JahangiryL. JahanmehrN. JainS.K. JakovljevicM. JavanbakhtM. JayatillekeA.U. JeemonP. JhaR.P. JhaV. JiJ.S. JohnsonC.O. JonasJ.B. JozwiakJ.J. JungariS.B. JürissonM. KabirZ. KadelR. KahsayA. KalaniR. KanchanT. KaramiM. Karami MatinB. KarchA. KaremaC. KarimiN. KarimiS.M. KasaeianA. KassaD.H. KassaG.M. KassaT.D. KassebaumN.J. KatikireddiS.V. KawakamiN. KaryaniA.K. KeighobadiM.M. KeiyoroP.N. KemmerL. KempG.R. KengneA.P. KerenA. KhaderY.S. KhafaeiB. KhafaieM.A. KhajaviA. KhalilI.A. KhanE.A. KhanM.S. KhanM.A. KhangY-H. KhazaeiM. KhojaA.T. KhosraviA. KhosraviM.H. KiadaliriA.A. KiirithioD.N. KimC-I. KimD. KimP. KimY-E. KimY.J. KimokotiR.W. KinfuY. KisaA. SkarbekK.K. KivimäkiM. KnudsenA.K.S. KocarnikJ.M. KochharS. KokuboY. KololaT. KopecJ.A. KosenS. KotsakisG.A. KoulP.A. KoyanagiA. KravchenkoM.A. KrishanK. KrohnK.J. Kuate DefoB. Kucuk BicerB. KumarG.A. KumarM. KyuH.H. LadD.P. LadS.D. LafranconiA. LallooR. LallukkaT. LamiF.H. LansinghV.C. LatifiA. LauK.M-M. LazarusJ.V. LeasherJ.L. LedesmaJ.R. LeeP.H. LeighJ. LeungJ. LeviM. LewyckaS. LiS. LiY. LiaoY. LibenM.L. LimL-L. LimS.S. LiuS. LodhaR. LookerK.J. LopezA.D. LorkowskiS. LotufoP.A. LowN. LozanoR. LucasT.C.D. LucchesiL.R. LuneviciusR. LyonsR.A. MaS. MacarayanE.R.K. MackayM.T. MadottoF. RazekM.A.E.H. RazekM.A.E.M. MaghavaniD.P. MahotraN.B. MaiH.T. MajdanM. MajdzadehR. MajeedA. MalekzadehR. MaltaD.C. MamunA.A. MandaA-L. ManguerraH. ManhertzT. MansourniaM.A. MantovaniL.G. MapomaC.C. MaravillaJ.C. MarcenesW. MarksA. Martins-MeloF.R. MartopulloI. MärzW. MarzanM.B. ThompsonM.T.P. MassenburgB.B. MathurM.R. MatsushitaK. MaulikP.K. MazidiM. McAlindenC. McGrathJ.J. McKeeM. MehndirattaM.M. MehrotraR. MehtaK.M. MehtaV. RodriguezM.F. MekonenT. MeleseA. MelkuM. MeltzerM. MemiahP.T.N. MemishZ.A. MendozaW. MengistuD.T. MengistuG. MensahG.A. MeretaS.T. MeretojaA. MeretojaT.J. MestrovicT. MezerjiN.M.G. MiazgowskiB. MiazgowskiT. MillearA.I. MillerT.R. MiltzB. MiniG.K. MirarefinM. MirrakhimovE.M. MisganawA.T. MitchellP.B. MitikuH. MoazenB. MohajerB. MohammadK.A. MohammadifardN. AfrouziM.M. MohammedM.A. MohammedS. MohebiF. MoitraM. MokdadA.H. MolokhiaM. MonastaL. MoodleyY. MoosazadehM. MoradiG. Moradi-LakehM. MoradinazarM. MoragaP. MorawskaL. VelásquezM.I. Da-CostaM.J. MorrisonS.D. MoschosM.M. VenningM.W.C. MousaviS.M. MrutsK.B. MucheA.A. MuchieK.F. MuellerU.O. MuhammedO.S. MukhopadhyayS. MullerK. MumfordJ.E. MurhekarM. MusaJ. MusaK.I. MustafaG. NabhanA.F. NagataC. NaghaviM. NaheedA. NahvijouA. NaikG. NaikN. NajafiF. NaldiL. NamH.S. NangiaV. NansseuJ.R. NascimentoB.R. NatarajanG. NeamatiN. NegoiI. NegoiR.I. NeupaneS. NewtonC.R.J. NgunjiriJ.W. NguyenA.Q. NguyenH.T. NguyenH.L.T. NguyenH.T. NguyenL.H. NguyenM. NguyenN.B. NguyenS.H. NicholsE. NingrumD.N.A. NixonM.R. NolutshunguN. NomuraS. NorheimO.F. NorooziM. NorrvingB. NoubiapJ.J. NouriH.R. ShiadehN.M. NowrooziM.R. NsoesieE.O. NyasuluP.S. OdellC.M. Ofori-AsensoR. OgboF.A. OhI-H. OladimejiO. OlagunjuA.T. OlagunjuT.O. OlivaresP.R. OlsenH.E. OlusanyaB.O. OngK.L. OngS.K. OrenE. OrtizA. OtaE. OtstavnovS.S. ØverlandS. OwolabiM.O. P AM. PacellaR. PakpourA.H. PanaA. Panda-JonasS. ParisiA. ParkE-K. ParryC.D.H. PatelS. PatiS. PatilS.T. PatleA. PattonG.C. PaturiV.R. PaulsonK.R. PearceN. PereiraD.M. PericoN. PesudovsK. PhamH.Q. PhillipsM.R. PigottD.M. PillayJ.D. PiradovM.A. PirsahebM. PishgarF. Plana-RipollO. PlassD. PolinderS. PopovaS. PostmaM.J. PourshamsA. PoustchiH. PrabhakaranD. PrakashS. PrakashV. PurcellC.A. PurwarM.B. QorbaniM. QuistbergD.A. RadfarA. RafayA. RafieiA. RahimF. RahimiK. Rahimi-MovagharA. Rahimi-MovagharV. RahmanM. RahmanM.H. RahmanM.A. RahmanS.U. RaiR.K. RajatiF. RamU. RanjanP. RantaA. RaoP.C. RawafD.L. RawafS. ReddyK.S. ReinerR.C. ReinigN. ReitsmaM.B. RemuzziG. RenzahoA.M.N. ResnikoffS. RezaeiS. RezaiM.S. RibeiroA.L.P. RobertsN.L.S. RobinsonS.R. RoeverL. RonfaniL. RoshandelG. RostamiA. RothG.A. RoyA. RubagottiE. SachdevP.S. SadatN. SaddikB. SadeghiE. MoghaddamS. SafariH. SafariY. Safari-FaramaniR. SafdarianM. SafiS. SafiriS. SagarR. SahebkarA. SahraianM.A. SajadiH.S. SalamN. SalamaJ.S. SalamatiP. SaleemK. SaleemZ. SalimiY. SalomonJ.A. SalviS.S. SalzI. SamyA.M. SanabriaJ. SangY. SantomauroD.F. SantosI.S. SantosJ.V. MilicevicS.M.M. Sao JoseB.P. SardanaM. SarkerA.R. SarrafzadeganN. SartoriusB. SarviS. SathianB. SatpathyM. SawantA.R. SawhneyM. SaxenaS. SaylanM. SchaeffnerE. SchmidtM.I. SchneiderI.J.C. SchöttkerB. SchwebelD.C. SchwendickeF. ScottJ.G. SekerijaM. SepanlouS.G. Serván-MoriE. SeyedmousaviS. ShabaninejadH. ShafieesabetA. ShahbaziM. ShaheenA.A. ShaikhM.A. Shams-BeyranvandM. ShamsiM. ShamsizadehM. SharafiH. SharafiK. SharifM. Sharif-AlhoseiniM. SharmaM. SharmaR. SheJ. SheikhA. ShiP. ShibuyaK. ShigematsuM. ShiriR. ShirkoohiR. ShishaniK. ShiueI. ShokranehF. ShomanH. ShrimeM.G. SiS. SiabaniS. SiddiqiT.J. SigfusdottirI.D. SigurvinsdottirR. SilvaJ.P. SilveiraD.G.A. SingamN.S.V. SinghJ.A. SinghN.P. SinghV. SinhaD.N. SkiadaresiE. SlepakE.L.N. SliwaK. SmithD.L. SmithM. Soares FilhoA.M. SobaihB.H. SobhaniS. SobngwiE. SonejiS.S. SoofiM. SoosaraeiM. SorensenR.J.D. SorianoJ.B. SoyiriI.N. SposatoL.A. SreeramareddyC.T. SrinivasanV. StanawayJ.D. SteinD.J. SteinerC. SteinerT.J. StokesM.A. StovnerL.J. SubartM.L. SudaryantoA. SufiyanM.B. SunguyaB.F. SurP.J. SutradharI. SykesB.L. SylteD.O. Tabarés-SeisdedosR. TadakamadlaS.K. TadesseB.T. TandonN. TassewS.G. TavakkoliM. TaveiraN. TaylorH.R. Tehrani-BanihashemiA. TekalignT.G. TekelemedhinS.W. TekleM.G. TemesgenH. TemsahM-H. TemsahO. TerkawiA.S. TeweldemedhinM. ThankappanK.R. ThomasN. TilahunB. ToQ.G. TonelliM. Topor-MadryR. TopouzisF. TorreA.E. Tortajada-GirbésM. TouvierM. Tovani-PaloneM.R. TowbinJ.A. TranB.X. TranK.B. TroegerC.E. TruelsenT.C. TsilimbarisM.K. TsoiD. Tudor CarL. TuzcuE.M. UkwajaK.N. UllahI. UndurragaE.A. UnutzerJ. UpdikeR.L. UsmanM.S. UthmanO.A. VaduganathanM. VaeziA. ValdezP.R. VarugheseS. VasankariT.J. VenketasubramanianN. VillafainaS. ViolanteF.S. VladimirovS.K. VlassovV. VollsetS.E. VosoughiK. VujcicI.S. WagnewF.S. WaheedY. WallerS.G. WangY. WangY-P. WeiderpassE. WeintraubR.G. WeissD.J. WeldegebrealF. WeldegwergsK.G. WerdeckerA. WestT.E. WhitefordH.A. WideckaJ. WijeratneT. WilnerL.B. WilsonS. WinklerA.S. WiyehA.B. WiysongeC.S. WolfeC.D.A. WoolfA.D. WuS. WuY-C. WyperG.M.A. XavierD. XuG. YadgirS. YadollahpourA. Yahyazadeh JabbariS.H. YamadaT. YanL.L. YanoY. YaseriM. YasinY.J. YeshanehA. YimerE.M. YipP. YismaE. YonemotoN. YoonS-J. YotebiengM. YounisM.Z. YousefifardM. YuC. ZadnikV. ZaidiZ. ZamanS.B. ZamaniM. ZareZ. ZelekeA.J. ZenebeZ.M. ZhangK. ZhaoZ. ZhouM. ZodpeyS. ZuckerI. VosT. MurrayC.J.L. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017.Lancet2018392101591789185810.1016/S0140‑6736(18)32279‑730496104
    [Google Scholar]
  2. McIntyreR.S. FilteauM.J. MartinL. PatryS. CarvalhoA. ChaD.S. BarakatM. MiguelezM. Treatment-resistant depression: Definitions, review of the evidence, and algorithmic approach.J. Affect. Disord.20141561710.1016/j.jad.2013.10.04324314926
    [Google Scholar]
  3. KadriuB. MusazziL. HenterI.D. GravesM. PopoliM. ZarateC.A. Jr Glutamatergic neurotransmission: Pathway to developing novel rapid-acting antidepressant treatments.Int. J. Neuropsychopharmacol.201922211913510.1093/ijnp/pyy09430445512
    [Google Scholar]
  4. WojtasA. The possible place for psychedelics in pharmacotherapy of mental disorders.Pharmacol. Rep.20237561313132510.1007/s43440‑023‑00550‑937934320
    [Google Scholar]
  5. LachG. SchellekensH. DinanT.G. CryanJ.F. Anxiety, depression, and the microbiome: A role for gut peptides.Neurotherapeutics2018151365910.1007/s13311‑017‑0585‑029134359
    [Google Scholar]
  6. LachmansinghD.A. LavelleA. CryanJ.F. ClarkeG. Microbiota-gut-brain axis and antidepressant treatment.Curr. Top. Behav. Neurosci.20246617521610.1007/7854_2023_449
    [Google Scholar]
  7. BhattS. KanoujiaJ. LakshmiS. PatilC. GuptaG. ChellappanD.K. DuaK. Role of brain-gut-microbiota axis in depression: Emerging therapeutic avenues.CNS Neurol. Disord. Drug Targets202322227628810.2174/187152732166622032914080435352640
    [Google Scholar]
  8. YanagiS. SatoT. KangawaK. NakazatoM. The homeostatic force of ghrelin.Cell Metab.201827478680410.1016/j.cmet.2018.02.00829576534
    [Google Scholar]
  9. SpencerS.J. EmmerzaalT.L. KoziczT. AndrewsZ.B. Ghrelin’s role in the hypothalamic-pituitary-adrenal axis stress response: Implications for mood disorders.Biol. Psychiatry2015781192710.1016/j.biopsych.2014.10.02125534754
    [Google Scholar]
  10. FritzE.M. SingewaldN. De BundelD. The good, the bad and the unknown aspects of ghrelin in stress coping and stress-related psychiatric disorders.Front. Synaptic Neurosci.20201259448410.3389/fnsyn.2020.59448433192444
    [Google Scholar]
  11. StoneL.A. HarmatzE.S. GoosensK.A. Ghrelin as a stress hormone: Implications for psychiatric illness.Biol. Psychiatry202088753154010.1016/j.biopsych.2020.05.01332912426
    [Google Scholar]
  12. WangH. DouS. ZhuJ. ShaoZ. WangC. ChengB. Regulatory effects of ghrelin on endoplasmic reticulum stress, oxidative stress, and autophagy: Therapeutic potential.Neuropeptides20218510211210.1016/j.npep.2020.10211233333485
    [Google Scholar]
  13. GrayS.M. PageL.C. TongJ. Ghrelin regulation of glucose metabolism.J. Neuroendocrinol.2019317e1270510.1111/jne.1270530849212
    [Google Scholar]
  14. PradhanG. SamsonS.L. SunY. Ghrelin.Curr. Opin. Clin. Nutr. Metab. Care201316661962410.1097/MCO.0b013e328365b9be24100676
    [Google Scholar]
  15. SatoT. NakamuraY. ShiimuraY. OhgusuH. KangawaK. KojimaM. Structure, regulation and function of ghrelin.J. Biochem.2012151211912810.1093/jb/mvr13422041973
    [Google Scholar]
  16. DelhantyP.J.D. NeggersS.J. van der LelyA.J. Mechanisms in endocrinology: Ghrelin: The differences between acyl- and des-acyl ghrelin.Eur. J. Endocrinol.2012167560160810.1530/EJE‑12‑045622898499
    [Google Scholar]
  17. ChowK.B.S. SunJ. ChuM.K. CheungT.W. ChengC.H.K. WiseH. The truncated ghrelin receptor polypeptide (GHS-R1b) is localized in the endoplasmic reticulum where it forms heterodimers with ghrelin receptors (GHS-R1a) to attenuate their cell surface expression.Mol. Cell. Endocrinol.2012348124725410.1016/j.mce.2011.08.03421903149
    [Google Scholar]
  18. CallaghanB. FurnessJ.B. Novel and conventional receptors for ghrelin, desacyl-ghrelin, and pharmacologically related compounds.Pharmacol. Rev.2014664984100110.1124/pr.113.00843325107984
    [Google Scholar]
  19. BaliA. JaggiS.A. An integrative review on role and mechanisms of ghrelin in stress, anxiety and depression.Curr. Drug Targets201617549550710.2174/138945011666615051809565025981609
    [Google Scholar]
  20. HanssonC. ShiraziR.H. NäslundJ. VogelH. NeuberC. HolmG. AnckarsäterH. DicksonS.L. ErikssonE. SkibickaK.P. Ghrelin influences novelty seeking behavior in rodents and men.PLoS One2012712e5040910.1371/journal.pone.005040923227170
    [Google Scholar]
  21. StasiC. MilaniS. Functions of ghrelin in brain, gut and liver.CNS Neurol. Disord. Drug Targets201615895696310.2174/187152731566616070920352527396373
    [Google Scholar]
  22. KurtE. GulerO. SerteserM. CanselN. OzbulutO. AltınbaşK. AlataşG. SavaşH. GeciciO. The effects of electroconvulsive therapy on ghrelin, leptin and cholesterol levels in patients with mood disorders.Neurosci. Lett.20074261495310.1016/j.neulet.2007.08.01817884293
    [Google Scholar]
  23. AlgulS. OzcelikO. Evaluating the levels of nesfatin-1 and ghrelin hormones in patients with moderate and severe major depressive disorders.Psychiatry Investig.201815221421810.30773/pi.2017.05.2429475222
    [Google Scholar]
  24. OzsoyS. BesirliA. AbdulrezzakU. BasturkM. Serum ghrelin and leptin levels in patients with depression and the effects of treatment.Psychiatry Investig.201411216717210.4306/pi.2014.11.2.16724843372
    [Google Scholar]
  25. IshitobiY. KohnoK. KanehisaM. InoueA. ImanagaJ. MaruyamaY. NinomiyaT. HigumaH. OkamotoS. TanakaY. TsuruJ. HanadaH. IsogawaK. AkiyoshiJ. Serum ghrelin levels and the effects of antidepressants in major depressive disorder and panic disorder.Neuropsychobiology201266318519210.1159/00033994822948519
    [Google Scholar]
  26. OzmenS. ŞekerA. DemirciE. Ghrelin and leptin levels in children with anxiety disorders.J. Pediatr. Endocrinol. Metab.201932101043104710.1515/jpem‑2019‑022931472067
    [Google Scholar]
  27. SchanzeA. ReulbachU. ScheuchenzuberM. GröschlM. KornhuberJ. KrausT. Ghrelin and eating disturbances in psychiatric disorders.Neuropsychobiology200857312613010.1159/00013891518552514
    [Google Scholar]
  28. Giménez-PalopO. CoronasR. CoboJ. GallartL. BarberoJ.D. ParraI. FustéG. VendrellJ. BuenoM. González-ClementeJ.M. CaixàsA. Fasting plasma peptide YY concentrations are increased in patients with major depression who associate weight loss.J. Endocrinol. Invest.201235764564822183081
    [Google Scholar]
  29. MatsuoK. NakanoM. NakashimaM. WatanukiT. EgashiraK. MatsubaraT. WatanabeY. Neural correlates of plasma acylated ghrelin level in individuals with major depressive disorder.Brain Res.2012147318519210.1016/j.brainres.2012.07.02722819931
    [Google Scholar]
  30. BarimA.O. AydinS. ColakR. DagE. DenizO. Sahinİ. Ghrelin, paraoxonase and arylesterase levels in depressive patients before and after citalopram treatment.Clin. Biochem.20094210-111076108110.1016/j.clinbiochem.2009.02.02019272368
    [Google Scholar]
  31. RickenR. BoppS. SchlattmannP. HimmerichH. BschorT. RichterC. ElstnerS. StammT.J. Schulz-RateiB. LingeslebenA. ReischiesF.M. SterzerP. BorgwardtS. BauerM. HeinzA. HellwegR. LangU.E. AdliM. Ghrelin serum concentrations are associated with treatment response during lithium augmentation of antidepressants.Int. J. Neuropsychopharmacol.201720969269710.1093/ijnp/pyw08228911006
    [Google Scholar]
  32. SchmidD.A. HeldK. IsingM. UhrM. WeikelJ.C. SteigerA. Ghrelin stimulates appetite, imagination of food, GH, ACTH, and cortisol, but does not affect leptin in normal controls.Neuropsychopharmacology20053061187119210.1038/sj.npp.130067015688086
    [Google Scholar]
  33. LambertE. LambertG. Ika-SariC. DawoodT. LeeK. ChopraR. StraznickyN. EikelisN. DrewS. TilbrookA. DixonJ. EslerM. SchlaichM.P. Ghrelin modulates sympathetic nervous system activity and stress response in lean and overweight men.Hypertension2011581435010.1161/HYPERTENSIONAHA.111.17102521502567
    [Google Scholar]
  34. KlugeM. SchüsslerP. DreslerM. SchmidtD. YassouridisA. UhrM. SteigerA. Effects of ghrelin on psychopathology, sleep and secretion of cortisol and growth hormone in patients with major depression.J. Psychiatr. Res.201145342142610.1016/j.jpsychires.2010.09.00220888580
    [Google Scholar]
  35. NakashimaK. AkiyoshiJ. HatanoK. HanadaH. TanakaY. TsuruJ. MatsushitaH. KodamaK. IsogawaK. Ghrelin gene polymorphism is associated with depression, but not panic disorder.Psychiatr. Genet.200818525710.1097/YPG.0b013e328306c97918797403
    [Google Scholar]
  36. SuM. CaoT. FengY. GuoQ.W. FanM. FangD.Z. Longitudinal changes of associations between the preproghrelin Leu72Met polymorphism with depression in Chinese Han adolescents after the Wenchuan earthquake.Psychiatr. Genet.201727516116810.1097/YPG.000000000000018028570394
    [Google Scholar]
  37. LiG. ZhangK. WangL. CaoC. FangR. LiuP. LuoS. LiberzonI. The preliminary investigation of orexigenic hormone gene polymorphisms on posttraumatic stress disorder symptoms.Psychoneuroendocrinology201910013113610.1016/j.psyneuen.2018.09.04230326460
    [Google Scholar]
  38. AsakawaA. InuiA. KagaT. YuzurihaH. NagataT. FujimiyaM. KatsuuraG. MakinoS. FujinoM.A. KasugaM. A role of ghrelin in neuroendocrine and behavioral responses to stress in mice.Neuroendocrinology200174314314710.1159/00005468011528215
    [Google Scholar]
  39. PattersonZ.R. DucharmeR. AnismanH. AbizaidA. Altered metabolic and neurochemical responses to chronic unpredictable stressors in ghrelin receptor‐deficient mice.Eur. J. Neurosci.201032463263910.1111/j.1460‑9568.2010.07310.x20597975
    [Google Scholar]
  40. HanQ.Q. HuangH.J. WangY.L. YangL. PilotA. ZhuX.C. YuR. WangJ. ChenX.R. LiuQ. LiB. WuG.C. YuJ. Ghrelin exhibited antidepressant and anxiolytic effect via the p38-MAPK signaling pathway in hippocampus.Prog. Neuropsychopharmacol. Biol. Psychiatry201993112010.1016/j.pnpbp.2019.02.01330853341
    [Google Scholar]
  41. SchmidtM.V. LevineS. AlamS. HarbichD. SterlemannV. GaneaK. De KloetE.R. HolsboerF. MüllerM.B. Metabolic signals modulate hypothalamic-pituitary-adrenal axis activation during maternal separation of the neonatal mouse.J. Neuroendocrinol.2006181186587410.1111/j.1365‑2826.2006.01482.x17026536
    [Google Scholar]
  42. NahataM. SaegusaY. SadakaneC. YamadaC. NakagawaK. OkuboN. OhnishiS. HattoriT. SakamotoN. TakedaH. Administration of exogenous acylated ghrelin or rikkunshito, an endogenous ghrelin enhancer, improves the decrease in postprandial gastric motility in an acute restraint stress mouse model.Neurogastroenterol. Motil.201426682183110.1111/nmo.1233624684160
    [Google Scholar]
  43. KristensssonE. SundqvistM. AstinM. KjerlingM. MattssonH. de la CourD.C. HåkansonR. LindströmE. Acute psychological stress raises plasma ghrelin in the rat.Regul. Pept.20061342-311411710.1016/j.regpep.2006.02.00316540188
    [Google Scholar]
  44. ZhengJ. DobnerA. BabygirijaR. LudwigK. TakahashiT. Effects of repeated restraint stress on gastric motility in rats.Am. J. Physiol. Regul. Integr. Comp. Physiol.20092965R1358R136510.1152/ajpregu.90928.200819261914
    [Google Scholar]
  45. DulabiA.N. ShakerinZ. MehranfardN. GhasemiM. Vitamin C protects against chronic social isolation stress-induced weight gain and depressive-like behavior in adult male rats.Endocr. Regul.202054426627410.2478/enr‑2020‑003033885252
    [Google Scholar]
  46. NascimentoC.S. Opacka-JuffryJ. CostabileA. BoyleC.N. HerdeA.M. AmetameyS.M. SigristH. PryceC.R. PattersonM. Chronic social stress in mice alters energy status including higher glucose need but lower brain utilization.Psychoneuroendocrinology202011910474710.1016/j.psyneuen.2020.10474732563937
    [Google Scholar]
  47. ZhouX. WangJ. LuY. ChenC. HuY. LiuP. DongX. Anti-depressive effects of Kai-Xin-San on lipid metabolism in depressed patients and CUMS rats using metabolomic analysis.J. Ethnopharmacol.202025211261510.1016/j.jep.2020.11261531991203
    [Google Scholar]
  48. XingJ.W. TianX.Y. ChenM.M. PengX.H. GaoP. Expression of ghrelin or growth hormone secretagogue receptor in the brain of postpartum stress mice.Neuroreport202132867868510.1097/WNR.000000000000163333913930
    [Google Scholar]
  49. LutterM. SakataI. LawrenceO.S. RovinskyS.A. AndersonJ.G. JungS. BirnbaumS. YanagisawaM. ElmquistJ.K. NestlerE.J. ZigmanJ.M. The orexigenic hormone ghrelin defends against depressive symptoms of chronic stress.Nat. Neurosci.200811775275310.1038/nn.213918552842
    [Google Scholar]
  50. LiuW. WangH. WangY. LiH. JiL. Metabolic factors-triggered inflammatory response drives antidepressant effects of exercise in CUMS rats.Psychiatry Res.2015228325726410.1016/j.psychres.2015.05.10226144579
    [Google Scholar]
  51. RadahmadiM. IzadiM.S. GhasemiM. RayatpourA. Effects of isolation and social subchronic stresses on food intake and levels of leptin, ghrelin, and glucose in male rats.Adv. Biomed. Res.20187111810.4103/abr.abr_28_1830211131
    [Google Scholar]
  52. ElbassuoniE.A. Gender differences in ghrelin response to chronic immobilization stress in rats: Possible role of estrogen.Gen. Physiol. Biophys.201433111112010.4149/gpb_201306123940093
    [Google Scholar]
  53. YamadaC. SaegusaY. NahataM. SadakaneC. HattoriT. TakedaH. Influence of aging and gender differences on feeding behavior and ghrelin-related factors during social isolation in mice.PLoS One20151010e014009410.1371/journal.pone.014009426448274
    [Google Scholar]
  54. MeyerR.M. Burgos-RoblesA. LiuE. CorreiaS.S. GoosensK.A. A ghrelin–growth hormone axis drives stress-induced vulnerability to enhanced fear.Mol. Psychiatry201419121284129410.1038/mp.2013.13524126924
    [Google Scholar]
  55. TangM. JiangP. LiH. LiuY. CaiH. DangR. ZhuW. CaoL. Fish oil supplementation alleviates depressant-like behaviors and modulates lipid profiles in rats exposed to chronic unpredictable mild stress.BMC Complement. Altern. Med.201515123910.1186/s12906‑015‑0778‑126183327
    [Google Scholar]
  56. StengelA. GoebelM. WangL. ReeveJ.R.Jr TachéY. LambrechtN.W.G. Lipopolysaccharide differentially decreases plasma acyl and desacyl ghrelin levels in rats: Potential role of the circulating ghrelin-acylating enzyme GOAT.Peptides20103191689169610.1016/j.peptides.2010.06.01520599577
    [Google Scholar]
  57. SaegusaY. TakedaH. MutoS. NakagawaK. OhnishiS. SadakaneC. NahataM. HattoriT. AsakaM. Decreased plasma ghrelin contributes to anorexia following novelty stress.Am. J. Physiol. Endocrinol. Metab.20113014E685E69610.1152/ajpendo.00121.201121712530
    [Google Scholar]
  58. RazzoliM. SanghezV. BartolomucciA. Chronic subordination stress induces hyperphagia and disrupts eating behavior in mice modeling binge-eating-like disorder.Front. Nutr.2015130110.3389/fnut.2014.0003025621284
    [Google Scholar]
  59. MurgatroydC.A. PeñaC.J. PoddaG. NestlerE.J. NephewB.C. Early life social stress induced changes in depression and anxiety associated neural pathways which are correlated with impaired maternal care.Neuropeptides20155210311110.1016/j.npep.2015.05.00226049556
    [Google Scholar]
  60. BerryA. MazzelliM. MusilloC. RivaM.A. CattaneoA. CirulliF. High‐fat diet during adulthood interacts with prenatal stress, affecting both brain inflammatory and neuroendocrine markers in male rats.Eur. J. Neurosci.2022559-102326234010.1111/ejn.1518133711185
    [Google Scholar]
  61. HuangH.J. ZhuX.C. HanQ.Q. WangY.L. YueN. WangJ. YuR. LiB. WuG.C. LiuQ. YuJ. Ghrelin alleviates anxiety- and depression-like behaviors induced by chronic unpredictable mild stress in rodents.Behav. Brain Res.2017326334310.1016/j.bbr.2017.02.04028245976
    [Google Scholar]
  62. BörchersS. KriegerJ.P. MaricI. CarlJ. AbrahamM. LongoF. AskerM. RichardJ.E. SkibickaK.P. From an empty stomach to anxiolysis: Molecular and behavioral assessment of sex differences in the ghrelin axis of rats.Front. Endocrinol.20221390166910.3389/fendo.2022.90166935784535
    [Google Scholar]
  63. ChuangJ.C. ZigmanJ.M. Ghrelin’s roles in stress, mood, and anxiety regulation.Int. J. Pept.201020101510.1155/2010/46054920721341
    [Google Scholar]
  64. HarmatzE.S. StoneL. LimS.H. LeeG. McGrathA. GisabellaB. PengX. KosoyE. YaoJ. LiuE. MachadoN.J. WeinerV.S. SlocumW. CunhaR.A. GoosensK.A. Central ghrelin resistance permits the overconsolidation of fear memory.Biol. Psychiatry201781121003101310.1016/j.biopsych.2016.11.00928010876
    [Google Scholar]
  65. RostamkhaniF. ZardoozH. GoshadrouF. BaveisiM. HedayatiM. Stress increased ghrelin secretion from pancreatic isolated islets in male rats.Gen. Physiol. Biophys.201635110911726612921
    [Google Scholar]
  66. GulS. SaleemD. HaleemM.A. HaleemD.J. Inhibition of hormonal and behavioral effects of stress by tryptophan in rats.Nutr. Neurosci.201922640941710.1080/1028415X.2017.139555129098950
    [Google Scholar]
  67. OchiM. TominagaK. TanakaF. TanigawaT. ShibaM. WatanabeT. FujiwaraY. OshitaniN. HiguchiK. ArakawaT. Effect of chronic stress on gastric emptying and plasma ghrelin levels in rats.Life Sci.20088215-1686286810.1016/j.lfs.2008.01.02018343456
    [Google Scholar]
  68. CarliniV.P. MachadoD.G. ButelerF. GhersiM. PonzioM.F. MartiniA.C. SchiöthH.B. de CuneoM.F. RodriguesA.L.S. de BarioglioS.R. Acute ghrelin administration reverses depressive-like behavior induced by bilateral olfactory bulbectomy in mice.Peptides201235216016510.1016/j.peptides.2012.03.03122525660
    [Google Scholar]
  69. LiN. XiaoK. MiX. LiN. GuoL. WangX. SunY. LiG.D. ZhouY. Ghrelin signaling in dCA1 suppresses neuronal excitability and impairs memory acquisition via PI3K/Akt/GSK-3β cascades.Neuropharmacology202220310887110.1016/j.neuropharm.2021.10887134742928
    [Google Scholar]
  70. GuptaD. ChuangJ.C. ManiB.K. ShankarK. RodriguezJ.A. LawrenceO.S. MetzgerN.P. ZigmanJ.M. β1-adrenergic receptors mediate plasma acyl-ghrelin elevation and depressive-like behavior induced by chronic psychosocial stress.Neuropsychopharmacology20194471319132710.1038/s41386‑019‑0334‑730758330
    [Google Scholar]
  71. WalkerA.K. RiveraP.D. WangQ. ChuangJ-C. TranS. LawrenceO.S. EstillS.J. StarwaltR. HuntingtonP. MorlockL. NaidooJ. WilliamsN.S. ReadyJ.M. EischA.J. PieperA.A. ZigmanJ.M. The P7C3 class of neuroprotective compounds exerts antidepressant efficacy in mice by increasing hippocampal neurogenesis.Mol. Psychiatry201520450050810.1038/mp.2014.3424751964
    [Google Scholar]
  72. SpencerS.J. XuL. ClarkeM.A. LemusM. ReichenbachA. GeenenB. KoziczT. AndrewsZ.B. Ghrelin regulates the hypothalamic-pituitary-adrenal axis and restricts anxiety after acute stress.Biol. Psychiatry201272645746510.1016/j.biopsych.2012.03.01022521145
    [Google Scholar]
  73. MahbodP. SmithE.P. FitzgeraldM.E. MoranoR.L. PackardB.A. GhosalS. ScheimannJ.R. Perez-TilveD. HermanJ.P. TongJ. Desacyl ghrelin decreases anxiety-like behavior in male mice.Endocrinology2018159138839910.1210/en.2017‑0054029155981
    [Google Scholar]
  74. GuoL. NiuM. YangJ. LiL. LiuS. SunY. ZhouZ. ZhouY. GHS-R1a deficiency alleviates depression-related behaviors after chronic social defeat stress.Front. Neurosci.20191336410.3389/fnins.2019.0036431057357
    [Google Scholar]
  75. PierreA. ReginY. Van SchuerbeekA. FritzE.M. MuylleK. BeckersT. SmoldersI.J. SingewaldN. De BundelD. Effects of disrupted ghrelin receptor function on fear processing, anxiety and saccharin preference in mice.Psychoneuroendocrinology201911010443010.1016/j.psyneuen.2019.10443031542636
    [Google Scholar]
  76. ChuangJ.C. SakataI. KohnoD. PerelloM. Osborne-LawrenceS. RepaJ.J. ZigmanJ.M. Ghrelin directly stimulates glucagon secretion from pancreatic α-cells.Mol. Endocrinol.20112591600161110.1210/me.2011‑100121719535
    [Google Scholar]
  77. FujitsukaN. AsakawaA. HayashiM. SameshimaM. AmitaniH. KojimaS. FujimiyaM. InuiA. Selective serotonin reuptake inhibitors modify physiological gastrointestinal motor activities via 5-HT2c receptor and acyl ghrelin.Biol. Psychiatry200965974875910.1016/j.biopsych.2008.10.03119058784
    [Google Scholar]
  78. CarliniV.P. GaydouR.C. SchiöthH.B. de BarioglioS.R. Selective serotonin reuptake inhibitor (fluoxetine) decreases the effects of ghrelin on memory retention and food intake.Regul. Pept.20071401-2657310.1016/j.regpep.2006.11.01217189653
    [Google Scholar]
  79. BrunettiL. RecinellaL. OrlandoG. MichelottoB. NisioD.C. VaccaM. Effects of ghrelin and amylin on dopamine, norepinephrine and serotonin release in the hypothalamus.Eur. J. Pharmacol.20024542-318919210.1016/S0014‑2999(02)02552‑912421646
    [Google Scholar]
  80. ZhangY. ZhuM.Z. QinX.H. ZengY.N. ZhuX.H. The ghrelin/growth hormone secretagogue receptor system is involved in the rapid and sustained antidepressant-like effect of paeoniflorin.Front. Neurosci.20211563142410.3389/fnins.2021.63142433664648
    [Google Scholar]
  81. LinL.Y. JunX.Y. RanH.L. Meranzin hydrate improves depression-like behaviors and hypomotility via ghrelin and neurocircuitry.Chin. J. Integr. Med.2023296490499
    [Google Scholar]
  82. YeungY.T. AzizF. CastillaG.A. ArguellesS. Signaling pathways in inflammation and anti-inflammatory therapies.Curr. Pharm. Des.201824141449148410.2174/138161282466618032716560429589535
    [Google Scholar]
  83. BeurelE. ToupsM. NemeroffC.B. The bidirectional relationship of depression and inflammation: Double trouble.Neuron2020107223425610.1016/j.neuron.2020.06.00232553197
    [Google Scholar]
  84. MaydychV. The interplay between stress, inflammation, and emotional attention: Relevance for depression.Front. Neurosci.20191338410.3389/fnins.2019.0038431068783
    [Google Scholar]
  85. MillerA.H. MaleticV. RaisonC.L. Inflammation and its discontents: The role of cytokines in the pathophysiology of major depression.Biol. Psychiatry200965973274110.1016/j.biopsych.2008.11.02919150053
    [Google Scholar]
  86. BhattS. NagappaA.N. PatilC.R. Role of oxidative stress in depression.Drug Discov. Today20202571270127610.1016/j.drudis.2020.05.00132404275
    [Google Scholar]
  87. HassamalS. Chronic stress, neuroinflammation, and depression: an overview of pathophysiological mechanisms and emerging anti-inflammatories.Front. Psychiatry202314113098910.3389/fpsyt.2023.113098937252156
    [Google Scholar]
  88. MaY. ZhangH. GuoW. YuL. Potential role of ghrelin in the regulation of inflammation.FASEB J.2022369e2250810.1096/fj.202200634R35983825
    [Google Scholar]
  89. RussoC. ValleM.S. RussoA. MalaguarneraL. The interplay between ghrelin and microglia in neuroinflammation: Implications for obesity and neurodegenerative diseases.Int. J. Mol. Sci.202223211343210.3390/ijms23211343236362220
    [Google Scholar]
  90. WuC.R. YangQ.Y. ChenQ.W. LiC.Q. HeW.Y. ZhaoY.P. WangL. Ghrelin attenuate cerebral microvascular leakage by regulating inflammation and apoptosis potentially via a p38 MAPK-JNK dependent pathway.Biochem. Biophys. Res. Commun.2021552374310.1016/j.bbrc.2021.03.03233740663
    [Google Scholar]
  91. QiL. CuiX. DongW. BarreraR. NicastroJ. CoppaG.F. WangP. WuR. Ghrelin attenuates brain injury after traumatic brain injury and uncontrolled hemorrhagic shock in rats.Mol. Med.201218218619310.2119/molmed.0039022160303
    [Google Scholar]
  92. LeeJ.Y. YuneT.Y. Ghrelin inhibits oligodendrocyte cell death by attenuating microglial activation.Endocrinol. Metab.201429337137810.3803/EnM.2014.29.3.37125309797
    [Google Scholar]
  93. JiaoL. DuX. JiaF. LiY. ZhuD. TangT. JiaoQ. JiangH. Early low-dose ghrelin intervention via miniosmotic pumps could protect against the progressive dopaminergic neuron loss in Parkinson’s disease mice.Neurobiol. Aging2021101707810.1016/j.neurobiolaging.2021.01.01133582568
    [Google Scholar]
  94. LiuF. LiZ. HeX. YuH. FengJ. Ghrelin attenuates neuroinflammation and demyelination in experimental autoimmune encephalomyelitis involving NLRP3 inflammasome signaling pathway and pyroptosis.Front. Pharmacol.201910132010.3389/fphar.2019.0132031780940
    [Google Scholar]
  95. CarnigliaL. RamírezD. DurandD. SabaJ. TuratiJ. CarusoC. ScimonelliT.N. LasagaM. Neuropeptides and microglial activation in inflammation, pain, and neurodegenerative diseases.Mediators Inflamm.2017201712310.1155/2017/504861628154473
    [Google Scholar]
  96. AkkiR. RaghayK. ErramiM. Potentiality of ghrelin as antioxidant and protective agent.Redox Rep.2021261717910.1080/13510002.2021.191337433849404
    [Google Scholar]
  97. El EterE. Al TuwaijiriA. HagarH. ArafaM. In vivo and in vitro antioxidant activity of ghrelin: Attenuation of gastric ischemic injury in the rat.J. Gastroenterol. Hepatol.200722111791179910.1111/j.1440‑1746.2006.04696.x17914952
    [Google Scholar]
  98. OmraniH. AlipourM.R. MohaddesG. Ghrelin improves antioxidant defense in blood and brain in normobaric hypoxia in adult male rats.Adv. Pharm. Bull.20155228328810.15171/apb.2015.03926236669
    [Google Scholar]
  99. LiuY. ChenL. XuX. VicautE. SercombeR. Both ischemic preconditioning and ghrelin administration protect hippocampus from ischemia/reperfusion and upregulate uncoupling protein-2.BMC Physiol.2009911710.1186/1472‑6793‑9‑1719772611
    [Google Scholar]
  100. BarazzoniR. SemolicA. CattinM.R. ZanettiM. GuarnieriG. Acylated ghrelin limits fat accumulation and improves redox state and inflammation markers in the liver of high‐fat‐fed rats.Obesity201422117017710.1002/oby.2045423512916
    [Google Scholar]
  101. SantosV.V. StarkR. RialD. SilvaH.B. BaylissJ.A. LemusM.B. DaviesJ.S. CunhaR.A. PredigerR.D. AndrewsZ.B. Acyl ghrelin improves cognition, synaptic plasticity deficits and neuroinflammation following amyloid β (Aβ1‐40) administration in mice.J. Neuroendocrinol.2017295jne.1247610.1111/jne.1247628380673
    [Google Scholar]
  102. LeeS. KimY. LiE. ParkS. Ghrelin protects spinal cord motoneurons against chronic glutamate excitotoxicity by inhibiting microglial activation.Korean J. Physiol. Pharmacol.2012161434810.4196/kjpp.2012.16.1.4322416219
    [Google Scholar]
  103. LeeJ.Y. OhT.H. YuneT.Y. Ghrelin inhibits hydrogen peroxide-induced apoptotic cell death of oligodendrocytes via ERK and p38MAPK signaling.Endocrinology201115262377238610.1210/en.2011‑009021467197
    [Google Scholar]
  104. LimE. LeeS. LiE. KimY. ParkS. Ghrelin protects spinal cord motoneurons against chronic glutamate-induced excitotoxicity via ERK1/2 and phosphatidylinositol-3-kinase/Akt/glycogen synthase kinase-3β pathways.Exp. Neurol.2011230111412210.1016/j.expneurol.2011.04.00321530509
    [Google Scholar]
  105. MeantiR. BrescianiE. RizziL. CocoS. ZambelliV. DimitroulasA. MolteniL. OmeljaniukR.J. LocatelliV. TorselloA. Potential applications for growth hormone secretagogues treatment of amyotrophic lateral sclerosis.Curr. Neuropharmacol.202321122376239410.2174/1570159X2066622091510361336111771
    [Google Scholar]
  106. JiangH. LiL.J. WangJ. XieJ.X. Ghrelin antagonizes MPTP-induced neurotoxicity to the dopaminergic neurons in mouse substantia nigra.Exp. Neurol.2008212253253710.1016/j.expneurol.2008.05.00618577498
    [Google Scholar]
  107. BaylissJ.A. LemusM. SantosV.V. DeoM. ElsworthJ.D. AndrewsZ.B. Acylated but not des‐acyl ghrelin is neuroprotective in an MPTP mouse model of Parkinson’s disease.J. Neurochem.2016137346047110.1111/jnc.1357626872221
    [Google Scholar]
  108. BulgarelliI. TamiazzoL. BrescianiE. RapettiD. CaporaliS. LattuadaD. LocatelliV. TorselloA. Desacyl‐ghrelin and synthetic GH‐secretagogues modulate the production of inflammatory cytokines in mouse microglia cells stimulated by β‐amyloid fibrils.J. Neurosci. Res.200987122718272710.1002/jnr.2208819382238
    [Google Scholar]
  109. MeantiR. RizziL. BrescianiE. MolteniL. LocatelliV. CocoS. OmeljaniukR.J. TorselloA. Hexarelin modulation of MAPK and PI3K/Akt pathways in neuro-2A cells inhibits hydrogen peroxide—induced apoptotic toxicity.Pharmaceuticals202114544410.3390/ph1405044434066741
    [Google Scholar]
  110. MeantiR. LicataM. RizziL. BrescianiE. MolteniL. CocoS. LocatelliV. OmeljaniukR.J. TorselloA. Protective effects of hexarelin and JMV2894 in a human neuroblastoma cell line expressing the SOD1-G93A mutated protein.Int. J. Mol. Sci.202324299310.3390/ijms2402099336674509
    [Google Scholar]
  111. BiaginiG. TorselloA. MarinelliC. GualtieriF. VezzaliR. CocoS. BrescianiE. LocatelliV. Beneficial effects of desacyl-ghrelin, hexarelin and EP-80317 in models of status epilepticus.Eur. J. Pharmacol.2011670113013610.1016/j.ejphar.2011.08.02021914437
    [Google Scholar]
  112. GiordanoC. CostaA.M. LucchiC. LeoG. BrunelL. FehrentzJ.A. MartinezJ. TorselloA. BiaginiG. Progressive seizure aggravation in the repeated 6-hz corneal stimulation model is accompanied by marked increase in hippocampal p-ERK1/2 immunoreactivity in neurons.Front. Cell. Neurosci.20161028110.3389/fncel.2016.0028128018175
    [Google Scholar]
  113. RéusG.Z. ManossoL.M. QuevedoJ. CarvalhoA.F. Major depressive disorder as a neuro-immune disorder: Origin, mechanisms, and therapeutic opportunities.Neurosci. Biobehav. Rev.202315510542510.1016/j.neubiorev.2023.10542537852343
    [Google Scholar]
  114. AfridiR. SukK. Neuroinflammatory basis of depression: Learning from experimental models.Front. Cell. Neurosci.20211569106710.3389/fncel.2021.69106734276311
    [Google Scholar]
  115. RahimianR. PerlmanK. CanonneC. MechawarN. Targeting microglia–oligodendrocyte crosstalk in neurodegenerative and psychiatric disorders.Drug Discov. Today20222792562257310.1016/j.drudis.2022.06.01535798226
    [Google Scholar]
  116. BoyleC.C. BowerJ.E. EisenbergerN.I. IrwinM.R. Stress to inflammation and anhedonia: Mechanistic insights from preclinical and clinical models.Neurosci. Biobehav. Rev.202315210530710.1016/j.neubiorev.2023.10530737419230
    [Google Scholar]
  117. KhanM. BaussanY. ChatelainH.E. Connecting dots between mitochondrial dysfunction and depression.Biomolecules202313469510.3390/biom1304069537189442
    [Google Scholar]
  118. AlshialE.E. AbdulghaneyM.I. WadanA.H.S. AbdellatifM.A. RamadanN.E. SuleimanA.M. WaheedN. AbdellatifM. MohammedH.S. Mitochondrial dysfunction and neurological disorders: A narrative review and treatment overview.Life Sci.202333412225710.1016/j.lfs.2023.12225737949207
    [Google Scholar]
  119. WangL. WangR. LiuL. QiaoD. BaldwinD.S. HouR. Effects of SSRIs on peripheral inflammatory markers in patients with major depressive disorder: A systematic review and meta-analysis.Brain Behav. Immun.201979243810.1016/j.bbi.2019.02.02130797959
    [Google Scholar]
  120. ChenM.H. LiC.T. LinW.C. HongC.J. TuP.C. BaiY.M. ChengC.M. SuT.P. Rapid inflammation modulation and antidepressant efficacy of a low-dose ketamine infusion in treatment-resistant depression: A randomized, double-blind control study.Psychiatry Res.201826920721110.1016/j.psychres.2018.08.07830153598
    [Google Scholar]
  121. Köhler-ForsbergO. N LydholmC. HjorthøjC. NordentoftM. MorsO. BenrosM.E. Efficacy of anti-inflammatory treatment on major depressive disorder or depressive symptoms: Meta-analysis of clinical trials.Acta Psychiatr. Scand.2019139540441910.1111/acps.1301630834514
    [Google Scholar]
  122. KöhlerO. BenrosM.E. NordentoftM. FarkouhM.E. IyengarR.L. MorsO. KroghJ. Effect of anti-inflammatory treatment on depression, depressive symptoms, and adverse effects: A systematic review and meta-analysis of randomized clinical trials.JAMA Psychiatry201471121381139110.1001/jamapsychiatry.2014.161125322082
    [Google Scholar]
  123. WangH. HeY. SunZ. RenS. LiuM. WangG. YangJ. Microglia in depression: An overview of microglia in the pathogenesis and treatment of depression.J. Neuroinflammation202219113210.1186/s12974‑022‑02492‑035668399
    [Google Scholar]
  124. YangC. ShenJ. HongT. HuT.T. LiZ.J. ZhangH.T. ZhangY.J. ZhouZ.Q. YangJ.J. Effects of ketamine on lipopolysaccharide-induced depressive-like behavior and the expression of inflammatory cytokines in the rat prefrontal cortex.Mol. Med. Rep.20138388789010.3892/mmr.2013.160023900245
    [Google Scholar]
  125. LuY. DingX. WuX. HuangS. Ketamine inhibits LPS‐mediated BV2 microglial inflammation via NMDA receptor blockage.Fundam. Clin. Pharmacol.202034222923710.1111/fcp.1250831514224
    [Google Scholar]
  126. KhanzodeS.D. DakhaleG.N. KhanzodeS.S. SaojiA. PalasodkarR. Oxidative damage and major depression: The potential antioxidant action of selective serotonin re-uptake inhibitors.Redox Rep.20038636537010.1179/13510000322500339314980069
    [Google Scholar]
  127. BiliciM. EfeH. KöroğluM.A. UyduH.A. BekaroğluM. DeğerO. Antioxidative enzyme activities and lipid peroxidation in major depression: Alterations by antidepressant treatments.J. Affect. Disord.2001641435110.1016/S0165‑0327(00)00199‑311292519
    [Google Scholar]
  128. KentB.A. BeynonA.L. HornsbyA.K.E. BekinschteinP. BusseyT.J. DaviesJ.S. SaksidaL.M. The orexigenic hormone acyl-ghrelin increases adult hippocampal neurogenesis and enhances pattern separation.Psychoneuroendocrinology20155143143910.1016/j.psyneuen.2014.10.01525462915
    [Google Scholar]
  129. HornsbyA.K.E. RedheadY.T. ReesD.J. RatcliffM.S.G. ReichenbachA. WellsT. FrancisL. AmstaldenK. AndrewsZ.B. DaviesJ.S. Short-term calorie restriction enhances adult hippocampal neurogenesis and remote fear memory in a Ghsr-dependent manner.Psychoneuroendocrinology20166319820710.1016/j.psyneuen.2015.09.02326460782
    [Google Scholar]
  130. BekinschteinP. KentB.A. OomenC.A. ClemensonG.D. GageF.H. SaksidaL.M. BusseyT.J. BDNF in the dentate gyrus is required for consolidation of “pattern-separated” memories.Cell Rep.20135375976810.1016/j.celrep.2013.09.02724209752
    [Google Scholar]
  131. ChungH. LiE. KimY. KimS. ParkS. Multiple signaling pathways mediate ghrelin-induced proliferation of hippocampal neural stem cells.J. Endocrinol.20132181495910.1530/JOE‑13‑004523608221
    [Google Scholar]
  132. MilaneschiY. SimmonsW.K. van RossumE.F.C. PenninxB.W.J.H. Depression and obesity: Evidence of shared biological mechanisms.Mol. Psychiatry2019241183310.1038/s41380‑018‑0017‑529453413
    [Google Scholar]
  133. FoxM.E. LoboM.K. The molecular and cellular mechanisms of depression: a focus on reward circuitry.Mol. Psychiatry201924121798181510.1038/s41380‑019‑0415‑330967681
    [Google Scholar]
  134. LiangY. YinW. YinY. ZhangW. Ghrelin based therapy of metabolic diseases.Curr. Med. Chem.202128132565257610.2174/092986732766620061515280432538716
    [Google Scholar]
  135. TesauroM. SchinzariF. CaramantiM. LauroR. CardilloC. Cardiovascular and metabolic effects of ghrelin.Curr. Diabetes Rev.20106422823510.2174/15733991079165887120459393
    [Google Scholar]
  136. ReichN. HölscherC. Acylated ghrelin as a multi-targeted therapy for Alzheimer’s and Parkinson’s Disease.Front. Neurosci.20201461482810.3389/fnins.2020.61482833381011
    [Google Scholar]
/content/journals/cn/10.2174/1570159X22999240722095039
Loading
/content/journals/cn/10.2174/1570159X22999240722095039
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test