Skip to content
2000
Volume 23, Issue 2
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Background

The identification of specific circulating miRNAs has been proposed as a valuable tool for elucidating the pathophysiology of brain damage or injury and predicting patient outcomes.

Objective

This study aims to apply several bioinformatic tools in order to clarify miRNA interactions with potential genes involved in brain injury, emphasizing the need of using a computational approach to determine the most likely correlations between miRNAs and target genes. Specifically, this study centers on elucidating the roles of miR-34b, miR-34c, miR-135a, miR-200c, and miR-451a.

Methods

After a careful evaluation of different software available (analyzing the strengths and limitations), we applied three tools, one to perform an analysis of the validated targets (miRTarBase), and two to evaluate functional annotations (miRBase and TAM 2.0).

Results

Research findings indicate elevated levels of miR-135a and miR-34b in patients with traumatic brain injury (TBI) within the first day post-injury, while miR-200c and miR-34c were found to be upregulated after 7 days. Moreover, miR-451a and miR-135a were found overexpressed in the serum, while miRNAs 34b, 34c, and 200c, had lower serum levels at baseline post brain injury.

Conclusion

This study emphasizes the use of computational methods in determining the most likely relationships between miRNAs and target genes by investigating several bioinformatic techniques to elucidate miRNA interactions with potential genes. Specifically, this study focuses on the functions of miR-34b, miR-34c, miR-135a, miR-200c, and miR-451a, providing an up-to-date overview and suggesting future research directions for identifying theranomiRNAs related to brain injury, both at the tissue and serum levels.

Loading

Article metrics loading...

/content/journals/cn/10.2174/1570159X22666240808124427
2024-08-08
2024-12-26
Loading full text...

Full text loading...

References

  1. ShaoF. WangX. WuH. WuQ. ZhangJ. Microglia and neuroinflammation: Crucial pathological mechanisms in traumatic brain injury-induced neurodegeneration.Front. Aging Neurosci.20221482508610.3389/fnagi.2022.825086
    [Google Scholar]
  2. AhluwaliaM. GaurP. VaibhavK. Brain injury and neurodegeneration: molecular, functional, and translational approach.Biomedicines2023117194710.3390/biomedicines11071947 37509586
    [Google Scholar]
  3. BrettB.L. GardnerR.C. GodboutJ. Dams-O’ConnorK. KeeneC.D. Traumatic brain injury and risk of neurodegenerative disorder.Biol. Psychiatry202291549850710.1016/j.biopsych.2021.05.025 34364650
    [Google Scholar]
  4. SessaF. MagliettaF. BertozziG. SalernoM. Di MizioG. MessinaG. MontanaA. RicciP. PomaraC. Human brain injury and mirnas: An experimental study.Int. J. Mol. Sci.20192071546https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064195391&doi=10.3390%2Fijms20071546&partnerID=40&md5=e33a639f22c3e66154945309fc0f24df10.3390/ijms20071546 30934805
    [Google Scholar]
  5. CarvalhoL.B. dos Santos SannaP.L. dos Santos AfonsoC.C. BondanE.F. da Silva FeltranG. FerreiraM.R. BirbrairA. AndiaD.C. LatiniA. Foganholi da SilvaR.A. MicroRNA biogenesis machinery activation and lncRNA and REST overexpression as neuroprotective responses to fight inflammation in the hippocampus.J. Neuroimmunol.202338257814910.1016/j.jneuroim.2023.578149 37481910
    [Google Scholar]
  6. BoninS. D’ErricoS. MedeotC. MoreschiC. CiglieriS.S. PeruchM. ConcatoM. AzzaliniE. PreviderèC. FattoriniP. Evaluation of a set of miRNAs in 26 Cases of fatal traumatic brain injuries.Int. J. Mol. Sci.202324131083610.3390/ijms241310836 37446013
    [Google Scholar]
  7. KhatriN. SumadhuraB. KumarS. KaundalR.K. SharmaS. DatusaliaA.K. The complexity of secondary cascade consequent to traumatic brain injury: pathobiology and potential treatments.Curr. Neuropharmacol.202119111984201110.2174/1570159X19666210215123914 33588734
    [Google Scholar]
  8. Fesharaki-ZadehA. Oxidative stress in traumatic brain injury.Int. J. Mol. Sci.202223211300010.3390/ijms232113000
    [Google Scholar]
  9. FreireM.A.M. RochaG.S. BittencourtL.O. FalcaoD. LimaR.R. CavalcantiJ.R.L.P. Cellular and molecular pathophysiology of traumatic brain injury: what have we learned so far?Biology (Basel)2023128113910.3390/biology12081139 37627023
    [Google Scholar]
  10. BertozziG. MagliettaF. SessaF. ScotoE. CipolloniL. Di MizioG. Traumatic brain injury: a forensic approach. A literature review.Curr. Neuropharmacol.201917113http://www.eurekaselect.com/node/176333/article 31686630
    [Google Scholar]
  11. SlotaJ.A. BoothS.A. MicroRNAs in neuroinflammation: Implications in disease pathogenesis, biomarker discovery and therapeutic applications.Noncoding RNA2019523510.3390/ncrna5020035 31022830
    [Google Scholar]
  12. Gaytán-PachecoN. Ibáñez-SalazarA. Herrera-Van OostdamA.S. Oropeza-ValdezJ.J. Magaña-AquinoM. Adrián LópezJ. Monárrez-EspinoJ. López-HernándezY. miR-146a, miR-221, and miR-155 are involved in inflammatory immune response in severe COVID-19 patients.Diagnostics (Basel)202213113310.3390/diagnostics13010133 36611425
    [Google Scholar]
  13. IndrieriA. CarrellaS. CarotenutoP. BanfiS. FrancoB. The pervasive role of the MiR-181 family in development, neurodegeneration, and cancer.Int. J. Mol. Sci.2020216209210.3390/ijms21062092 32197476
    [Google Scholar]
  14. LiS. LeiZ. SunT. The role of microRNAs in neurodegenerative diseases: a review.Cell Biol. Toxicol.2023391538310.1007/s10565‑022‑09761‑x
    [Google Scholar]
  15. GentileG. MorelloG. La CognataV. GuarnacciaM. ConfortiF.L. CavallaroS. Dysregulated miRNAs as biomarkers and therapeutical targets in neurodegenerative diseases.J. Pers. Med.202212577010.3390/jpm12050770 35629192
    [Google Scholar]
  16. TanL. YuJ.T. TanL. Causes and consequences of MicroRNA dysregulation in neurodegenerative diseases.Mol. Neurobiol.20155131249126210.1007/s12035‑014‑8803‑9
    [Google Scholar]
  17. KamalM. MushtaqG. GreigN. Current update on synopsis of miRNA dysregulation in neurological disorders.CNS Neurol. Disord. Drug Targets201514449250110.2174/1871527314666150225143637 25714967
    [Google Scholar]
  18. ZhangW. XiaoD. MaoQ. XiaH. Role of neuroinflammation in neurodegeneration development.Signal Transduct. Target. Ther.20238126710.1038/s41392‑023‑01486‑5
    [Google Scholar]
  19. SessaF. SalernoM. EspositoM. CocimanoG. PisanelliD. MalikA. KhanA.A. PomaraC. New insight into mechanisms of cardiovascular diseases: An integrative analysis approach to identify TheranoMiRNAs.Int. J. Mol. Sci.2023247678110.3390/ijms24076781 37047756
    [Google Scholar]
  20. BertoliG. CavaC. CastiglioniI. MicroRNAs as biomarkers for diagnosis, Prognosis and theranostics in prostate cancer.Int. J. Mol. Sci.201617342110.3390/ijms17030421 27011184
    [Google Scholar]
  21. XieG. ChenH. HeC. HuS. XiaoX. LuoQ. The dysregulation of miRNAs in epilepsy and their regulatory role in inflammation and apoptosis.Funct. Integr. Genomics202323328710.1007/s10142‑023‑01220‑y
    [Google Scholar]
  22. MaQ. ZhangL. PearceW.J. MicroRNAs in brain development and cerebrovascular pathophysiology.Am. J. Physiol. Cell Physiol.20193171C3C1910.1152/ajpcell.00022.2019 30840494
    [Google Scholar]
  23. Di PietroV. YakoubK.M. ScarpaU. Di PietroC. BelliA. MicroRNA signature of traumatic brain injury: From the biomarker discovery to the point-of-care.Front. Neurol.2018942910.3389/fneur.2018.00429 29963002
    [Google Scholar]
  24. MussoN. BivonaD. BonomoC. BonacciP. D’IppolitoM.E. BoccagniC. RubinoF. De TantiA. LuccaL.F. PingueV. ColomboV. EstraneoA. StefaniS. AndrioloM. BagnatoS. Investigating microRNAs as biomarkers in disorders of consciousness: A longitudinal multicenter study.Sci. Rep.20231311841510.1038/s41598‑023‑45719‑7 37891240
    [Google Scholar]
  25. NazarovP.V. KreisS. Integrative approaches for analysis of mRNA and microRNA high-throughput data.Comput. Struct. Biotechnol. J.2021191154116210.1016/j.csbj.2021.01.029 33680358
    [Google Scholar]
  26. KozomaraA. BirgaoanuM. Griffiths-JonesS. miRBase: from microRNA sequences to function.Nucleic Acids Res.201947D1D155D16210.1093/nar/gky1141 30423142
    [Google Scholar]
  27. MaugeriM. BarbagalloD. BarbagalloC. BanelliB. Di MauroS. PurrelloF. MagroG. RagusaM. Di PietroC. RomaniM. PurrelloM. Altered expression of miRNAs and methylation of their promoters are correlated in neuroblastoma.Oncotarget2016750833308334110.18632/oncotarget.13090 27829219
    [Google Scholar]
  28. SaitoY. SaitoH. MicroRNAs in cancers and neurodegenerative disorders.Front. Genet.20123194 23056009
    [Google Scholar]
  29. van RooijE. KauppinenS. Development of micro RNA therapeutics is coming of age.EMBO Mol. Med.20146785186410.15252/emmm.201100899 24935956
    [Google Scholar]
  30. ShahS.Z.A. ZhaoD. HussainT. SabirN. YangL. Regulation of MicroRNAs-mediated autophagic flux: A new regulatory avenue for neurodegenerative diseases with focus on prion diseases.Front. Aging Neurosci.20181013910.3389/fnagi.2018.00139 29867448
    [Google Scholar]
  31. SantosD.M. Solá. S.; Steer, C.J.; Rodrigues, C.C.M.P. MiR-34a regulates mouse neural stem cell differentiation.PLoS One201168e21396
    [Google Scholar]
  32. HuH.Y. GuoS. XiJ. YanZ. FuN. ZhangX. MenzelC. LiangH. YangH. ZhaoM. ZengR. ChenW. PääboS. KhaitovichP. MicroRNA expression and regulation in human, chimpanzee, and macaque brains.PLoS Genet.2011710e100232710.1371/journal.pgen.1002327 22022286
    [Google Scholar]
  33. de AntonellisP. MedagliaC. CusanelliE. AndolfoI. LiguoriL. De VitaG. CarotenutoM. BelloA. FormigginiF. GaleoneA. De RosaG. VirgilioA. ScognamiglioI. SciroM. BassoG. SchulteJ.H. CinalliG. IolasconA. ZolloM. MiR-34a targeting of Notch ligand delta-like 1 impairs CD15+/CD133+ tumor-propagating cells and supports neural differentiation in medulloblastoma.PLoS One201169e2458410.1371/journal.pone.0024584 21931765
    [Google Scholar]
  34. BurgosK. MalenicaI. MetpallyR. CourtrightA. RakelaB. BeachT. ShillH. AdlerC. SabbaghM. VillaS. TembeW. CraigD. Van Keuren-JensenK. Profiles of extracellular miRNA in cerebrospinal fluid and serum from patients with Alzheimer’s and Parkinson’s diseases correlate with disease status and features of pathology.PLoS One201495e9483910.1371/journal.pone.0094839 24797360
    [Google Scholar]
  35. PodolskaA. KaczkowskiB. KampB.P. SøkildeR. LitmanT. FredholmM. CireraS. MicroRNA expression profiling of the porcine developing brain.PLoS One201161e1449410.1371/journal.pone.0014494 21253018
    [Google Scholar]
  36. ZhaoY. JiS. WangJ. HuangJ. ZhengP. mRNA-Seq and microRNA-Seq whole-transcriptome analyses of rhesus monkey embryonic stem cell neural differentiation revealed the potential regulators of rosette neural stem cells.DNA Res.201421554155410.1093/dnares/dsu019 24939742
    [Google Scholar]
  37. GargN. VijayakumarT. BakhshinyanD. VenugopalC. SinghS.K. MicroRNA regulation of brain tumour initiating cells in central nervous system tumours.Stem Cells Int.2015201511510.1155/2015/141793 26064134
    [Google Scholar]
  38. SmithB. TreadwellJ. ZhangD. LyD. McKinnellI. WalkerP.R. SikorskaM. Large-scale expression analysis reveals distinct microRNA profiles at different stages of human neurodevelopment.PLoS One201056e1110910.1371/journal.pone.0011109 20559549
    [Google Scholar]
  39. StumpfovaZ. HezovaR. MeliA.C. SlabyO. MichalekJ. MicroRNA profiling of activated and tolerogenic human dendritic cells.Mediators Inflamm.2014201425968910.1155/2014/259689
    [Google Scholar]
  40. FuschiP. CarraraM. VoellenkleC. Garcia-ManteigaJ.M. RighiniP. MaimoneB. SangalliE. VillaF. SpecchiaC. PicozzaM. NanoG. GaetanoC. SpinettiG. PucaA.A. MagentaA. MartelliF. Central role of the p53 pathway in the noncoding-RNA response to oxidative stress.Aging (Albany NY)20179122559258610.18632/aging.101341 29242407
    [Google Scholar]
  41. ChatterjeeP. BhattacharyyaM. BandyopadhyayS. RoyD. Studying the system-level involvement of microRNAs in Parkinson’s disease.PLoS One201494e9375110.1371/journal.pone.0093751 24690883
    [Google Scholar]
  42. SaugstadJ.A. Non-coding RNAs in stroke and neuroprotection.Front. Neurol.201565010.3389/fneur.2015.00050 25821444
    [Google Scholar]
  43. Meza-SosaK.F. Pedraza-AlvaG. Pérez-MartínezL. microRNAs: Key triggers of neuronal cell fate.Front. Cell. Neurosci.2014817510.3389/fncel.2014.00175 25009466
    [Google Scholar]
  44. TianY. NanY. HanL. ZhangA. WangG. JiaZ. HaoJ. PuP. ZhongY. KangC. MicroRNA miR-451 downregulates the PI3K/AKT pathway through CAB39 in human glioma.Int. J. Oncol.201240411051112 22179124
    [Google Scholar]
  45. BhomiaM. BalakathiresanN.S. WangK.K. PapaL. MaheshwariR.K. A panel of serum MiRNA biomarkers for the diagnosis of severe to mild traumatic brain injury in humans.Sci. Rep.2016612814810.1038/srep28148 27338832
    [Google Scholar]
  46. RenY. ZhouX. MeiM. YuanX.B. HanL. WangG.X. JiaZ.F. XuP. PuP.Y. KangC.S. MicroRNA-21 inhibitor sensitizes human glioblastoma cells U251 (PTEN-mutant) and LN229 (PTEN-wild type) to taxol.BMC Cancer20101012710.1186/1471‑2407‑10‑27 20113523
    [Google Scholar]
  47. MaesO. ChertkowH. WangE. SchipperH. MicroRNA: Implications for Alzheimer disease and other human CNS disorders.Curr. Genomics200910315416810.2174/138920209788185252 19881909
    [Google Scholar]
  48. McKiernanR.C. Jimenez-MateosE.M. BrayI. EngelT. BrennanG.P. SanoT. MichalakZ. MoranC. DelantyN. FarrellM. O’BrienD. MellerR. SimonR.P. StallingsR.L. HenshallD.C. Reduced mature microRNA levels in association with dicer loss in human temporal lobe epilepsy with hippocampal sclerosis.PLoS One201275e3592110.1371/journal.pone.0035921 22615744
    [Google Scholar]
  49. BaiX. ZhengL. XuY. LiangY. LiD. Role of microRNA-34b-5p in cancer and injury: how does it work?Cancer Cell Int.202222138110.1186/s12935‑022‑02797‑3
    [Google Scholar]
  50. DesoleC. GalloS. VitacolonnaA. MontaroloF. BertolottoA. VivienD. ComoglioP. CrepaldiT. HGF and MET: From brain development to neurological disorders.Front. Cell Dev. Biol.2021968360910.3389/fcell.2021.683609 34179015
    [Google Scholar]
  51. RansohoffR.M. SchaferD. VincentA. BlachèreN.E. Bar-OrA. Neuroinflammation: Ways in which the immune system affects the brain.Neurotherapeutics201512489690910.1007/s13311‑015‑0385‑3 26306439
    [Google Scholar]
  52. DiSabatoD.J. QuanN. GodboutJ.P. Neuroinflammation: the devil is in the details.J. Neurochem.2016139S213615310.1111/jnc.13607 26990767
    [Google Scholar]
  53. BrighentiM. MicroRNA and MET in lung cancer.Ann. Transl. Med.201535
    [Google Scholar]
  54. LiY.J. DuL. Aldana-MasangkayG. WangX. UrakR. FormanS.J. RosenS.T. ChenY. Regulation of miR-34b/c-targeted gene expression program by SUMOylation.Nucleic Acids Res.201846147108712310.1093/nar/gky484 29893976
    [Google Scholar]
  55. OlejniczakM. Kotowska-ZimmerA. KrzyzosiakW. Stress-induced changes in miRNA biogenesis and functioning.Cell. Mol. Life Sci.201875217719110.1007/s00018‑017‑2591‑0 28717872
    [Google Scholar]
  56. SarkarS.N. RussellA.E. Engler-ChiurazziE.B. PorterK.N. SimpkinsJ.W. MicroRNAs and the genetic nexus of brain aging, neuroinflammation, neurodegeneration, and brain trauma.Aging Dis.201910232935210.14336/AD.2018.0409 31011481
    [Google Scholar]
  57. Garcia-MartínezI. Sánchez-MoraC. PagerolsM. RicharteV. CorralesM. FadeuilheC. CormandB. CasasM. Ramos-QuirogaJ.A. RibasésM. Preliminary evidence for association of genetic variants in pri-miR-34b/c and abnormal miR-34c expression with attention deficit and hyperactivity disorder.Transl. Psychiatry201668e87910.1038/tp.2016.151 27576168
    [Google Scholar]
  58. KapoorA. NationD.A. Role of Notch signaling in neurovascular aging and Alzheimer’s disease.Semin. Cell Dev. Biol.2021116909710.1016/j.semcdb.2020.12.011 33384205
    [Google Scholar]
  59. AkilA. Gutiérrez-GarcíaA.K. GuenterR. RoseJ.B. BeckA.W. ChenH. RenB. Notch signaling in vascular endothelial cells, angiogenesis, and tumor progression: An update and prospective.Front. Cell Dev. Biol.2021964235210.3389/fcell.2021.642352 33681228
    [Google Scholar]
  60. ZhangL. LiaoY. TangL. MicroRNA-34 family: a potential tumor suppressor and therapeutic candidate in cancer.J. Exp. Clin. Cancer Res.20193815310.1186/s13046‑019‑1059‑5
    [Google Scholar]
  61. SiebelC. LendahlU. Notch signaling in development, tissue homeostasis, and disease.Physiol. Rev.20179741235129410.1152/physrev.00005.2017 28794168
    [Google Scholar]
  62. FangL. SunB. HuangL. YuanH. ZhangS. ChenJ. YuZ. LuoH. Potent inhibition of miR-34b on migration and invasion in metastatic prostate cancer cells by regulating the TGF-β pathway.Int. J. Mol. Sci.20171812276210.3390/ijms18122762 29257105
    [Google Scholar]
  63. HiewL.F. PoonC.H. YouH.Z. LimL.W. Tgf‐β/smad signalling in neurogenesis: Implications for neuropsychiatric diseases.Cells2021106138210.3390/cells10061382 34205102
    [Google Scholar]
  64. ShiJ. HaoA. ZhangQ. SuiG. The role of YY1 in oncogenesis and its potential as a drug target in cancer therapies.Curr. Cancer Drug Targets201515214515710.2174/1568009615666150131124200 25817371
    [Google Scholar]
  65. FarahzadiR. ValipourB. FathiE. PirmoradiS. MolaviO. MontazersahebS. SanaatZ. Oxidative stress regulation and related metabolic pathways in epithelial-mesenchymal transition of breast cancer stem cells.Stem Cell Res. Ther.202314134210.1186/s13287‑023‑03571‑6 38017510
    [Google Scholar]
  66. JacquesC. TesfayeR. LavaudM. GeorgesS. Baud’huinM. LamoureuxF. OryB. Implication of the p53-related miR-34c,] -125b, and -203 in the osteoblastic differentiation and the malignant transformation of bone sarcomas.Cells20209481010.3390/cells9040810 32230926
    [Google Scholar]
  67. FuJ. ImaniS. WuM.Y. WuR.C. MicroRNA-34 family in cancers: role, mechanism, and therapeutic potential.Cancers (Basel)20231519472310.3390/cancers15194723 37835417
    [Google Scholar]
  68. ShenZ.G. LiuX.Z. ChenC.X. LuJ.M. Knockdown of E2F3 inhibits proliferation, migration, and invasion and increases apoptosis in glioma cells.Oncol. Res.20172591555156610.3727/096504017X14897158009178 28337965
    [Google Scholar]
  69. Ghafouri-FardS. KhoshbakhtT. HussenB.M. DongP. GasslerN. TaheriM. BaniahmadA. DilmaghaniN.A. A review on the role of cyclin dependent kinases in cancers.Cancer Cell Int.202222132510.1186/s12935‑022‑02747‑z
    [Google Scholar]
  70. YuanK. WangX. DongH. MinW. HaoH. YangP. Selective inhibition of CDK4/6: A safe and effective strategy for developing anticancer drugs.Acta Pharm. Sin. B2021111305410.1016/j.apsb.2020.05.001 33532179
    [Google Scholar]
  71. ZhouY.L. XuY.J. QiaoC.W. MiR-34c-3p suppresses the proliferation and invasion of non-small cell lung cancer (NSCLC) by inhibiting PAC1/MAPK pathway.Int J Clin Exp Pathol.20158
    [Google Scholar]
  72. CannellI. BushellM. Regulation of Myc by miR-34c: A mechanism to prevent genomic instability?Cell Cycle20109142798280210.4161/cc.9.14.12182 20603603
    [Google Scholar]
  73. KadkhodaS. EslamiS. Mahmud HussenB. Ghafouri-FardS. A review on the importance of miRNA-135 in human diseases.Front. Genet.20221397358510.3389/fgene.2022.973585
    [Google Scholar]
  74. HutterS. BolinS. WeishauptH. SwartlingF. Modeling and targeting MYC genes in childhood brain tumors.Genes (Basel)20178410710.3390/genes8040107 28333115
    [Google Scholar]
  75. TregubP.P. IbrahimliI. AverchukA.S. SalminaA.B. LitvitskiyP.F. ManasovaZ.S. PopovaI.A. The role of microRNAs in epigenetic regulation of signaling pathways in neurological pathologies.Int. J. Mol. Sci.202324161289910.3390/ijms241612899 37629078
    [Google Scholar]
  76. GuanT. DominguezC.X. AmezquitaR.A. LaidlawB.J. ChengJ. Henao-MejiaJ. WilliamsA. FlavellR.A. LuJ. KaechS.M. ZEB1, ZEB2, and the miR-200 family form a counterregulatory network to regulate CD8+ T cell fates.J. Exp. Med.201821541153116810.1084/jem.20171352 29449309
    [Google Scholar]
  77. BurkU. SchubertJ. WellnerU. SchmalhoferO. VincanE. SpadernaS. BrabletzT. A reciprocal repression between ZEB1 and members of the miR‐200 family promotes EMT and invasion in cancer cells.EMBO Rep.20089658258910.1038/embor.2008.74 18483486
    [Google Scholar]
  78. PoonakiE. KahlertU.D. MeuthS.G. GorjiA. The role of the ZEB1-neuroinflammation axis in CNS disorders.J. Neuroinflammation202219127510.1186/s12974‑022‑02636‑2 36402997
    [Google Scholar]
  79. LeskeläS. Leandro-GarcíaL.J. MendiolaM. BarriusoJ. Inglada-PérezL. MuñozI. Martínez-DelgadoB. RedondoA. de SantiagoJ. RobledoM. HardissonD. Rodríguez-AntonaC. The miR-200 family controls-tubulin III expression and is associated with paclitaxel-based treatment response and progression-free survival in ovarian cancer patients.Endocr. Relat. Cancer2010181859510.1677/ERC‑10‑0148 21051560
    [Google Scholar]
  80. KozakJ. JonakK. MaciejewskiR. The function of miR-200 family in oxidative stress response evoked in cancer chemotherapy and radiotherapy.Biomed. Pharmacother.202012511003710.1016/j.biopha.2020.110037 32187964
    [Google Scholar]
  81. DrápelaS. BouchalJ. JollyM.K. CuligZ. SoučekK. ZEB1: A critical regulator of cell plasticity, DNA damage response, and therapy resistance.Front. Mol. Biosci.202073610.3389/fmolb.2020.00036 32266287
    [Google Scholar]
  82. SundararajanV. BurkU.C. Bajdak-RusinekK. Revisiting the miR-200 Family: A clan of five siblings with essential roles in development and disease.Biomolecules202212678110.3390/biom12060781 35740906
    [Google Scholar]
  83. HuangZ. ZhangZ. ZhouC. LiuL. HuangC. Epithelial-mesenchymal transition: The history, regulatory mechanism, and cancer therapeutic opportunities.MedComm202232e14410.1002/mco2.144
    [Google Scholar]
  84. RashidiS.K. KaliradA. RafieS. BehzadE. DezfouliM.A. The role of microRNAs in neurobiology and pathophysiology of the hippocampus.Front. Mol. Neurosci.202316122641310.3389/fnmol.2023.1226413 37727513
    [Google Scholar]
  85. MadathilS.K. SaatmanK.E. IGF-1/IGF-R signaling in traumatic brain injury: Impact on cell survival, neurogenesis, and behavioral outcome.Brain NeurotraumaMolecular, Neuropsychological, and Rehabilitation Aspects20156178
    [Google Scholar]
  86. StaryC.M. XuL. SunX. OuyangY.B. WhiteR.E. LeongJ. LiJ. XiongX. GiffardR.G. MicroRNA-200c contributes to injury from transient focal cerebral ischemia by targeting Reelin.Stroke201546255155610.1161/STROKEAHA.114.007041 25604249
    [Google Scholar]
  87. SadeghiM.S. lotfi, M.; Soltani, N.; Farmani, E.; Fernandez, J.H.O.; Akhlaghitehrani, S.; Mohammed, S.H.; Yasamineh, S.; Kalajahi, H.G.; Gholizadeh, O. Recent advances on high-efficiency of microRNAs in different types of lung cancer: a comprehensive review.Cancer Cell Int.202323128410.1186/s12935‑023‑03133‑z 37986065
    [Google Scholar]
  88. LiQ. LiY. ZhangD. GaoH. GaoX. Downregulation of microRNA 451 improves cell migration, invasion and tube formation in hypoxia treated HUVECs by targeting MIF.Mol. Med. Rep.20192021167117710.3892/mmr.2019.10357 31173234
    [Google Scholar]
  89. ZhongL. XuZ. JinX. HeY. ZhangJ. JiangT. ChenJ. miR 451a suppression of IL 6R can inhibit proliferation and increase apoptosis through the JAK2/STAT3 pathway in multiple myeloma.Oncol. Lett.2020206110.3892/ol.2020.12202 33123250
    [Google Scholar]
  90. XuL. YaoY. LuT. JiangL. miR-451a targeting IL-6R activates JAK2/STAT3 pathway, thus regulates proliferation and apoptosis of multiple myeloma cells.J. Musculoskelet. Neuronal Interact.2022222251260 35642704
    [Google Scholar]
  91. ThangaveluB. WilfredB.S. JohnsonD. GilsdorfJ.S. ShearD.A. BouttéA.M. Penetrating ballistic-like brain injury leads to microRNA dysregulation, BACE1 upregulation, and amyloid precursor protein loss in lesioned rat brain tissues.Front. Neurosci.20201491510.3389/fnins.2020.00915 33071724
    [Google Scholar]
  92. RoblesD. GuoD.H. WatsonN. AsanteD. Sukumari-RameshS. Dysregulation of serum microRNA after intracerebral hemorrhage in aged mice.Biomedicines202311382210.3390/biomedicines11030822 36979801
    [Google Scholar]
  93. WeiszH.A. KennedyD. WidenS. SprattH. SellS.L. BaileyC. Sheffield-MooreM. DeWittD.S. ProughD.S. LevinH. RobertsonC. HellmichH.L. MicroRNA sequencing of rat hippocampus and human biofluids identifies acute, chronic, focal and diffuse traumatic brain injuries.Sci. Rep.2020101334110.1038/s41598‑020‑60133‑z 32094409
    [Google Scholar]
  94. ShenJ. GaoF. ZhaoL. HaoQ. YangY.L. WangN.N. MicroRNA-34c promotes neuronal recovery in rats with spinal cord injury through the C-X-C motif ligand 14/Janus kinase 2/signal transducer and activator of transcription-3 axis.Chin. Med. J. (Engl.)2020133182177218510.1097/CM9.0000000000001022 32826607
    [Google Scholar]
  95. TuY. HuY. MiRNA-34c-5p protects against cerebral ischemia/reperfusion injury: involvement of anti-apoptotic and anti-inflammatory activities.Metab. Brain Dis.20213661341135110.1007/s11011‑021‑00724‑5 33842985
    [Google Scholar]
  96. ArvolaO. GriffithsB. RaoA. XuL. PastroudisI.A. StaryC.M. Expression of miR-200c corresponds with increased reactive oxygen species and hypoxia markers after transient focal ischemia in mice.Neurochem. Int.202114910514610.1016/j.neuint.2021.105146 34343653
    [Google Scholar]
/content/journals/cn/10.2174/1570159X22666240808124427
Loading
/content/journals/cn/10.2174/1570159X22666240808124427
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): biomarkers; Brain injury; diagnosis; miRNA; prognosis; theranomiRNA
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test