Skip to content
2000
Volume 23, Issue 2
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Many neurological diseases can lead to cognitive impairment in patients, which includes dementia and mild cognitive impairment and thus create a heavy burden both to their families and public health. Due to the limited effectiveness of medications in treating cognitive impairment, it is imperative to develop alternative treatments. Electroacupuncture (EA), a required method for Traditional Chinese Medicine, has the potential treatment of cognitive impairment. However, the molecular mechanisms involved have not been fully elucidated. Considering the current research status, preclinical literature published within the ten years until October 2022 was systematically searched through PubMed, Web of Science, MEDLINE, Ovid, and Embase. By reading the titles and abstracts, a total of 56 studies were initially included. It is concluded that EA can effectively ameliorate cognitive impairment in preclinical research of neurological diseases and induce potentially beneficial changes in molecular pathways, including Alzheimer’s disease, vascular cognitive impairment, chronic pain, and Parkinson’s disease. Moreover, EA exerts beneficial effects through the same or diverse mechanisms for different disease types, including but not limited to neuroinflammation, neuronal apoptosis, neurogenesis, synaptic plasticity, and autophagy. However, these findings raise further questions that need to be elucidated. Overall, EA therapy for cognitive impairment is an area with great promise, even though more research regarding its detailed mechanisms is warranted.

Loading

Article metrics loading...

/content/journals/cn/10.2174/1570159X22999240209102116
2024-02-12
2024-12-26
Loading full text...

Full text loading...

References

  1. HuangX. ZhaoX. LiB. CaiY. ZhangS. WanQ. YuF. Comparative efficacy of various exercise interventions on cognitive function in patients with mild cognitive impairment or dementia: A systematic review and network meta-analysis.J. Sport Health Sci.202211221222310.1016/j.jshs.2021.05.003 34004389
    [Google Scholar]
  2. PeiH. MaL. CaoY. WangF. LiZ. LiuN. LiuM. WeiY. LiH. Traditional chinese medicine for Alzheimer’s disease and other cognitive impairment: A review.Am. J. Chin. Med.202048348751110.1142/S0192415X20500251 32329645
    [Google Scholar]
  3. GauthierS. ReisbergB. ZaudigM. PetersenR.C. RitchieK. BroichK. BellevilleS. BrodatyH. BennettD. ChertkowH. CummingsJ.L. de LeonM. FeldmanH. GanguliM. HampelH. ScheltensP. TierneyM.C. WhitehouseP. WinbladB. Mild cognitive impairment.Lancet200636795181262127010.1016/S0140‑6736(06)68542‑5 16631882
    [Google Scholar]
  4. GaleS.A. AcarD. DaffnerK.R. Dementia.Am. J. Med.2018131101161116910.1016/j.amjmed.2018.01.022 29425707
    [Google Scholar]
  5. RitchieK. LovestoneS. The dementias.Lancet200236093471759176610.1016/S0140‑6736(02)11667‑9 12480441
    [Google Scholar]
  6. JeongS. Molecular and cellular basis of neurodegeneration in Alzheimer’s disease.Mol. Cells2017409613620 28927263
    [Google Scholar]
  7. RostN.S. MeschiaJ.F. GottesmanR. WruckL. HelmerK. GreenbergS.M. BarrettK. BiffiA. Boden-AlbalaB. FornageM. EthertonM. GollandP. Graff-RadfordJ. HinmanJ. JackC.Jr Kalpathy-CramerJ. KnopmanD. KittnerS. LoweV. ManlyJ. MosleyT. PetersenR. RissmanR. SchirmerM. SchwabK. SeshadriS. ShermanA. VemuriP. ViswanathanA. Cognitive impairment and dementia after stroke: Design and rationale for the discovery study.Stroke2021528e499e51610.1161/STROKEAHA.120.031611 34039035
    [Google Scholar]
  8. MoriartyO. McGuireB.E. FinnD.P. The effect of pain on cognitive function: A review of clinical and preclinical research.Prog. Neurobiol.201193338540410.1016/j.pneurobio.2011.01.002 21216272
    [Google Scholar]
  9. AarslandD. CreeseB. PolitisM. ChaudhuriK.R. ffytche, D.H.; Weintraub, D.; Ballard, C. Cognitive decline in Parkinson disease.Nat. Rev. Neurol.201713421723110.1038/nrneurol.2017.27 28257128
    [Google Scholar]
  10. QuM. XingF. XingN. Mesenchymal stem cells for the treatment of cognitive impairment caused by neurological diseases.Biotechnol. Lett.202244890391610.1007/s10529‑022‑03274‑7 35809141
    [Google Scholar]
  11. GorelickP.B. Prevention of cognitive impairment: scientific guidance and windows of opportunity.J. Neurochem.2018144560961610.1111/jnc.14113 28677324
    [Google Scholar]
  12. MorleyJ.E. An overview of cognitive impairment.Clin. Geriatr. Med.201834450551310.1016/j.cger.2018.06.003 30336985
    [Google Scholar]
  13. von ArnimC.A.F. BartschT. JacobsA.H. HolbrookJ. BergmannP. ZieschangT. PolidoriM.C. DodelR. Diagnosis and treatment of cognitive impairment.Z. Gerontol. Geriatr.201952430931510.1007/s00391‑019‑01560‑0 31161337
    [Google Scholar]
  14. FarooqM.U. MinJ. GoshgarianC. GorelickP.B. Pharmacotherapy for vascular cognitive impairment.CNS Drugs201731975977610.1007/s40263‑017‑0459‑3 28786085
    [Google Scholar]
  15. O’BrienJ.T. HolmesC. JonesM. JonesR. LivingstonG. McKeithI. MittlerP. PassmoreP. RitchieC. RobinsonL. SampsonE.L. TaylorJ.P. ThomasA. BurnsA. Clinical practice with anti-dementia drugs: A revised (third) consensus statement from the British Association for Psychopharmacology.J. Psychopharmacol.201731214716810.1177/0269881116680924 28103749
    [Google Scholar]
  16. LangaK.M. LevineD.A. The diagnosis and management of mild cognitive impairment: a clinical review.JAMA2014312232551256110.1001/jama.2014.13806 25514304
    [Google Scholar]
  17. PeterssonS.D. PhilippouE. Mediterranean diet, cognitive function, and dementia: A systematic review of the evidence.Adv. Nutr.20167588990410.3945/an.116.012138 27633105
    [Google Scholar]
  18. KarssemeijerE.G.A.E. AaronsonJ.A.J. BossersW.J.W. SmitsT.T. Olde RikkertM.G.M.M. KesselsR.P.C.R. Positive effects of combined cognitive and physical exercise training on cognitive function in older adults with mild cognitive impairment or dementia: A meta-analysis.Ageing Res. Rev.201740758310.1016/j.arr.2017.09.003 28912076
    [Google Scholar]
  19. DemurtasJ. SchoeneD. TorbahnG. MarengoniA. GrandeG. ZouL. PetrovicM. MaggiS. CesariM. LambS. SoysalP. KemmlerW. SieberC. MuellerC. ShenkinS.D. SchwingshacklL. SmithL. VeroneseN. Physical activity and exercise in mild cognitive impairment and dementia: an umbrella review of intervention and observational studies.J. Am. Med. Dir. Assoc.2020211014151422.e610.1016/j.jamda.2020.08.031 32981668
    [Google Scholar]
  20. AcarH.V. Acupuncture and related techniques during perioperative period: A literature review.Complement. Ther. Med.201629485510.1016/j.ctim.2016.09.013 27912957
    [Google Scholar]
  21. LiF. HeT. XuQ. LinL.T. LiH. LiuY. ShiG.X. LiuC.Z. What is the Acupoint? A preliminary review of Acupoints.Pain Med.201516101905191510.1111/pme.12761 25975413
    [Google Scholar]
  22. ChenT. ZhangW.W. ChuY.X. WangY.Q. Acupuncture for pain management: Molecular mechanisms of action.Am. J. Chin. Med.202048479381110.1142/S0192415X20500408 32420752
    [Google Scholar]
  23. ZhuJ. LiJ. YangL. LiuS. Acupuncture, from the ancient to the current.Anat. Rec. (Hoboken)2021304112365237110.1002/ar.24625 33825344
    [Google Scholar]
  24. SongG. FiocchiC. AchkarJ.P. Acupuncture in inflammatory bowel disease.Inflamm. Bowel Dis.20192571129113910.1093/ibd/izy371 30535303
    [Google Scholar]
  25. LangevinH.M. SchnyerR. MacPhersonH. DavisR. HarrisR.E. NapadowV. WayneP.M. MilleyR.J. LaoL. Stener-VictorinE. KongJ-T. HammerschlagR. Manual and electrical needle stimulation in acupuncture research: Pitfalls and challenges of heterogeneity.J. Altern. Complement. Med.201521311312810.1089/acm.2014.0186 25710206
    [Google Scholar]
  26. HuangL. YinX. LiW. CaoY. ChenY. LaoL. ZhangZ. MiY. XuS. Effects of acupuncture on vascular cognitive impairment with no dementia: a randomized controlled trial.J. Alzheimers Dis.20218141391140110.3233/JAD‑201353 33935074
    [Google Scholar]
  27. YangX. GongW. MaX. WangS. WangX. GuoT. GuoZ. SunY. LiJ. ZhaoB. TuY. Factor analysis of electroacupuncture and selective serotonin reuptake inhibitors for major depressive disorder: an 8-week controlled clinical trial.Acupunct. Med.2020381455210.1136/acupmed‑2017‑011412 31544488
    [Google Scholar]
  28. ZhangZ.J. ManS.C. YamL.L. YiuC.Y. LeungR.C.Y. QinZ.S. ChanK.W.S. LeeV.H.F. KwongA. YeungW.F. SoW.K.W. HoL.M. DongY.Y. Electroacupuncture trigeminal nerve stimulation plus body acupuncture for chemotherapy-induced cognitive impairment in breast cancer patients: An assessor-participant blinded, randomized controlled trial.Brain Behav. Immun.202088889610.1016/j.bbi.2020.04.035 32305573
    [Google Scholar]
  29. ZhangZ.J. ZhaoH. JinG.X. ManS.C. WangY.S. WangY. WangH.R. LiM.H. YamL.L. QinZ.S. YuK.K.T. WuJ. NgF.L.B. ZieaT.C.E. RongP.J. Assessor- and participant-blinded, randomized controlled trial of dense cranial electroacupuncture stimulation plus body acupuncture for neuropsychiatric sequelae of stroke.Psychiatry Clin. Neurosci.202074318319010.1111/pcn.12959 31747095
    [Google Scholar]
  30. LaneC.A. HardyJ. SchottJ.M. Alzheimer’s disease.Eur. J. Neurol.2018251597010.1111/ene.13439 28872215
    [Google Scholar]
  31. BoccardiV. MuraseccoI. MecocciP. Diabetes drugs in the fight against Alzheimer’s disease.Ageing Res. Rev.20195410093610.1016/j.arr.2019.100936 31330313
    [Google Scholar]
  32. CalsolaroV. EdisonP. Neuroinflammation in Alzheimer’s disease: Current evidence and future directions.Alzheimers Dement.201612671973210.1016/j.jalz.2016.02.010 27179961
    [Google Scholar]
  33. Esquerda-CanalsG. Montoliu-GayaL. Güell-BoschJ. VillegasS. Mouse models of Alzheimer’s disease.J. Alzheimers Dis.20175741171118310.3233/JAD‑170045 28304309
    [Google Scholar]
  34. LiuB. LiuJ. ShiJ.S. SAMP8 mice as a model of age-related cognition decline with underlying mechanisms in Alzheimer’s disease.J. Alzheimers Dis.202075238539510.3233/JAD‑200063 32310176
    [Google Scholar]
  35. XinY. WangJ. XuA. Electroacupuncture ameliorates neuroinflammation in animal models.Acupunct. Med.202240547448310.1177/09645284221076515 35229660
    [Google Scholar]
  36. WangW. XieC. LuL. ZhengG. A systematic review and meta-analysis of Baihui (GV20)-based scalp acupuncture in experimental ischemic stroke.Sci. Rep.201441398110.1038/srep03981 24496233
    [Google Scholar]
  37. ChaochaoY. LiW. LihongK. FengS. ChaoyangM. YanjunD. HuaZ. DuY. ZhouH. MaC. Acupoint combinations used for treatment of Alzheimer’s disease: A data mining analysis.J. Tradit. Chin. Med.201838694395210.1016/S0254‑6272(18)30995‑6 32186143
    [Google Scholar]
  38. SuX.T. WangL.Q. LiJ.L. ZhangN. WangL. ShiG.X. YangJ.W. LiuC.Z. Acupuncture therapy for cognitive impairment: a delphi expert consensus survey.Front. Aging Neurosci.20201259608110.3389/fnagi.2020.596081 33328975
    [Google Scholar]
  39. OhJ.E. KimS.N. Anti-inflammatory effects of acupuncture at ST36 point: a literature review in animal studies.Front. Immunol.20221281374810.3389/fimmu.2021.813748 35095910
    [Google Scholar]
  40. XinY. WangJ. ChuT. ZhouY. LiuC. XuA. Electroacupuncture alleviates neuroinflammation by inhibiting the HMGB1 signaling pathway in rats with sepsis-associated encephalopathy.Brain Sci.20221212173210.3390/brainsci12121732 36552192
    [Google Scholar]
  41. LinY.K. LiaoH.Y. WatsonK. YehT.P. ChenI.H. Acupressure improves cognition and quality of life among older adults with cognitive disorders in long-term care settings: a clustered randomized controlled trial.J. Am. Med. Dir. Assoc.202324454855410.1016/j.jamda.2023.02.011 36933568
    [Google Scholar]
  42. ZhuT. LiH. JinR. ZhengZ. LuoY. YeH. ZhuH. Effects of electroacupuncture combined psycho-intervention on cognitive function and event-related potentials P300 and mismatch negativity in patients with internet addiction.Chin. J. Integr. Med.201218214615110.1007/s11655‑012‑0990‑5 22311411
    [Google Scholar]
  43. XiaR. RenJ. WangM. WanY. DaiY. LiX. WuZ. ChenS. Effect of acupuncture on brain functional networks in patients with mild cognitive impairment: an activation likelihood estimation meta-analysis.Acupunct. Med.202341525926710.1177/09645284221146199 36790017
    [Google Scholar]
  44. LissnerL.J. WartchowK.M. ToniazzoA.P. GonçalvesC.A. RodriguesL. Object recognition and Morris water maze to detect cognitive impairment from mild hippocampal damage in rats: A reflection based on the literature and experience.Pharmacol. Biochem. Behav.202121017327310.1016/j.pbb.2021.173273 34536480
    [Google Scholar]
  45. Hernández-MercadoK. ZepedaA. Morris water maze and contextual fear conditioning tasks to evaluate cognitive functions associated with adult hippocampal neurogenesis.Front. Neurosci.20221578294710.3389/fnins.2021.782947 35046769
    [Google Scholar]
  46. WebsterS.J. BachstetterA.D. NelsonP.T. SchmittF.A. Van EldikL.J. Using mice to model Alzheimer’s dementia: an overview of the clinical disease and the preclinical behavioral changes in 10 mouse models.Front. Genet.201458810.3389/fgene.2014.00088 24795750
    [Google Scholar]
  47. LiX. GuoF. ZhangQ. HuoT. LiuL. WeiH. XiongL. WangQ. Electroacupuncture decreases cognitive impairment and promotes neurogenesis in the APP/PS1 transgenic mice.BMC Complement. Altern. Med.20141413710.1186/1472‑6882‑14‑37 24447795
    [Google Scholar]
  48. WangF. ZhongH. LiX. PengY. KindenR. LiangW. LiX. ShiM. LiuL. WangQ. XiongL. Electroacupuncture attenuates reference memory impairment associated with astrocytic NDRG2 suppression in APP/PS1 transgenic mice.Mol. Neurobiol.201450230531310.1007/s12035‑013‑8609‑1 24390566
    [Google Scholar]
  49. DongW. GuoW. ZhengX. WangF. ChenY. ZhangW. ShiH. Electroacupuncture improves cognitive deficits associated with AMPK activation in SAMP8 mice.Metab. Brain Dis.201530377778410.1007/s11011‑014‑9641‑1 25502012
    [Google Scholar]
  50. GuoH. TianJ. ZhuJ. LiL. SunK. ShaoS. CuiG. Electroacupuncture suppressed neuronal apoptosis and improved cognitive impairment in the AD model rats possibly via downregulation of notch signaling pathway.Evid. Based Complement. Alternat. Med.201520151910.1155/2015/393569 25810743
    [Google Scholar]
  51. GuoH. ZhuJ. TianJ. ShaoS. XuY. MouF. HanX. YuZ. ChenJ. ZhangD. ZhangL. CuiG. Electroacupuncture improves memory and protects neurons by regulation of the autophagy pathway in a rat model of Alzheimer’s disease.Acupunct. Med.201634644945610.1136/acupmed‑2015‑010894 26895770
    [Google Scholar]
  52. LinR. ChenJ. LiX. MaoJ. WuY. ZhuoP. ZhangY. LiuW. HuangJ. TaoJ. ChenL.D. Electroacupuncture at the Baihui acupoint alleviates cognitive impairment and exerts neuroprotective effects by modulating the expression and processing of brain-derived neurotrophic factor in APP/PS1 transgenic mice.Mol. Med. Rep.20161321611161710.3892/mmr.2015.4751 26739187
    [Google Scholar]
  53. LiuW. ZhuoP. LiL. JinH. LinB. ZhangY. LiangS. WuJ. HuangJ. WangZ. LinR. ChenL. TaoJ. Activation of brain glucose metabolism ameliorating cognitive impairment in APP/PS1 transgenic mice by electroacupuncture.Free Radic. Biol. Med.201711217419010.1016/j.freeradbiomed.2017.07.024 28756309
    [Google Scholar]
  54. ZhangM. XvG.H. WangW.X. MengD.J. JiY. Electroacupuncture improves cognitive deficits and activates PPAR-γ in a rat model of Alzheimer’s disease.Acupunct. Med.2017351445110.1136/acupmed‑2015‑010972 27401747
    [Google Scholar]
  55. LinR. LiL. ZhangY. HuangS. ChenS. ShiJ. ZhuoP. JinH. LiZ. LiuW. WangZ. ChenL. TaoJ. Electroacupuncture ameliorate learning and memory by improving N-acetylaspartate and glutamate metabolism in APP/PS1 mice.Biol. Res.20185112110.1186/s40659‑018‑0166‑7 29980225
    [Google Scholar]
  56. KongL-H. YuC-C. WangY. ShenF. WangY.W. ZhouH. TangL. High-frequency (50 Hz) electroacupuncture ameliorates cognitive impairment in rats with amyloid beta 1-42-induced Alzheimer’s disease.Neural Regen. Res.201813101833184110.4103/1673‑5374.238620 30136700
    [Google Scholar]
  57. TangY. ShaoS. GuoY. ZhouY. CaoJ. XuA. WuJ. LiZ. XiangD. Electroacupuncture mitigates hippocampal cognitive impairments by reducing BACE1 deposition and activating PKA in APP/PS1 double transgenic mice.Neural Plast.2019201911210.1155/2019/2823679 31223308
    [Google Scholar]
  58. HouZ. QiuR. WeiQ. LiuY. WangM. MeiT. ZhangY. SongL. ShaoX. ShangH. ChenJ. SunZ. Electroacupuncture improves cognitive function in senescence-accelerated P8 (SAMP8) mice via the NLRP3/caspase-1 pathway.Neural Plast.2020202011410.1155/2020/8853720 33204250
    [Google Scholar]
  59. HuangX. HuangK. LiZ. BaiD. HaoY. WuQ. YiW. XuN. PanY. ZhangL. Electroacupuncture improves cognitive deficits and insulin resistance in an OLETF rat model of Al/D-gal induced aging model via the PI3K/Akt signaling pathway.Brain Res.2020174014683410.1016/j.brainres.2020.146834 32304687
    [Google Scholar]
  60. TangY. XuA. ShaoS. ZhouY. XiongB. LiZ. Electroacupuncture ameliorates cognitive impairment by inhibiting the JNK signaling pathway in a mouse model of Alzheimer’s disease.Front. Aging Neurosci.2020122310.3389/fnagi.2020.00023 32116652
    [Google Scholar]
  61. XuA. TangY. ZengQ. WangX. TianH. ZhouY. LiZ. Electroacupuncture enhances cognition by promoting brain glucose metabolism and inhibiting inflammation in the APP/PS1 mouse model of Alzheimer’s disease: A pilot study.J. Alzheimers Dis.202077138740010.3233/JAD‑200242 32741819
    [Google Scholar]
  62. XuA. ZengQ. TangY. WangX. YuanX. ZhouY. LiZ. Electroacupuncture protects cognition by regulating tau phosphorylation and glucose metabolism via the AKT/GSK3β signaling Pathway in Alzheimer’s disease model mice.Front. Neurosci.20201458547610.3389/fnins.2020.585476 33328854
    [Google Scholar]
  63. YangY. HuS. LinH. HeJ. TangC. Electroacupuncture at GV24 and bilateral GB13 improves cognitive ability via influences the levels of Aβ, p-tau (s396) and p-tau (s404) in the hippocampus of Alzheimer’s disease model rats.Neuroreport202031151072108310.1097/WNR.0000000000001518 32881772
    [Google Scholar]
  64. JiangJ. LiuH. WangZ. TianH. WangS. YangJ. RenJ. Electroacupuncture could balance the gut microbiota and improve the learning and memory abilities of Alzheimer’s disease animal model.PLoS One20211611e025953010.1371/journal.pone.0259530 34748592
    [Google Scholar]
  65. LiJ. ZhangB. JiaW. YangM. ZhangY. ZhangJ. LiL. JinT. WangZ. TaoJ. ChenL. LiangS. LiuW. Activation of adenosine monophosphate-activated protein kinase drives the aerobic glycolysis in hippocampus for delaying cognitive decline following electroacupuncture treatment in APP/PS1 mice.Front. Cell. Neurosci.20211577456910.3389/fncel.2021.774569 34867206
    [Google Scholar]
  66. LiK. ShiG. ZhaoY. ChenY. GaoJ. YaoL. ZhaoJ. LiH. XuY. ChenY. Electroacupuncture ameliorates neuroinflammation-mediated cognitive deficits through inhibition of NLRP3 in presenilin1/2 conditional double knockout mice.Neural Plast.2021202111510.1155/2021/8814616 33505459
    [Google Scholar]
  67. LiangP. LiL. ZhangY. ShenY. ZhangL. ZhouJ. WangZ. WangS. YangS. Electroacupuncture improves clearance of amyloid-β through the glymphatic system in the SAMP8 mouse model of Alzheimer’s disease.Neural Plast.2021202111110.1155/2021/9960304 34484327
    [Google Scholar]
  68. SunR.Q. WangZ.D. ZhaoJ. WangS. LiuY.Z. LiuS.Y. LiZ.G. WangX. Improvement of electroacupuncture on APP/PS1 transgenic mice in behavioral probably due to reducing deposition of Aβ in hippocampus.Anat. Rec. (Hoboken)2021304112521253010.1002/ar.24737 34469051
    [Google Scholar]
  69. KongL-H. YuC-C. HeC. DuY-J. GaoS. LinY-F. WangS.Q. WangL. WangJ. WangX-S. JiangT. Preventive electroacupuncture reduces cognitive deficits in a rat model of D-galactose-induced aging.Neural Regen. Res.202116591692310.4103/1673‑5374.297090 33229729
    [Google Scholar]
  70. ZhengX. LinW. JiangY. LuK. WeiW. HuoQ. CuiS. YangX. LiM. XuN. TangC. SongJ.X. Electroacupuncture ameliorates beta-amyloid pathology and cognitive impairment in Alzheimer disease via a novel mechanism involving activation of TFEB (transcription factor EB).Autophagy202117113833384710.1080/15548627.2021.1886720 33622188
    [Google Scholar]
  71. HouZ. YangX. LiY. ChenJ. ShangH. Electroacupuncture enhances neuroplasticity by regulating the orexin A-mediated cAMP/PKA/CREB signaling pathway in senescence-accelerated mouse prone 8 (SAMP8) mice.Oxid. Med. Cell. Longev.2022202211510.1155/2022/8694462 35154573
    [Google Scholar]
  72. ShaoS.M. ParkK.H. YuanY. ZhangZ. YouY. ZhangZ. HaoL. Electroacupuncture attenuates learning and memory impairment via PI3K/Akt pathway in an amyloid β25-35-induced Alzheimer’s disease mouse model.Evid. Based Complement. Alternat. Med.2022202211010.1155/2022/3849441 35463064
    [Google Scholar]
  73. MaturanaW. LoboI. Landeira-FernandezJ. MograbiD.C. Nondeclarative associative learning in Alzheimer’s disease: An overview of eyeblink, fear, and other emotion-based conditioning.Physiol. Behav.202326811425010.1016/j.physbeh.2023.114250 37224936
    [Google Scholar]
  74. LiL. LiJ. DaiY. YangM. LiangS. WangZ. LiuW. ChenL. TaoJ. Electro-acupuncture improve the early pattern separation in Alzheimer’s disease mice via basal forebrain-hippocampus cholinergic neural circuit.Front. Aging Neurosci.20221377094810.3389/fnagi.2021.770948 35185516
    [Google Scholar]
  75. OomenC.A. Hvoslef-EideM. HeathC.J. MarA.C. HornerA.E. BusseyT.J. SaksidaL.M. The touchscreen operant platform for testing working memory and pattern separation in rats and mice.Nat. Protoc.20138102006202110.1038/nprot.2013.124 24051961
    [Google Scholar]
  76. GhafarimoghadamM. MashayekhR. GholamiM. FereydaniP. Shelley-TremblayJ. KandeziN. SabouriE. MotaghinejadM. A review of behavioral methods for the evaluation of cognitive performance in animal models: Current techniques and links to human cognition.Physiol. Behav.202224411365210.1016/j.physbeh.2021.113652 34801559
    [Google Scholar]
  77. GuoT. ZhangD. ZengY. HuangT.Y. XuH. ZhaoY. Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease.Mol. Neurodegener.20201514010.1186/s13024‑020‑00391‑7 32677986
    [Google Scholar]
  78. GulisanoW. MaugeriD. BaltronsM.A. FàM. AmatoA. PalmeriA. D’AdamioL. GrassiC. DevanandD.P. HonigL.S. PuzzoD. ArancioO. Role of amyloid-β and tau proteins in Alzheimer’s disease: Confuting the amyloid cascade.J. Alzheimers Dis.201864s1S611S63110.3233/JAD‑179935 29865055
    [Google Scholar]
  79. ZhangY. ThompsonR. ZhangH. XuH. APP processing in Alzheimer’s disease.Mol. Brain201141310.1186/1756‑6606‑4‑3 21214928
    [Google Scholar]
  80. PuzzoD. GulisanoW. ArancioO. PalmeriA. The keystone of Alzheimer pathogenesis might be sought in Aβ physiology.Neuroscience2015307263610.1016/j.neuroscience.2015.08.039 26314631
    [Google Scholar]
  81. LymanM. LloydD.G. JiX. VizcaychipiM.P. MaD. Neuroinflammation: The role and consequences.Neurosci. Res.20147911210.1016/j.neures.2013.10.004 24144733
    [Google Scholar]
  82. Tapia-RojasC. Cabezas-OpazoF. DeatonC.A. VergaraE.H. JohnsonG.V.W. QuintanillaR.A. It’s all about tau.Prog. Neurobiol.2019175547610.1016/j.pneurobio.2018.12.005 30605723
    [Google Scholar]
  83. NaseriN.N. WangH. GuoJ. SharmaM. LuoW. The complexity of tau in Alzheimer’s disease.Neurosci. Lett.201970518319410.1016/j.neulet.2019.04.022 31028844
    [Google Scholar]
  84. TrushinaN.I. BakotaL. MulkidjanianA.Y. BrandtR. The evolution of tau phosphorylation and interactions.Front. Aging Neurosci.20191125610.3389/fnagi.2019.00256 31619983
    [Google Scholar]
  85. SinskyJ. PichlerovaK. HanesJ. Tau protein interaction partners and their roles in Alzheimer’s disease and other tauopathies.Int. J. Mol. Sci.20212217920710.3390/ijms22179207 34502116
    [Google Scholar]
  86. YangJ. WiseL. FukuchiK. TLR4 Cross-talk With NLRP3 inflammasome and complement signaling pathways in Alzheimer’s disease.Front. Immunol.20201172410.3389/fimmu.2020.00724 32391019
    [Google Scholar]
  87. SarojaS.R. SharmaA. HofP.R. PereiraA.C. Differential expression of tau species and the association with cognitive decline and synaptic loss in Alzheimer’s disease.Alzheimers Dement.20221891602161510.1002/alz.12518 34873815
    [Google Scholar]
  88. CaiM. LeeJ.H. YangE.J. Electroacupuncture attenuates cognition impairment via anti-neuroinflammation in an Alzheimer’s disease animal model.J. Neuroinflammation201916126410.1186/s12974‑019‑1665‑3 31836020
    [Google Scholar]
  89. Serrano-PozoA. DasS. HymanB.T. APOE and Alzheimer’s disease: advances in genetics, pathophysiology, and therapeutic approaches.Lancet Neurol.2021201688010.1016/S1474‑4422(20)30412‑9 33340485
    [Google Scholar]
  90. NedergaardM. GoldmanS.A. Glymphatic failure as a final common pathway to dementia.Science20203706512505610.1126/science.abb8739 33004510
    [Google Scholar]
  91. RasmussenM.K. MestreH. NedergaardM. The glymphatic pathway in neurological disorders.Lancet Neurol.201817111016102410.1016/S1474‑4422(18)30318‑1 30353860
    [Google Scholar]
  92. KitagishiY. NakanishiA. OguraY. MatsudaS. Dietary regulation of PI3K/AKT/GSK-3β pathway in Alzheimer’s disease.Alzheimers Res. Ther.2014633510.1186/alzrt265 25031641
    [Google Scholar]
  93. SuH.C. MaC.T. YuB.C. ChienY.C. TsaiC.C. HuangW.C. LinC.F. ChuangY.H. YoungK.C. WangJ.N. TsaoC.W. Glycogen synthase kinase-3β regulates anti-inflammatory property of fluoxetine.Int. Immunopharmacol.201214215015610.1016/j.intimp.2012.06.015 22749848
    [Google Scholar]
  94. YangW. LiuY. XuQ.Q. XianY.F. LinZ.X. Sulforaphene ameliorates neuroinflammation and hyperphosphorylated tau protein via regulating the PI3K/Akt/GSK-3 β pathway in experimental models of Alzheimer’s disease.Oxid. Med. Cell. Longev.2020202011710.1155/2020/4754195 32963694
    [Google Scholar]
  95. LengF. EdisonP. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here?Nat. Rev. Neurol.202117315717210.1038/s41582‑020‑00435‑y 33318676
    [Google Scholar]
  96. OzbenT. OzbenS. Neuro-inflammation and anti-inflammatory treatment options for Alzheimer’s disease.Clin. Biochem.201972878910.1016/j.clinbiochem.2019.04.001 30954437
    [Google Scholar]
  97. MohamedE.A. AhmedH.I. ZakyH.S. BadrA.M. Sesame oil mitigates memory impairment, oxidative stress, and neurodegeneration in a rat model of Alzheimer’s disease. A pivotal role of NF-κB/p38MAPK/BDNF/PPAR-γ pathways.J. Ethnopharmacol.202126711346810.1016/j.jep.2020.113468 33049345
    [Google Scholar]
  98. AwasthiA. RajuM.B. RahmanM.A. Current insights of inhibitors of p38 mitogen-activated protein kinase in inflammation.Med. Chem.202117655557510.2174/18756638MTA0CODg72 32106802
    [Google Scholar]
  99. LiuQ. ZhangY. LiuS. LiuY. YangX. LiuG. ShimizuT. IkenakaK. FanK. MaJ. Cathepsin C promotes microglia M1 polarization and aggravates neuroinflammation via activation of Ca2+-dependent PKC/p38MAPK/NF-κB pathway.J. Neuroinflammation20191611010.1186/s12974‑019‑1398‑3 30651105
    [Google Scholar]
  100. ShenY. ZhangY. DuJ. JiangB. ShanT. LiH. BaoH. SiY. CXCR5 down-regulation alleviates cognitive dysfunction in a mouse model of sepsis-associated encephalopathy: potential role of microglial autophagy and the p38MAPK/NF-κB/STAT3 signaling pathway.J. Neuroinflammation202118124610.1186/s12974‑021‑02300‑1 34711216
    [Google Scholar]
  101. McKenzieB.A. DixitV.M. PowerC. Fiery cell death: Pyroptosis in the central nervous system.Trends Neurosci.2020431557310.1016/j.tins.2019.11.005 31843293
    [Google Scholar]
  102. MilnerM.T. MaddugodaM. GötzJ. BurgenerS.S. SchroderK. The NLRP3 inflammasome triggers sterile neuroinflammation and Alzheimer’s disease.Curr. Opin. Immunol.20216811612410.1016/j.coi.2020.10.011 33181351
    [Google Scholar]
  103. HenekaM.T. KummerM.P. StutzA. DelekateA. SchwartzS. Vieira-SaeckerA. GriepA. AxtD. RemusA. TzengT.C. GelpiE. HalleA. KorteM. LatzE. GolenbockD.T. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice.Nature2013493743467467810.1038/nature11729 23254930
    [Google Scholar]
  104. HuX. WangT. JinF. Alzheimer’s disease and gut microbiota.Sci. China Life Sci.201659101006102310.1007/s11427‑016‑5083‑9 27566465
    [Google Scholar]
  105. MegurA. BaltriukienėD. BukelskienėV. BurokasA. The microbiota-gut-brain axis and Alzheimer’s disease: Neuroinflammation is to blame?Nutrients20201313710.3390/nu13010037 33374235
    [Google Scholar]
  106. ZhengJ.H. ViacavaF.A. KriwackiR.W. MoldoveanuT. Discoveries and controversies in BCL-2 protein-mediated apoptosis.FEBS J.2016283142690270010.1111/febs.13527 26411300
    [Google Scholar]
  107. SpitzA.Z. GavathiotisE. Physiological and pharmacological modulation of BAX.Trends Pharmacol. Sci.202243320622010.1016/j.tips.2021.11.001 34848097
    [Google Scholar]
  108. GreenD.R. LlambiF. Cell death signaling.Cold Spring Harb. Perspect. Biol.2015712a00608010.1101/cshperspect.a006080 26626938
    [Google Scholar]
  109. TakumaK. YanS.S. SternD.M. YamadaK. Mitochondrial dysfunction, endoplasmic reticulum stress, and apoptosis in Alzheimer’s disease.J. Pharmacol. Sci.200597331231610.1254/jphs.CPJ04006X 15750290
    [Google Scholar]
  110. BambergerM.E. LandrethG.E. Inflammation, apoptosis, and Alzheimer’s disease.Neuroscientist200283276283 12061507
    [Google Scholar]
  111. Jazvinšćak JembrekM. HofP.R. ŠimićG. Ceramides in Alzheimer’s disease: Key mediators of neuronal apoptosis induced by oxidative stress and Aβ accumulation.Oxid. Med. Cell. Longev.2015201511710.1155/2015/346783 26090071
    [Google Scholar]
  112. SharmaV.K. SinghT.G. SinghS. GargN. DhimanS. Apoptotic pathways and Alzheimer’s disease: Probing therapeutic potential.Neurochem. Res.202146123103312210.1007/s11064‑021‑03418‑7 34386919
    [Google Scholar]
  113. YarzaR. VelaS. SolasM. RamirezM.J. c-Jun N-terminal Kinase (JNK) signaling as a therapeutic target for Alzheimer’s disease.Front. Pharmacol.2016632110.3389/fphar.2015.00321 26793112
    [Google Scholar]
  114. YangJ. Harte-HargroveL.C. SiaoC.J. MarinicT. ClarkeR. MaQ. JingD. LaFrancoisJ.J. BathK.G. MarkW. BallonD. LeeF.S. ScharfmanH.E. HempsteadB.L. proBDNF negatively regulates neuronal remodeling, synaptic transmission, and synaptic plasticity in hippocampus.Cell Rep.20147379680610.1016/j.celrep.2014.03.040 24746813
    [Google Scholar]
  115. KowiańskiP. LietzauG. CzubaE. WaśkowM. SteligaA. MoryśJ. BDNF: A key factor with multipotent impact on brain signaling and synaptic plasticity.Cell. Mol. Neurobiol.201838357959310.1007/s10571‑017‑0510‑4 28623429
    [Google Scholar]
  116. BergerT. LeeH. YoungA.H. AarslandD. ThuretS. Adult hippocampal neurogenesis in major depressive disorder and Alzheimer’s disease.Trends Mol. Med.202026980381810.1016/j.molmed.2020.03.010 32418723
    [Google Scholar]
  117. BabcockK.R. PageJ.S. FallonJ.R. WebbA.E. Adult hippocampal neurogenesis in aging and Alzheimer’s disease.Stem Cell Reports202116468169310.1016/j.stemcr.2021.01.019 33636114
    [Google Scholar]
  118. Moreno-JiménezE.P. Flor-GarcíaM. Terreros-RoncalJ. RábanoA. CafiniF. Pallas-BazarraN. ÁvilaJ. Llorens-MartínM. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease.Nat. Med.201925455456010.1038/s41591‑019‑0375‑9 30911133
    [Google Scholar]
  119. MuY. GageF.H. Adult hippocampal neurogenesis and its role in Alzheimer’s disease.Mol. Neurodegener.2011618510.1186/1750‑1326‑6‑85 22192775
    [Google Scholar]
  120. ClellandC.D. ChoiM. RombergC. ClemensonG.D.Jr FragniereA. TyersP. JessbergerS. SaksidaL.M. BarkerR.A. GageF.H. BusseyT.J. A functional role for adult hippocampal neurogenesis in spatial pattern separation.Science2009325593721021310.1126/science.1173215 19590004
    [Google Scholar]
  121. WalgraveH. BalusuS. SnoeckS. Vanden EyndenE. CraessaertsK. ThruppN. WolfsL. HorréK. FourneY. RoniszA. SilajdžićE. PenningA. TosoniG. Callaerts-VeghZ. D’HoogeR. ThalD.R. ZetterbergH. ThuretS. FiersM. FrigerioC.S. De StrooperB. SaltaE. Restoring miR-132 expression rescues adult hippocampal neurogenesis and memory deficits in Alzheimer’s disease.Cell Stem Cell2021281018051821.e810.1016/j.stem.2021.05.001 34033742
    [Google Scholar]
  122. MorelloM. LandelV. LacassagneE. BarangerK. AnnweilerC. FéronF. MilletP. Vitamin D improves neurogenesis and cognition in a mouse model of Alzheimer’s disease.Mol. Neurobiol.20185586463647910.1007/s12035‑017‑0839‑1 29318446
    [Google Scholar]
  123. LiQ. LiuY. SunM. Autophagy and Alzheimer’s disease.Cell. Mol. Neurobiol.201737337738810.1007/s10571‑016‑0386‑8 27260250
    [Google Scholar]
  124. ZhangZ. YangX. SongY.Q. TuJ. Autophagy in Alzheimer’s disease pathogenesis: Therapeutic potential and future perspectives.Ageing Res. Rev.20217210146410.1016/j.arr.2021.101464 34551326
    [Google Scholar]
  125. SalminenA. KaarnirantaK. KauppinenA. OjalaJ. HaapasaloA. SoininenH. HiltunenM. Impaired autophagy and APP processing in Alzheimer’s disease: The potential role of Beclin 1 interactome.Prog. Neurobiol.2013106-107335410.1016/j.pneurobio.2013.06.002 23827971
    [Google Scholar]
  126. LuoR. SuL.Y. LiG. YangJ. LiuQ. YangL.X. ZhangD.F. ZhouH. XuM. FanY. LiJ. YaoY.G. Activation of PPARA-mediated autophagy reduces Alzheimer disease-like pathology and cognitive decline in a murine model.Autophagy2020161526910.1080/15548627.2019.1596488 30898012
    [Google Scholar]
  127. ChenM.L. HongC.G. YueT. LiH.M. DuanR. HuW.B. CaoJ. WangZ.X. ChenC.Y. HuX.K. WuB. LiuH.M. TanY.J. LiuJ.H. LuoZ.W. ZhangY. RaoS.S. LuoM.J. YinH. WangY.Y. XiaK. TangS.Y. XieH. LiuZ.Z. Inhibition of miR-331-3p and miR-9-5p ameliorates Alzheimer’s disease by enhancing autophagy.Theranostics20211152395240910.7150/thno.47408 33500732
    [Google Scholar]
  128. Martini-StoicaH. XuY. BallabioA. ZhengH. The autophagy-lysosomal pathway in neurodegeneration: A TFEB perspective.Trends Neurosci.201639422123410.1016/j.tins.2016.02.002 26968346
    [Google Scholar]
  129. KingK.E. LosierT.T. RussellR.C. Regulation of autophagy enzymes by nutrient signaling.Trends Biochem. Sci.202146868770010.1016/j.tibs.2021.01.006 33593593
    [Google Scholar]
  130. ChenZ. ZhongC. Decoding Alzheimer’s disease from perturbed cerebral glucose metabolism: Implications for diagnostic and therapeutic strategies.Prog. Neurobiol.2013108214310.1016/j.pneurobio.2013.06.004 23850509
    [Google Scholar]
  131. KumarV. KimS.H. BishayeeK. Dysfunctional glucose metabolism in Alzheimer’s disease onset and potential pharmacological interventions.Int. J. Mol. Sci.20222317954010.3390/ijms23179540 36076944
    [Google Scholar]
  132. MuraleedharanR. DasguptaB. AMPK in the brain: Its roles in glucose and neural metabolism.FEBS J.202228982247226210.1111/febs.16151 34355526
    [Google Scholar]
  133. SunY. MaC. SunH. WangH. PengW. ZhouZ. WangH. PiC. ShiY. HeX. Metabolism: A novel shared link between diabetes mellitus and Alzheimer’s disease.J. Diabetes Res.2020202011210.1155/2020/4981814 32083135
    [Google Scholar]
  134. ManczakM. CalkinsM.J. ReddyP.H. Impaired mitochondrial dynamics and abnormal interaction of amyloid beta with mitochondrial protein Drp1 in neurons from patients with Alzheimer’s disease: implications for neuronal damage.Hum. Mol. Genet.201120132495250910.1093/hmg/ddr139 21459773
    [Google Scholar]
  135. CalkinsM.J. ManczakM. MaoP. ShirendebU. ReddyP.H. Impaired mitochondrial biogenesis, defective axonal transport of mitochondria, abnormal mitochondrial dynamics and synaptic degeneration in a mouse model of Alzheimer’s disease.Hum. Mol. Genet.201120234515452910.1093/hmg/ddr381 21873260
    [Google Scholar]
  136. BernardoT.C. Marques-AleixoI. BelezaJ. OliveiraP.J. AscensãoA. MagalhãesJ. Physical exercise and brain mitochondrial fitness: The possible role against A lzheimer’s disease.Brain Pathol.201626564866310.1111/bpa.12403 27328058
    [Google Scholar]
  137. Cuestas TorresD.M. CardenasF.P. Synaptic plasticity in Alzheimer’s disease and healthy aging.Rev. Neurosci.202031324526810.1515/revneuro‑2019‑0058 32250284
    [Google Scholar]
  138. BenarrochE.E. Glutamatergic synaptic plasticity and dysfunction in Alzheimer disease.Neurology201891312513210.1212/WNL.0000000000005807 29898976
    [Google Scholar]
  139. MatyniaA. KushnerS.A. SilvaA.J. Genetic approaches to molecular and cellular cognition: a focus on LTP and learning and memory.Annu. Rev. Genet.200236168772010.1146/annurev.genet.36.062802.091007 12429705
    [Google Scholar]
  140. PeineauS. RabiantK. PierreficheO. PotierB. Synaptic plasticity modulation by circulating peptides and metaplasticity: Involvement in Alzheimer’s disease.Pharmacol. Res.201813038540110.1016/j.phrs.2018.01.018 29425728
    [Google Scholar]
  141. StyrB. SlutskyI. Imbalance between firing homeostasis and synaptic plasticity drives early-phase Alzheimer’s disease.Nat. Neurosci.201821446347310.1038/s41593‑018‑0080‑x 29403035
    [Google Scholar]
  142. AbelT. NguyenP.V. BaradM. DeuelT.A.S. KandelE.R. BourtchouladzeR. Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based long-term memory.Cell199788561562610.1016/S0092‑8674(00)81904‑2 9054501
    [Google Scholar]
  143. LuG.L. LeeM.T. ChiouL.C. Orexin-mediated restoration of hippocampal synaptic potentiation in mice with established cocaine-conditioned place preference.Addict. Biol.20192461153116610.1111/adb.12672 30276922
    [Google Scholar]
  144. AlberiL. HoeyS.E. BraiE. ScottiA.L. MaratheS. Notch signaling in the brain: In good and bad times.Ageing Res. Rev.201312380181410.1016/j.arr.2013.03.004 23570941
    [Google Scholar]
  145. LiX. WuX. LuoP. XiongL. Astrocyte-specific NDRG2 gene: functions in the brain and neurological diseases.Cell. Mol. Life Sci.202077132461247210.1007/s00018‑019‑03406‑9 31834421
    [Google Scholar]
  146. LongH.Z. ChengY. ZhouZ.W. LuoH.Y. WenD.D. GaoL.C. PI3K/AKT signal pathway: A target of natural products in the prevention and treatment of Alzheimer’s disease and Parkinson’s disease.Front. Pharmacol.20211264863610.3389/fphar.2021.648636 33935751
    [Google Scholar]
  147. KumarM. KumarA. SindhuR.K. KushwahA.S. Arbutin attenuates monosodium L-glutamate induced neurotoxicity and cognitive dysfunction in rats.Neurochem. Int.202115110521710.1016/j.neuint.2021.105217 34710534
    [Google Scholar]
  148. HayesM.T. Parkinson’s disease and parkinsonism.Am. J. Med.2019132780280710.1016/j.amjmed.2019.03.001 30890425
    [Google Scholar]
  149. ReichS.G. SavittJ.M. Parkinson’s disease.Med. Clin. North Am.2019103233735010.1016/j.mcna.2018.10.014 30704685
    [Google Scholar]
  150. RazaC. AnjumR. ShakeelN.A. Parkinson’s disease: Mechanisms, translational models and management strategies.Life Sci.2019226779010.1016/j.lfs.2019.03.057 30980848
    [Google Scholar]
  151. CosgroveJ. AltyJ.E. JamiesonS. Cognitive impairment in Parkinson’s disease.Postgrad. Med. J.201591107421222010.1136/postgradmedj‑2015‑133247 25814509
    [Google Scholar]
  152. AarslandD. BatzuL. HallidayG.M. GeurtsenG.J. BallardC. Ray ChaudhuriK. WeintraubD. Parkinson disease-associated cognitive impairment.Nat. Rev. Dis. Primers2021714710.1038/s41572‑021‑00280‑3 34210995
    [Google Scholar]
  153. MattilaP.M. RöyttäM. LönnbergP. MarjamäkiP. HeleniusH. RinneJ.O. Choline acetyltransferase activity and striatal dopamine receptors in Parkinson’s disease in relation to cognitive impairment.Acta Neuropathol.2001102216016610.1007/s004010100372 11563631
    [Google Scholar]
  154. DovonouA. BolducC. Soto LinanV. GoraC. PeraltaM.R.III LévesqueM. Animal models of Parkinson’s disease: bridging the gap between disease hallmarks and research questions.Transl. Neurodegener.20231213610.1186/s40035‑023‑00368‑8 37468944
    [Google Scholar]
  155. ShenX. XieY.Y. ChenC. WangX.P. Effects of electroacupuncture on cognitive function in rats with Parkinson’s disease.Int. J. Physiol. Pathophysiol. Pharmacol.201573145151 26823963
    [Google Scholar]
  156. NguyenD.H. CunninghamJ.T. SumienN. Estrogen receptor involvement in vascular cognitive impairment and vascular dementia pathogenesis and treatment.Geroscience202143115916610.1007/s11357‑020‑00263‑4 32902819
    [Google Scholar]
  157. ZanonZ.M.C. SveikataL. ViswanathanA. YilmazP. Cerebral small vessel disease and vascular cognitive impairment: from diagnosis to management.Curr. Opin. Neurol.202134224625710.1097/WCO.0000000000000913 33630769
    [Google Scholar]
  158. van der FlierW.M. SkoogI. SchneiderJ.A. PantoniL. MokV. ChenC.L.H. ScheltensP. Vascular cognitive impairment.Nat. Rev. Dis. Primers2018411800310.1038/nrdp.2018.3 29446769
    [Google Scholar]
  159. SkrobotO.A. AttemsJ. EsiriM. HortobágyiT. IronsideJ.W. KalariaR.N. KingA. LammieG.A. MannD. NealJ. Ben-ShlomoY. KehoeP.G. LoveS. Vascular cognitive impairment neuropathology guidelines (VCING): the contribution of cerebrovascular pathology to cognitive impairment.Brain2016139112957296910.1093/brain/aww214 27591113
    [Google Scholar]
  160. VinciguerraL. LanzaG. PuglisiV. FisicaroF. PennisiM. BellaR. CantoneM. Update on the neurobiology of vascular cognitive impairment: from lab to clinic.Int. J. Mol. Sci.2020218297710.3390/ijms21082977 32340195
    [Google Scholar]
  161. TianZ. JiX. LiuJ. Neuroinflammation in vascular cognitive impairment and dementia: Current evidence, advances, and prospects.Int. J. Mol. Sci.20222311622410.3390/ijms23116224 35682903
    [Google Scholar]
  162. YangT. ZhangF. Targeting transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) for the intervention of vascular cognitive impairment and dementia.Arterioscler. Thromb. Vasc. Biol.202141197116 33054394
    [Google Scholar]
  163. TucsekZ. Noa Valcarcel-AresM. TarantiniS. YabluchanskiyA. FülöpG. GautamT. OrockA. CsiszarA. DeakF. UngvariZ. Hypertension-induced synapse loss and impairment in synaptic plasticity in the mouse hippocampus mimics the aging phenotype: Implications for the pathogenesis of vascular cognitive impairment.Geroscience201739438540610.1007/s11357‑017‑9981‑y 28664509
    [Google Scholar]
  164. HuangY. LiaoX. WangH. LuoJ. ZhongS. ZhangZ. zhang, F.; Chen, J.; Xie, F. Effects of imperatorin on apoptosis and synaptic plasticity in vascular dementia rats.Sci. Rep.2021111859010.1038/s41598‑021‑88206‑7 33883654
    [Google Scholar]
  165. TuoQ. ZouJ. LeiP. Rodent models of vascular cognitive impairment.J. Mol. Neurosci.202171121 33107013
    [Google Scholar]
  166. LiY. ZhangJ. Animal models of stroke.Animal Model. Exp. Med.20214320421910.1002/ame2.12179 34557647
    [Google Scholar]
  167. LiG. ShiY. ZhangL. YangC. WanT. LvH. JianW. LiJ. LiM. Efficacy of acupuncture in animal models of vascular dementia: A systematic review and network meta-analysis.Front. Aging Neurosci.20221495218110.3389/fnagi.2022.952181 36062145
    [Google Scholar]
  168. AhnS.M. KimY.R. KimH.N. ShinY.I. ShinH.K. ChoiB.T. Electroacupuncture ameliorates memory impairments by enhancing oligodendrocyte regeneration in a mouse model of prolonged cerebral hypoperfusion.Sci. Rep.2016612864610.1038/srep28646 27350403
    [Google Scholar]
  169. BiX. FengY. WuZ. FangJ. Electroacupuncture attenuates cognitive impairment in rat model of chronic cerebral hypoperfusion via miR-137/NOX4 axis.Evid. Based Complement. Alternat. Med.2021202111010.1155/2021/8842022 33986822
    [Google Scholar]
  170. DaiY. ZhangY. YangM. LinH. LiuY. XuW. DingY. TaoJ. LiuW. Electroacupuncture increases the hippocampal synaptic transmission efficiency and long-term plasticity to improve vascular cognitive impairment.Mediators Inflamm.2022202211510.1155/2022/5985143 35784174
    [Google Scholar]
  171. HanD. LiuZ. WangG. ZhangY. WuZ. Electroacupuncture improves cognitive deficits through increasing regional cerebral blood flow and alleviating inflammation in CCI rats.Evid. Based Complement. Alternat. Med.201720171810.1155/2017/5173168 28491108
    [Google Scholar]
  172. ZhengC.X. LuM. GuoY.B. ZhangF.X. LiuH. GuoF. HuangX.L. HanX.H. Electroacupuncture ameliorates learning and memory and improves synaptic plasticity via activation of the PKA/CREB signaling pathway in cerebral hypoperfusion.Evid. Based Complement. Alternat. Med.2016201611110.1155/2016/7893710 27829866
    [Google Scholar]
  173. FengX. YangS. LiuJ. HuangJ. PengJ. LinJ. TaoJ. ChenL. Electroacupuncture ameliorates cognitive impairment through inhibition of NF-κB-mediated neuronal cell apoptosis in cerebral ischemia-reperfusion injured rats.Mol. Med. Rep.2013751516152210.3892/mmr.2013.1392 23525450
    [Google Scholar]
  174. LiuF. JiangY.J. ZhaoH.J. YaoL.Q. ChenL.D. Electroacupuncture ameliorates cognitive impairment and regulates the expression of apoptosis-related genes Bcl-2 and Bax in rats with cerebral ischaemia-reperfusion injury.Acupunct. Med.201533647848410.1136/acupmed‑2014‑010728 26376847
    [Google Scholar]
  175. LinR. WuY. TaoJ. ChenB. ChenJ. ZhaoC. YuK. LiX. ChenL.D. Electroacupuncture improves cognitive function through Rho GTPases and enhances dendritic spine plasticity in rats with cerebral ischemia-reperfusion.Mol. Med. Rep.20161332655266010.3892/mmr.2016.4870 26846874
    [Google Scholar]
  176. LinR. YuK. LiX. TaoJ. LinY. ZhaoC. LiC. ChenL.D. Electroacupuncture ameliorates post-stroke learning and memory through minimizing ultrastructural brain damage and inhibiting the expression of MMP-2 and MMP-9 in cerebral ischemia-reperfusion injured rats.Mol. Med. Rep.201614122523310.3892/mmr.2016.5227 27177163
    [Google Scholar]
  177. LinR. LiX. LiuW. ChenW. YuK. ZhaoC. HuangJ. YangS. PengH. TaoJ. ChenL. Electro-acupuncture ameliorates cognitive impairment via improvement of brain-derived neurotropic factor-mediated hippocampal synaptic plasticity in cerebral ischemia-reperfusion injured rats.Exp. Ther. Med.20171432373237910.3892/etm.2017.4750 28962170
    [Google Scholar]
  178. ZhangY. MaoX. LinR. LiZ. LinJ. Electroacupuncture ameliorates cognitive impairment through inhibition of Ca2+-mediated neurotoxicity in a rat model of cerebral ischaemia-reperfusion injury.Acupunct. Med.201836640140710.1136/acupmed‑2016‑011353 30257960
    [Google Scholar]
  179. ShiY. DaiQ. JiB. HuangL. ZhuangX. MoY. WangJ. Electroacupuncture pretreatment prevents cognitive impairment induced by cerebral ischemia-reperfusion via adenosine A1 receptors in rats.Front. Aging Neurosci.20211368070610.3389/fnagi.2021.680706 34413765
    [Google Scholar]
  180. FengX-D. WangH-L. LiuF-L. LiR-Q. WanM-Y. LiJ-Y. ShiJ. WuM-L. ChenJ-H. SunW-J. FengH-X. ZhaoW. HuangJ. LiuR-C. HaoW-X. Electroacupuncture improves learning and memory functions in a rat cerebral ischemia/] reperfusion injury model through PI3K/Akt signaling pathway activation.Neural Regen. Res.20211661011101610.4103/1673‑5374.300454 33269744
    [Google Scholar]
  181. SuK. HaoW. LvZ. WuM. LiJ. HuY. ZhangZ. GaoJ. FengX. Electroacupuncture of Baihui and Shenting ameliorates cognitive deficits via Pten/Akt pathway in a rat cerebral ischemia injury model.Front. Neurol.20221385536210.3389/fneur.2022.855362 36062010
    [Google Scholar]
  182. HuangJ. YouX. LiuW. SongC. LinX. ZhangX. TaoJ. ChenL. Electroacupuncture ameliorating post-stroke cognitive impairments via inhibition of peri-infarct astroglial and microglial/macrophage P2 purinoceptors-mediated neuroinflammation and hyperplasia.BMC Complement. Altern. Med.201717148010.1186/s12906‑017‑1974‑y 29017492
    [Google Scholar]
  183. LiuW. WuJ. HuangJ. ZhuoP. LinY. WangL. LinR. ChenL. TaoJ. Electroacupuncture regulates hippocampal synaptic plasticity via miR-134-mediated LIMK1 function in rats with ischemic stroke.Neural Plast.2017201711110.1155/2017/9545646 28116173
    [Google Scholar]
  184. HeJ. ZhaoC. LiuW. HuangJ. LiangS. ChenL. TaoJ. Neurochemical changes in the hippocampus and prefrontal cortex associated with electroacupuncture for learning and memory impairment.Int. J. Mol. Med.2018412709716 29207061
    [Google Scholar]
  185. WenT. ZhangX. LiangS. LiZ. XingX. LiuW. TaoJ. Electroacupuncture ameliorates cognitive impairment and spontaneous low-frequency brain activity in rats with ischemic stroke.J. Stroke Cerebrovasc. Dis.201827102596260510.1016/j.jstrokecerebrovasdis.2018.05.021 30220306
    [Google Scholar]
  186. WangZ. LinB. LiuW. PengH. SongC. HuangJ. LiZ. ChenL. TaoJ. Electroacupuncture ameliorates learning and memory deficits via hippocampal 5-HT1A receptors and the PKA signaling pathway in rats with ischemic stroke.Metab. Brain Dis.202035354955810.1007/s11011‑019‑00489‑y 31515682
    [Google Scholar]
  187. ZhengY. QinZ. TsoiB. ShenJ. ZhangZ.J. Electroacupuncture on Trigeminal nerve-innervated acupoints ameliorates poststroke cognitive impairment in rats with middle cerebral artery occlusion: involvement of neuroprotection and synaptic plasticity.Neural Plast.2020202011310.1155/2020/8818328 32963517
    [Google Scholar]
  188. ZhongX. ChenB. LiZ. LinR. RuanS. WangF. LiangH. TaoJ. Electroacupuncture ameliorates cognitive impairment through the inhibition of NLRP3 inflammasome activation by regulating melatonin-mediated mitophagy in stroke rats.Neurochem. Res.20224771917193010.1007/s11064‑022‑03575‑3 35301664
    [Google Scholar]
  189. DuanX. ZhangL. YuJ. WeiW. LiuX. XuF. GuoS. The effect of different frequencies of electroacupuncture on BDNF and NGF expression in the hippocampal CA3 area of the ischemic hemisphere in cerebral ischemic rats.Neuropsychiatr. Dis. Treat.2018142689269610.2147/NDT.S183436 30349267
    [Google Scholar]
  190. ZhangY. LinR. TaoJ. WuY. ChenB. YuK. ChenJ. LiX. ChenL.D. Electroacupuncture improves cognitive ability following cerebral ischemia reperfusion injury via CaM-CaMKIV-CREB signaling in the rat hippocampus.Exp. Ther. Med.201612277778210.3892/etm.2016.3428 27446275
    [Google Scholar]
  191. XieG. SongC. LinX. YangM. FanX. LiuW. TaoJ. ChenL. HuangJ. Electroacupuncture regulates hippocampal synaptic plasticity via inhibiting janus-activated kinase 2/signal transducer and activator of transcription 3 signaling in cerebral ischemic rats.J. Stroke Cerebrovasc. Dis.201928379279910.1016/j.jstrokecerebrovasdis.2018.11.025 30552029
    [Google Scholar]
  192. YangE.J. CaiM. LeeJ.H. Neuroprotective effects of electroacupuncture on an animal model of bilateral common carotid artery occlusion.Mol. Neurobiol.201653107228723610.1007/s12035‑015‑9610‑7 26687230
    [Google Scholar]
  193. NishiyamaJ. Plasticity of dendritic spines: Molecular function and dysfunction in neurodevelopmental disorders.Psychiatry Clin. Neurosci.201973954155010.1111/pcn.12899 31215705
    [Google Scholar]
  194. ChidambaramS.B. RathipriyaA.G. BollaS.R. BhatA. RayB. MahalakshmiA.M. ManivasagamT. ThenmozhiA.J. EssaM.M. GuilleminG.J. ChandraR. SakharkarM.K. Dendritic spines: Revisiting the physiological role.Prog. Neuropsychopharmacol. Biol. Psychiatry20199216119310.1016/j.pnpbp.2019.01.005 30654089
    [Google Scholar]
  195. SuratkalS.S. YenY.H. NishiyamaJ. Imaging dendritic spines: molecular organization and signaling for plasticity.Curr. Opin. Neurobiol.202167667410.1016/j.conb.2020.08.006 32942126
    [Google Scholar]
  196. SegalM. Dendritic spines, synaptic plasticity and neuronal survival: activity shapes dendritic spines to enhance neuronal viability.Eur. J. Neurosci.201031122178218410.1111/j.1460‑9568.2010.07270.x 20550565
    [Google Scholar]
  197. MatsuzakiM. HonkuraN. Ellis-DaviesG.C.R. KasaiH. Structural basis of long-term potentiation in single dendritic spines.Nature2004429699376176610.1038/nature02617 15190253
    [Google Scholar]
  198. ZhouQ. HommaK.J. PooM. Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses.Neuron200444574975710.1016/j.neuron.2004.11.011 15572107
    [Google Scholar]
  199. SalaC. SegalM. Dendritic spines: the locus of structural and functional plasticity.Physiol. Rev.201494114118810.1152/physrev.00012.2013 24382885
    [Google Scholar]
  200. BoschM. CastroJ. SaneyoshiT. MatsunoH. SurM. HayashiY. Structural and molecular remodeling of dendritic spine substructures during long-term potentiation.Neuron201482244445910.1016/j.neuron.2014.03.021 24742465
    [Google Scholar]
  201. SaviozA. LeubaG. ValletP.G. A framework to understand the variations of PSD-95 expression in brain aging and in Alzheimer’s disease.Ageing Res. Rev.201418869410.1016/j.arr.2014.09.004 25264360
    [Google Scholar]
  202. GuoX. TianY. YangY. LiS. GuoL. ShiJ. Pituitary adenylate cyclase-activating polypeptide protects against cognitive impairment caused by chronic cerebral hypoperfusion.Mol. Neurobiol.20215894309432210.1007/s12035‑021‑02381‑2 33999349
    [Google Scholar]
  203. YasudaR. Biophysics of biochemical signaling in dendritic spines: Implications in synaptic plasticity.Biophys. J.2017113102152215910.1016/j.bpj.2017.07.029 28866426
    [Google Scholar]
  204. Takemoto-KimuraS. SuzukiK. HoriganeS. KamijoS. InoueM. SakamotoM. FujiiH. BitoH. Calmodulin kinases: essential regulators in health and disease.J. Neurochem.2017141680881810.1111/jnc.14020 28295333
    [Google Scholar]
  205. BitoH. Takemoto-KimuraS. Ca2+/CREB/CBP-dependent gene regulation: A shared mechanism critical in long-term synaptic plasticity and neuronal survival.Cell Calcium2003344-542543010.1016/S0143‑4160(03)00140‑4 12909086
    [Google Scholar]
  206. BenitoE. BarcoA. CREB’s control of intrinsic and synaptic plasticity: implications for CREB-dependent memory models.Trends Neurosci.201033523024010.1016/j.tins.2010.02.001 20223527
    [Google Scholar]
  207. LuM.C. LeeI.T. HongL.Z. Ben-ArieE. LinY.H. LinW.T. KaoP.Y. YangM.D. ChanY.C. Coffeeberry activates the CaMKII/CREB/BDNF pathway, normalizes autophagy and apoptosis signaling in nonalcoholic fatty liver rodent model.Nutrients20211310365210.3390/nu13103652 34684653
    [Google Scholar]
  208. von Bohlen und HalbachO.; von Bohlen und Halbach, V. BDNF effects on dendritic spine morphology and hippocampal function.Cell Tissue Res.2018373372974110.1007/s00441‑017‑2782‑x 29450725
    [Google Scholar]
  209. Colucci-D’AmatoL. SperanzaL. VolpicelliF. Neurotrophic factor BDNF, physiological functions and therapeutic potential in depression, neurodegeneration and brain cancer.Int. J. Mol. Sci.20202120777710.3390/ijms21207777 33096634
    [Google Scholar]
  210. WangC.S. KavalaliE.T. MonteggiaL.M. BDNF signaling in context: From synaptic regulation to psychiatric disorders.Cell20221851627610.1016/j.cell.2021.12.003 34963057
    [Google Scholar]
  211. WangJ. NiuY. TaoH. XueM. WanC. Knockdown of lncRNA TUG1 inhibits hippocampal neuronal apoptosis and participates in aerobic exercise-alleviated vascular cognitive impairment.Biol. Res.20205315310.1186/s40659‑020‑00320‑4 33213523
    [Google Scholar]
  212. ScottH.L. TamagniniF. NarduzzoK.E. HowarthJ.L. LeeY.B. WongL.F. BrownM.W. WarburtonE.C. BashirZ.I. UneyJ.B. MicroRNA-132 regulates recognition memory and synaptic plasticity in the perirhinal cortex.Eur. J. Neurosci.20123672941294810.1111/j.1460‑9568.2012.08220.x 22845676
    [Google Scholar]
  213. FortinD.A. SrivastavaT. SoderlingT.R. Structural modulation of dendritic spines during synaptic plasticity.Neuroscientist201218432634110.1177/1073858411407206 21670426
    [Google Scholar]
  214. WangJ.Q. GuoM.L. JinD.Z. XueB. FibuchE.E. MaoL.M. Roles of subunit phosphorylation in regulating glutamate receptor function.Eur. J. Pharmacol.201472818318710.1016/j.ejphar.2013.11.019 24291102
    [Google Scholar]
  215. RibeiroD. PetrignaL. PereiraF.C. MuscellaA. BiancoA. TavaresP. The impact of physical exercise on the circulating levels of BDNF and NT 4/5: A review.Int. J. Mol. Sci.20212216881410.3390/ijms22168814 34445512
    [Google Scholar]
  216. NicolettiV.G. PajerK. CalcagnoD. PajendaG. NógrádiA. The role of metals in the neuroregenerative action of BDNF, GDNF, NGF and other neurotrophic factors.Biomolecules2022128101510.3390/biom12081015 35892326
    [Google Scholar]
  217. NordvallG. ForsellP. SandinJ. Neurotrophin-targeted therapeutics: A gateway to cognition and more?Drug Discov. Today2022271010331810.1016/j.drudis.2022.07.003 35850433
    [Google Scholar]
  218. WangX.X. ZhangB. XiaR. JiaQ.Y. Inflammation, apoptosis and autophagy as critical players in vascular dementia.Eur. Rev. Med. Pharmacol. Sci.2020241896019614 33015803
    [Google Scholar]
  219. WangP. GuanY.F. DuH. ZhaiQ.W. SuD.F. MiaoC.Y. Induction of autophagy contributes to the neuroprotection of nicotinamide phosphoribosyltransferase in cerebral ischemia.Autophagy201281778710.4161/auto.8.1.18274 22113203
    [Google Scholar]
  220. ZhouH. WangJ. JiangJ. StavrovskayaI.G. LiM. LiW. WuQ. ZhangX. LuoC. ZhouS. SirianniA.C. SarkarS. KristalB.S. FriedlanderR.M. WangX. N-acetyl-serotonin offers neuroprotection through inhibiting mitochondrial death pathways and autophagic activation in experimental models of ischemic injury.J. Neurosci.20143482967297810.1523/JNEUROSCI.1948‑13.2014 24553937
    [Google Scholar]
  221. AzediF. TavakolS. KetabforoushA.H.M.E. KhazaeiG. BakhtazadA. MousavizadehK. JoghataeiM.T. Modulation of autophagy by melatonin via sirtuins in stroke: From mechanisms to therapies.Life Sci.202230712087010.1016/j.lfs.2022.120870 35948118
    [Google Scholar]
  222. LanT. XuY. LiS. LiN. ZhangS. ZhuH. Cornin protects against cerebral ischemia/reperfusion injury by preventing autophagy via the PI3K/Akt/mTOR pathway.BMC Pharmacol. Toxicol.20222318210.1186/s40360‑022‑00620‑3 36280856
    [Google Scholar]
  223. LuX. ZhangJ. DingY. WuJ. ChenG. Novel therapeutic strategies for ischemic stroke: Recent insights into autophagy.Oxid. Med. Cell. Longev.2022202211510.1155/2022/3450207 35720192
    [Google Scholar]
  224. MaiuriM.C. ZalckvarE. KimchiA. KroemerG. Self-eating and self-killing: crosstalk between autophagy and apoptosis.Nat. Rev. Mol. Cell Biol.20078974175210.1038/nrm2239 17717517
    [Google Scholar]
  225. ErtaM. QuintanaA. HidalgoJ. Interleukin-6, a major cytokine in the central nervous system.Int. J. Biol. Sci.2012891254126610.7150/ijbs.4679 23136554
    [Google Scholar]
  226. AllanS.M. RothwellN.J. Cytokines and acute neurodegeneration.Nat. Rev. Neurosci.200121073474410.1038/35094583 11584311
    [Google Scholar]
  227. SmithC.J. EmsleyH.C.A. GavinC.M. GeorgiouR.F. VailA. BarberanE.M. del ZoppoG.J. HallenbeckJ.M. RothwellN.J. HopkinsS.J. TyrrellP.J. Peak plasma interleukin-6 and other peripheral markers of inflammation in the first week of ischaemic stroke correlate with brain infarct volume, stroke severity and long-term outcome.BMC Neurol.200441210.1186/1471‑2377‑4‑2 14725719
    [Google Scholar]
  228. HunterC.A. JonesS.A. IL-6 as a keystone cytokine in health and disease.Nat. Immunol.201516544845710.1038/ni.3153 25898198
    [Google Scholar]
  229. EgeaJ. BuendiaI. ParadaE. NavarroE. LeónR. LopezM.G. Anti-inflammatory role of microglial alpha7 nAChRs and its role in neuroprotection.Biochem. Pharmacol.201597446347210.1016/j.bcp.2015.07.032 26232730
    [Google Scholar]
  230. Albert-GascóH. Ros-BernalF. Castillo-GómezE. Olucha-BordonauF.E. MAP/ERK signaling in developing cognitive and emotional function and its effect on pathological and neurodegenerative processes.Int. J. Mol. Sci.20202112447110.3390/ijms21124471 32586047
    [Google Scholar]
  231. RiveraA. VanzulliI. ButtA. A central role for ATP signalling in glial interactions in the CNS.Curr. Drug Targets201617161829183310.2174/1389450117666160711154529 27400972
    [Google Scholar]
  232. HuangC. ChiX. LiR. HuX. XuH. LiJ. ZhouD. Inhibition of P2X7 receptor ameliorates nuclear factor-kappa B mediated neuroinflammation induced by status epilepticus in rat hippocampus.J. Mol. Neurosci.201763217318410.1007/s12031‑017‑0968‑z 28856625
    [Google Scholar]
  233. ChinY. KishiM. SekinoM. NakajoF. AbeY. TerazonoY. HiroyukiO. KatoF. KoizumiS. GachetC. HisatsuneT. Involvement of glial P2Y1 receptors in cognitive deficit after focal cerebral stroke in a rodent model.J. Neuroinflammation201310186010.1186/1742‑2094‑10‑95 23890321
    [Google Scholar]
  234. NishiboriM. WangD. OusakaD. WakeH. High mobility group box-1 and blood-brain barrier disruption.Cells2020912265010.3390/cells9122650 33321691
    [Google Scholar]
  235. SulhanS. LyonK.A. ShapiroL.A. HuangJ.H. Neuroinflammation and blood-brain barrier disruption following traumatic brain injury: Pathophysiology and potential therapeutic targets.J. Neurosci. Res.2020981192810.1002/jnr.24331 30259550
    [Google Scholar]
  236. JinR. YangG. LiG. Molecular insights and therapeutic targets for blood-brain barrier disruption in ischemic stroke: Critical role of matrix metalloproteinases and tissue-type plasminogen activator.Neurobiol. Dis.201038337638510.1016/j.nbd.2010.03.008 20302940
    [Google Scholar]
  237. ChazelasP. SteichenC. FavreauF. TrouillasP. HannaertP. ThuillierR. GiraudS. HauetT. GuillardJ. Oxidative stress evaluation in ischemia reperfusion models: Characteristics, limits and perspectives.Int. J. Mol. Sci.2021225236610.3390/ijms22052366 33673423
    [Google Scholar]
  238. Orellana-UrzúaS. RojasI. LíbanoL. RodrigoR. Pathophysiology of ischemic stroke: Role of oxidative stress.Curr. Pharm. Des.202026344246426010.2174/1381612826666200708133912 32640953
    [Google Scholar]
  239. LushchakV.I. LushchakO. Interplay between reactive oxygen and nitrogen species in living organisms.Chem. Biol. Interact.202134910968010.1016/j.cbi.2021.109680 34606757
    [Google Scholar]
  240. MotavafM. PiaoX. Oligodendrocyte development and implication in perinatal white matter injury.Front. Cell. Neurosci.20211576448610.3389/fncel.2021.764486 34803612
    [Google Scholar]
  241. XinW. ChanJ.R. Myelin plasticity: Sculpting circuits in learning and memory.Nat. Rev. Neurosci.2020211268269410.1038/s41583‑020‑00379‑8 33046886
    [Google Scholar]
  242. NaveK.A. Myelination and support of axonal integrity by glia.Nature2010468732124425210.1038/nature09614 21068833
    [Google Scholar]
  243. ChamorroÁ. DirnaglU. UrraX. PlanasA.M. Neuroprotection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflammation.Lancet Neurol.201615886988110.1016/S1474‑4422(16)00114‑9 27180033
    [Google Scholar]
  244. DiZ. GuoQ. ZhangQ. Neuroprotective effect of moxibustion on cerebral ischemia/reperfusion injury in rats by downregulating NR2B expression.Evid. Based Complement. Alternat. Med.2021202111010.1155/2021/5370214 34733340
    [Google Scholar]
  245. ShiptonO.A. PaulsenO. GluN2A and GluN2B subunit-containing NMDA receptors in hippocampal plasticity.Philos. Trans. R. Soc. Lond. B Biol. Sci.201436916332013016310.1098/rstb.2013.0163 24298164
    [Google Scholar]
  246. ChengM. WuX. WangF. TanB. HuJ. Electro-acupuncture inhibits p66Shc-mediated oxidative stress to facilitate functional recovery after spinal cord injury.J. Mol. Neurosci.202070122031204010.1007/s12031‑020‑01609‑5 32488847
    [Google Scholar]
  247. XuM.S. YinL.M. ChengA.F. ZhangY.J. ZhangD. TaoM.M. DengY.Y. GeL.B. ShanC.L. Cerebral ischemia-reperfusion is associated with upregulation of cofilin-1 in the motor cortex.Front. Cell Dev. Biol.2021963434710.3389/fcell.2021.634347 33777942
    [Google Scholar]
  248. MirzaeiG. AdeliH. Resting state functional magnetic resonance imaging processing techniques in stroke studies.Rev. Neurosci.201627887188510.1515/revneuro‑2016‑0052 27845889
    [Google Scholar]
  249. JayaweeraH.K. LagopoulosJ. DuffyS.L. LewisS.J.G. HermensD.F. NorrieL. HickieI.B. NaismithS.L. Spectroscopic markers of memory impairment, symptom severity and age of onset in older people with lifetime depression: Discrete roles of N-acetyl aspartate and glutamate.J. Affect. Disord.2015183313810.1016/j.jad.2015.04.023 26000754
    [Google Scholar]
  250. BekdashR.A. Neuroprotective effects of choline and other methyl donors.Nutrients20191112299510.3390/nu11122995 31817768
    [Google Scholar]
  251. AslamB. BasitM. NisarM.A. KhurshidM. RasoolM.H. Proteomics: Technologies and their applications.J. Chromatogr. Sci.201755218219610.1093/chromsci/bmw167 28087761
    [Google Scholar]
  252. HospF. MannM. A primer on concepts and applications of proteomics in neuroscience.Neuron201796355857110.1016/j.neuron.2017.09.025 29096073
    [Google Scholar]
  253. AkalınP.K. Introduction to bioinformatics.Mol. Nutr. Food Res.200650761061910.1002/mnfr.200500273 16810733
    [Google Scholar]
  254. FoulkesA.C. WatsonD.S. GriffithsC.E.M. WarrenR.B. HuberW. BarnesM.R. Research techniques made simple: Bioinformatics for genome-scale biology.J. Invest. Dermatol.20171379e163e16810.1016/j.jid.2017.07.095 28843296
    [Google Scholar]
  255. RajaS.N. CarrD.B. CohenM. FinnerupN.B. FlorH. GibsonS. KeefeF.J. MogilJ.S. RingkampM. SlukaK.A. SongX.J. StevensB. SullivanM.D. TutelmanP.R. UshidaT. VaderK. The revised International Association for the Study of Pain definition of pain: concepts, challenges, and compromises.Pain202016191976198210.1097/j.pain.0000000000001939 32694387
    [Google Scholar]
  256. ZhouY.Q. MeiW. TianX.B. TianY.K. LiuD.Q. YeD.W. The therapeutic potential of Nrf2 inducers in chronic pain: Evidence from preclinical studies.Pharmacol. Ther.202122510784610.1016/j.pharmthera.2021.107846 33819559
    [Google Scholar]
  257. CaoS. FisherD.W. YuT. DongH. The link between chronic pain and Alzheimer’s disease.J. Neuroinflammation201916120410.1186/s12974‑019‑1608‑z 31694670
    [Google Scholar]
  258. CohenS.P. VaseL. HootenW.M. Chronic pain: an update on burden, best practices, and new advances.Lancet2021397102892082209710.1016/S0140‑6736(21)00393‑7 34062143
    [Google Scholar]
  259. KankowskiS. GrotheC. Haastert-TaliniK. Neuropathic pain: Spotlighting anatomy, experimental models, mechanisms, and therapeutic aspects.Eur. J. Neurosci.20215424475449610.1111/ejn.15266 33942412
    [Google Scholar]
  260. AnJ.X. HeY. QianX.Y. WuJ.P. XieY.K. GuoQ.L. WilliamsJ.P. CopeD.K. A new animal model of trigeminal neuralgia produced by administration of cobra venom to the infraorbital nerve in the rat.Anesth. Analg.2011113365265610.1213/ANE.0b013e3182245add 21778333
    [Google Scholar]
  261. BushnellM.C. ČekoM. LowL.A. Cognitive and emotional control of pain and its disruption in chronic pain.Nat. Rev. Neurosci.201314750251110.1038/nrn3516 23719569
    [Google Scholar]
  262. Hylands-WhiteN. DuarteR.V. RaphaelJ.H. An overview of treatment approaches for chronic pain management.Rheumatol. Int.2017371294210.1007/s00296‑016‑3481‑8 27107994
    [Google Scholar]
  263. VickersA.J. VertosickE.A. LewithG. MacPhersonH. FosterN.E. ShermanK.J. IrnichD. WittC.M. LindeK. Acupuncture for chronic pain: Update of an individual patient data meta-analysis.J. Pain201819545547410.1016/j.jpain.2017.11.005 29198932
    [Google Scholar]
  264. GongD. YuX. JiangM. LiC. WangZ. Differential proteomic analysis of the hippocampus in rats with neuropathic pain to investigate the use of electroacupuncture in relieving mechanical allodynia and cognitive decline.Neural Plast.2021202111010.1155/2021/5597163 34394341
    [Google Scholar]
  265. ZhangJ.F. WilliamsJ.P. ShiW.R. QianX.Y. ZhaoQ.N. LuG.F. AnJ.X. Potential molecular mechanisms of electroacupuncture with spatial learning and memory impairment induced by chronic pain on a rat model.Pain Physician2022252E271E283 35322982
    [Google Scholar]
  266. ChambersD.C. CarewA.M. LukowskiS.W. PowellJ.E. Transcriptomics and single-cell RNA-sequencing.Respirology2019241293610.1111/resp.13412 30264869
    [Google Scholar]
  267. Ifrim ChenF. AntochiA.D. BarbilianA.G. Acupuncture and the retrospect of its modern research.Rom. J. Morphol. Embryol.2019602411418 31658313
    [Google Scholar]
  268. ZhouW. BenharashP. Effects and mechanisms of acupuncture based on the principle of meridians.J. Acupunct. Meridian Stud.20147419019310.1016/j.jams.2014.02.007 25151452
    [Google Scholar]
  269. ChenY. LeiY. MoL.Q. LiJ. WangM.H. WeiJ.C. ZhouJ. Electroacupuncture pretreatment with different waveforms prevents brain injury in rats subjected to cecal ligation and puncture via inhibiting microglial activation, and attenuating inflammation, oxidative stress and apoptosis.Brain Res. Bull.201612724825910.1016/j.brainresbull.2016.10.009 27771396
    [Google Scholar]
  270. ZhangR. LaoL. RenK. BermanB.M. Mechanisms of acupuncture-electroacupuncture on persistent pain.Anesthesiology2014120248250310.1097/ALN.0000000000000101 24322588
    [Google Scholar]
  271. ChouP. ChuH. LinJ.G. Effects of electroacupuncture treatment on impaired cognition and quality of life in Taiwanese stroke patients.J. Altern. Complement. Med.2009151010671073 20050300
    [Google Scholar]
  272. TeohA.Y.B. ChongC.C.N. LeungW.W. ChanS.K.C. TseY.K. NgE.K.W. LaiP.B.S. WuJ.C.Y. LauJ.Y.W. Electroacupuncture-reduced sedative and analgesic requirements for diagnostic EUS: a prospective, randomized, double-blinded, sham-controlled study.Gastrointest. Endosc.201887247648510.1016/j.gie.2017.07.029 28750840
    [Google Scholar]
  273. XuS. YuL. LuoX. WangM. ChenG. ZhangQ. LiuW. ZhouZ. SongJ. JingH. HuangG. LiangF. WangH. WangW. Manual acupuncture versus sham acupuncture and usual care for prophylaxis of episodic migraine without aura: multicentre, randomised clinical trial.BMJ2020368m69710.1136/bmj.m697 32213509
    [Google Scholar]
  274. SunY. LiuY. LiuB. ZhouK. YueZ. ZhangW. FuW. YangJ. LiN. HeL. ZangZ. SuT. FangJ. DingY. QinZ. SongH. HuH. ZhaoH. MoQ. ZhouJ. WuJ. LiuX. WangW. PangR. ChenH. WangX. LiuZ. Efficacy of acupuncture for chronic prostatitis/chronic pelvic pain syndrome.Ann. Intern. Med.2021174101357136610.7326/M21‑1814 34399062
    [Google Scholar]
  275. YangJ.W. WangL.Q. ZouX. YanS.Y. WangY. ZhaoJ.J. TuJ.F. WangJ. ShiG.X. HuH. ZhouW. DuY. LiuC.Z. Effect of acupuncture for postprandial distress syndrome.Ann. Intern. Med.20201721277778510.7326/M19‑2880 32422066
    [Google Scholar]
  276. TuJ.F. YangJ.W. ShiG.X. YuZ.S. LiJ.L. LinL.L. DuY.Z. YuX.G. HuH. LiuZ.S. JiaC.S. WangL.Q. ZhaoJ.J. WangJ. WangT. WangY. WangT.Q. ZhangN. ZouX. WangY. ShaoJ.K. LiuC.Z. Efficacy of intensive acupuncture versus sham acupuncture in knee osteoarthritis: A randomized controlled trial.Arthritis Rheumatol.202173344845810.1002/art.41584 33174383
    [Google Scholar]
  277. WangT. LiuJ. LuoX. HuL. LuH. Functional metabolomics innovates therapeutic discovery of traditional Chinese medicine derived functional compounds.Pharmacol. Ther.202122410782410.1016/j.pharmthera.2021.107824 33667524
    [Google Scholar]
  278. LiuZ. GuoF. WangY. LiC. ZhangX. LiH. DiaoL. GuJ. WangW. LiD. HeF. BATMAN-TCM: A bioinformatics analysis tool for molecular mechanism of traditional Chinese medicine.Sci. Rep.2016612114610.1038/srep21146 26879404
    [Google Scholar]
  279. LiS. ZhangB. Traditional Chinese medicine network pharmacology: Theory, methodology and application.Chin. J. Nat. Med.201311211012010.1016/S1875‑5364(13)60037‑0 23787177
    [Google Scholar]
  280. FangS. DongL. LiuL. GuoJ. ZhaoL. ZhangJ. BuD. LiuX. HuoP. CaoW. DongQ. WuJ. ZengX. WuY. ZhaoY. HERB: a high-throughput experiment- and reference-guided database of traditional Chinese medicine.Nucleic Acids Res.202149D1D1197D120610.1093/nar/gkaa1063 33264402
    [Google Scholar]
  281. ZengQ. LiL. SiuW. JinY. CaoM. LiW. ChenJ. CongW. MaM. ChenK. WuZ. A combined molecular biology and network pharmacology approach to investigate the multi-target mechanisms of Chaihu Shugan San on Alzheimer’s disease.Biomed. Pharmacother.201912010937010.1016/j.biopha.2019.109370 31563815
    [Google Scholar]
  282. WangM. ChenL. LiuD. ChenH. TangD.D. ZhaoY.Y. Metabolomics highlights pharmacological bioactivity and biochemical mechanism of traditional Chinese medicine.Chem. Biol. Interact.201727313314110.1016/j.cbi.2017.06.011 28619388
    [Google Scholar]
  283. Garrido-SuárezB.B. GarridoG. MárquezL. MartínezI. HernándezI. MerinoN. LuqueY. DelgadoR. BoschF. Pre-emptive anti-hyperalgesic effect of electroacupuncture in carrageenan-induced inflammation: Role of nitric oxide.Brain Res. Bull.200979633934410.1016/j.brainresbull.2009.04.014 19410637
    [Google Scholar]
  284. YenL.T. HsiehC.L. HsuH.C. LinY.W. Preventing the induction of acid saline-induced fibromyalgia pain in mice by electroacupuncture or APETx2 injection.Acupunct. Med.202038318819310.1136/acupmed‑2017‑011457 31986902
    [Google Scholar]
  285. WangC. LiangX. YuY. LiY. WenX. LiuM. Electroacupuncture pretreatment alleviates myocardial injury through regulating mitochondrial function.Eur. J. Med. Res.20202512910.1186/s40001‑020‑00431‑4 32738910
    [Google Scholar]
  286. Acosta-GaleanaI. Hernández-MartínezR. Reyes-CruzT. ChiqueteE. Aceves-BuendiaJ.J. RNA-binding proteins as a common ground for neurodegeneration and inflammation in amyotrophic lateral sclerosis and multiple sclerosis.Front. Mol. Neurosci.202316119363610.3389/fnmol.2023.1193636 37475885
    [Google Scholar]
  287. GebauerF. SchwarzlT. ValcárcelJ. HentzeM.W. RNA-binding proteins in human genetic disease.Nat. Rev. Genet.202122318519810.1038/s41576‑020‑00302‑y 33235359
    [Google Scholar]
  288. VaresiA. CampagnoliL.I.M. BarbieriA. RossiL. RicevutiG. EspositoC. ChirumboloS. MarchesiN. PascaleA. RNA binding proteins in senescence: A potential common linker for age-related diseases?Ageing Res. Rev.20238810195810.1016/j.arr.2023.101958 37211318
    [Google Scholar]
/content/journals/cn/10.2174/1570159X22999240209102116
Loading
/content/journals/cn/10.2174/1570159X22999240209102116
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test