Skip to content
2000
Volume 22, Issue 14
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Stroke is a neurological disorder with high disability and mortality rates. Almost 80% of stroke cases are ischemic stroke, and the remaining are hemorrhagic stroke. The only approved treatment for ischemic stroke is thrombolysis and/or thrombectomy. However, these treatments cannot sufficiently relieve the disease outcome, and many patients remain disabled even after effective thrombolysis. Therefore, rehabilitative therapies are necessary to induce remodeling in the brain. Currently, stem cell transplantation, especially the use of induced pluripotent stem cells (iPSCs), is considered a promising alternative therapy for stimulating neurogenesis and brain remodeling. iPSCs are generated from somatic cells by specific transcription factors. The biological functions of iPSCs are similar to those of embryonic stem cells (ESCs), including immunomodulation, reduced cerebral blood flow, cerebral edema, and autophagy. Although iPSC therapy plays a promising role in both hemorrhagic and ischemic stroke, its application is associated with certain limitations. Tumor formation, immune rejection, stem cell survival, and migration are some concerns associated with stem cell therapy. Therefore, cell-free therapy as an alternative method can overcome these limitations. This study reviews the therapeutic application of iPSCs in stroke models and the underlying mechanisms and constraints of these cells. Moreover, cell-free therapy using exosomes, apoptotic bodies, and microvesicles as alternative treatments is discussed.

Loading

Article metrics loading...

/content/journals/cn/10.2174/1570159X22666240603084558
2024-12-01
2024-11-22
Loading full text...

Full text loading...

References

  1. RogerV.L. GoA.S. Lloyd-JonesD.M. BenjaminE.J. BerryJ.D. BordenW.B. BravataD.M. DaiS. FordE.S. FoxC.S. FullertonH.J. GillespieC. HailpernS.M. HeitJ.A. HowardV.J. KisselaB.M. KittnerS.J. LacklandD.T. LichtmanJ.H. LisabethL.D. MakucD.M. MarcusG.M. MarelliA. MatcharD.B. MoyC.S. MozaffarianD. MussolinoM.E. NicholG. PaynterN.P. SolimanE.Z. SorlieP.D. SotoodehniaN. TuranT.N. ViraniS.S. WongN.D. WooD. TurnerM.B. Heart disease and stroke statistics-2012 update: A report from the American Heart Association.Circulation20121251e2e220 22179539
    [Google Scholar]
  2. HinkleJ.L. GuanciM.M. Acute ischemic stroke review.J. Neurosci. Nurs.200739528531010.1097/01376517‑200710000‑00005 17966295
    [Google Scholar]
  3. World Health OrganizationNeurological disorders: Public health challenges2006Available from: https://www.who.int/publications/i/item/9789241563369
  4. AmarencoP. BogousslavskyJ. CaplanL.R. DonnanG.A. HennericiM.G. New approach to stroke subtyping: The A-S-C-O (phenotypic) classification of stroke.Cerebrovasc. Dis.200927550250810.1159/000210433 19342826
    [Google Scholar]
  5. AbbottN.J. Röِnnbäck, L.; Hansson, E. Astrocyte–endothelial interactions at the blood–brain barrier.Nat. Rev. Neurosci.200671415310.1038/nrn1824 16371949
    [Google Scholar]
  6. del ZoppoG.J. SaverJ.L. JauchE.C. AdamsH.P.Jr Expansion of the time window for treatment of acute ischemic stroke with intravenous tissue plasminogen activator: A science advisory from the American Heart Association/American Stroke Association.Stroke20094082945294810.1161/STROKEAHA.109.192535 19478221
    [Google Scholar]
  7. SaverJ.L. GoyalM. van der LugtA. MenonB.K. MajoieC.B.L.M. DippelD.W. CampbellB.C. NogueiraR.G. DemchukA.M. TomaselloA. CardonaP. DevlinT.G. FreiD.F. du Mesnil de RochemontR. BerkhemerO.A. JovinT.G. SiddiquiA.H. van ZwamW.H. DavisS.M. Castañٌo, C.; Sapkota, B.L.; Fransen, P.S.; Molina, C.; van Oostenbrugge, R.J.; Chamorro, Á; Lingsma, H.; Silver, F.L.; Donnan, G.A.; Shuaib, A.; Brown, S.; Stouch, B.; Mitchell, P.J.; Davalos, A.; Roos, Y.B.W.E.M.; Hill, M.D. Time to treatment with endovascular thrombectomy and outcomes from ischemic stroke: A meta-analysis.JAMA2016316121279128810.1001/jama.2016.13647 27673305
    [Google Scholar]
  8. GervoisP. WolfsE. RatajczakJ. DillenY. VangansewinkelT. HilkensP. BronckaersA. LambrichtsI. StruysT. Stem cell-based therapies for ischemic stroke: Preclinical results and the potential of imaging-assisted evaluation of donor cell fate and mechanisms of brain regeneration.Med. Res. Rev.20163661080112610.1002/med.21400 27439773
    [Google Scholar]
  9. LiY. YuS.P. MohamadO. GenettaT. WeiL. Sublethal transient global ischemia stimulates migration of neuroblasts and neurogenesis in mice.Transl. Stroke Res.20101318419610.1007/s12975‑010‑0016‑6 21792374
    [Google Scholar]
  10. LiW.L. YuS.P. OgleM.E. DingX.S. WeiL. Enhanced neurogenesis and cell migration following focal ischemia and peripheral stimulation in mice.Dev. Neurobiol.200868131474148610.1002/dneu.20674 18777565
    [Google Scholar]
  11. KornackD.R. RakicP. The generation, migration, and differentiation of olfactory neurons in the adult primate brain.Proc. Natl. Acad. Sci. USA20019884752475710.1073/pnas.081074998 11296302
    [Google Scholar]
  12. MenezesJ.R.L. SmithC.M. NelsonK.C. LuskinM.B. The division of neuronal progenitor cells during migration in the neonatal mammalian forebrain.Mol. Cell. Neurosci.19956649650810.1006/mcne.1995.0002 8742267
    [Google Scholar]
  13. SmithC.M. LuskinM.B. Cell cycle length of olfactory bulb neuronal progenitors in the rostral migratory stream.Dev. Dyn.1998213222022710.1002/(SICI)1097‑0177(199810)213:2<220:AID‑AJA7>3.0.CO;2‑I 9786422
    [Google Scholar]
  14. KokaiaZ. ThoredP. ArvidssonA. LindvallO. Regulation of stroke-induced neurogenesis in adult brain--recent scientific progress.Cereb. Cortex200616Suppl. 1i162i16710.1093/cercor/bhj174 16766702
    [Google Scholar]
  15. WuQ. YangB. HuK. CaoC. ManY. WangP. Deriving osteogenic cells from induced pluripotent stem cells for bone tissue engineering.Tissue Eng. Part B Rev.20172311810.1089/ten.teb.2015.0559 27392674
    [Google Scholar]
  16. MohamadO. Drury-StewartD. SongM. FaulknerB. ChenD. YuS.P. WeiL. Vector-free and transgene-free human iPS cells differentiate into functional neurons and enhance functional recovery after ischemic stroke in mice.PLoS One201385e6416010.1371/journal.pone.0064160 23717557
    [Google Scholar]
  17. YuanT. LiaoW. FengN.H. LouY.L. NiuX. ZhangA.J. WangY. DengZ.F. Human induced pluripotent stem cell-derived neural stem cells survive, migrate, differentiate, and improve neurologic function in a rat model of middle cerebral artery occlusion.Stem Cell Res. Ther.2013437310.1186/scrt224 23769173
    [Google Scholar]
  18. TakahashiK. YamanakaS. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.Cell2006126466367610.1016/j.cell.2006.07.024 16904174
    [Google Scholar]
  19. YuF. LiY. MorsheadC. Induced pluripotent stem cells for the treatment of stroke: The potential and the pitfalls.Curr. Stem Cell Res. Ther.20138540741410.2174/1574888X113089990052 23895059
    [Google Scholar]
  20. GurdonJ.B. The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles.J. Embryol. Exp. Morphol.196210562264010.1242/dev.10.4.622
    [Google Scholar]
  21. WilmutI. SchniekeAE. McWhirJ. KindAJ. CampbellKHS. Viable offspring derived from fetal and adult mammalian cells.Nature19973856619810
    [Google Scholar]
  22. AbeK. YamashitaT. TakizawaS. KurodaS. KinouchiH. KawaharaN. Stem cell therapy for cerebral ischemia: From basic science to clinical applications.J. Cereb. Blood Flow Metab.20123271317133110.1038/jcbfm.2011.187 22252239
    [Google Scholar]
  23. MandaiM. WatanabeA. KurimotoY. HiramiY. MorinagaC. DaimonT. FujiharaM. AkimaruH. SakaiN. ShibataY. TeradaM. NomiyaY. TanishimaS. NakamuraM. KamaoH. SugitaS. OnishiA. ItoT. FujitaK. KawamataS. GoM.J. ShinoharaC. HataK. SawadaM. YamamotoM. OhtaS. OharaY. YoshidaK. KuwaharaJ. KitanoY. AmanoN. UmekageM. KitaokaF. TanakaA. OkadaC. TakasuN. OgawaS. YamanakaS. TakahashiM. Autologous induced stem-cell–derived retinal cells for macular degeneration.N. Engl. J. Med.2017376111038104610.1056/NEJMoa1608368 28296613
    [Google Scholar]
  24. OkitaK. YamanakaS. Induced pluripotent stem cells: Opportunities and challenges.Philos. Trans. R. Soc. Lond. B Biol. Sci.201136615752198220710.1098/rstb.2011.0016 21727125
    [Google Scholar]
  25. KajikawaK. ImaizumiK. ShinozakiM. ShibataS. ShindoT. KitagawaT. ShibataR. KamataY. KojimaK. NagoshiN. MatsumotoM. NakamuraM. OkanoH. Cell therapy for spinal cord injury by using human iPSC-derived region-specific neural progenitor cells.Mol. Brain202013112010.1186/s13041‑020‑00662‑w 32883317
    [Google Scholar]
  26. MathurA. LoskillP. ShaoK. HuebschN. HongS. MarcusS.G. MarksN. MandegarM. ConklinB.R. LeeL.P. HealyK.E. Human iPSC-based cardiac microphysiological system for drug screening applications.Sci. Rep.201551888310.1038/srep08883 25748532
    [Google Scholar]
  27. GutbierS. WankeF. DahmN. RümmelinA. ZimmermannS. ChristensenK. Köِchl, F.; Rautanen, A.; Hatje, K.; Geering, B.; Zhang, J.D.; Britschgi, M.; Cowley, S.A.; Patsch, C. Large-scale production of human iPSC-derived macrophages for drug screening.Int. J. Mol. Sci.20202113480810.3390/ijms21134808 32645954
    [Google Scholar]
  28. FengL. ChaoJ. TianE. LiL. YeP. ZhangM. ChenX. CuiQ. SunG. ZhouT. FelixG. QinY. LiW. MezaE.D. KleinJ. GhodaL. HuW. LuoY. DangW. HsuD. GoldJ. GoldmanS.A. MatalonR. ShiY. Cell-based therapy for canavan disease using human iPSC-derived NPCs and OPCs.Adv. Sci. (Weinh.)2020723200215510.1002/advs.202002155 33304759
    [Google Scholar]
  29. SugaiK. SumidaM. ShofudaT. YamaguchiR. TamuraT. KohzukiT. AbeT. ShibataR. KamataY. ItoS. OkuboT. TsujiO. NoriS. NagoshiN. YamanakaS. KawamataS. KanemuraY. NakamuraM. OkanoH. First-in-human clinical trial of transplantation of iPSC-derived NS/PCs in subacute complete spinal cord injury: Study protocol.Regen. Ther.20211832133310.1016/j.reth.2021.08.005 34522725
    [Google Scholar]
  30. ChoiD.W. RothmanS.M. The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death.Annu. Rev. Neurosci.199013117118210.1146/annurev.ne.13.030190.001131 1970230
    [Google Scholar]
  31. DelegliseB. LassusB. SoubeyreV. DoulazmiM. BruggB. VanhoutteP. PeyrinJ.M. Dysregulated neurotransmission induces trans-synaptic degeneration in reconstructed neuronal networks.Sci. Rep.2018811159610.1038/s41598‑018‑29918‑1 30072750
    [Google Scholar]
  32. QinJ. MaX. QiH. SongB. WangY. WenX. WangQ.M. SunS. LiY. ZhangR. LiuX. HouH. GongG. XuY. Transplantation of induced pluripotent stem cells alleviates cerebral inflammation and neural damage in hemorrhagic stroke.PLoS One2015106e012988110.1371/journal.pone.0129881 26086994
    [Google Scholar]
  33. LeeI.H. HuangS.S. ChuangC.Y. LiaoK.H. ChangL.H. ChuangC.C. SuY.S. LinH.J. HsiehJ.Y. SuS.H. LeeO.K.S. KuoH.C. Delayed epidural transplantation of human induced pluripotent stem cell-derived neural progenitors enhances functional recovery after stroke.Sci. Rep.201771194310.1038/s41598‑017‑02137‑w 28512358
    [Google Scholar]
  34. HuangJ.Y. HongY.T. ChuangJ.I. Fibroblast growth factor 9 prevents MPP+-induced death of dopaminergic neurons and is involved in melatonin neuroprotection in vivo and in vitro.J. Neurochem.200910951400141210.1111/j.1471‑4159.2009.06061.x 19476551
    [Google Scholar]
  35. ShurinG.V. FerrisR. TourkovaI.L. PerezL. LokshinA. BalkirL. CollinsB. ChattaG.S. ShurinM.R. Loss of new chemokine CXCL14 in tumor tissue is associated with low infiltration by dendritic cells (DC), while restoration of human CXCL14 expression in tumor cells causes attraction of DC both in vitro and in vivo.J. Immunol.200517495490549810.4049/jimmunol.174.9.5490 15843547
    [Google Scholar]
  36. BanisadrG. BhattacharyyaB.J. BelmadaniA. IzenS.C. RenD. TranP.B. MillerR.J. The chemokine BRAK/CXCL14 regulates synaptic transmission in the adult mouse dentate gyrus stem cell niche.J. Neurochem.201111961173118210.1111/j.1471‑4159.2011.07509.x 21955359
    [Google Scholar]
  37. ZhangJ. Moats-StaatsB.M. YeP. D’ErcoleA.J. Expression of insulin-like growth factor system genes during the early postnatal neurogenesis in the mouse hippocampus.J. Neurosci. Res.20078581618162710.1002/jnr.21289 17455296
    [Google Scholar]
  38. JinK. MaoX.O. EshooM.W. NagayamaT. MinamiM. SimonR.P. GreenbergD.A. Microarray analysis of hippocampal gene expression in global cerebral ischemia.Ann. Neurol.20015019310310.1002/ana.1073 11456315
    [Google Scholar]
  39. Mehrian-ShaiR. ChenC.D. ShiT. HorvathS. NelsonS.F. ReichardtJ.K.V. SawyersC.L. Insulin growth factor-binding protein 2 is a candidate biomarker for PTEN status and PI3K/Akt pathway activation in glioblastoma and prostate cancer.Proc. Natl. Acad. Sci. USA2007104135563556810.1073/pnas.0609139104 17372210
    [Google Scholar]
  40. TatarishviliJ. OkiK. MonniE. KochP. MemanishviliT. BugaA.M. VermaV. Popa-WagnerA. BrüstleO. LindvallO. KokaiaZ. Human induced pluripotent stem cells improve recovery in stroke-injured aged rats.Restor. Neurol. Neurosci.201432454755810.3233/RNN‑140404 24916776
    [Google Scholar]
  41. LauV.W. PlattS.R. SticeS.L. WestF.D. Induced pluripotent stem-cell-derived neural cell types in treatment of stroke. Cell Therapy For Brain Injury.Berlin, HeidelbergSpringer2015147172
    [Google Scholar]
  42. ChenS.J. ChangC.M. TsaiS.K. ChangY.L. ChouS.J. HuangS.S. TaiL.K. ChenY.C. KuH.H. LiH.Y. ChiouS.H. Functional improvement of focal cerebral ischemia injury by subdural transplantation of induced pluripotent stem cells with fibrin glue.Stem Cells Dev.201019111757176710.1089/scd.2009.0452 20192839
    [Google Scholar]
  43. Grøّnning Hansen, M.; Laterza, C.; Palma-Tortosa, S.; Kvist, G.; Monni, E.; Tsupykov, O.; Tornero, D.; Uoshima, N.; Soriano, J.; Bengzon, J.; Martino, G.; Skibo, G.; Lindvall, O.; Kokaia, Z. Grafted human pluripotent stem cell-derived cortical neurons integrate into adult human cortical neural circuitry.Stem Cells Transl. Med.20209111365137710.1002/sctm.20‑0134 32602201
    [Google Scholar]
  44. BakerE.W. PlattS.R. LauV.W. GraceH.E. HolmesS.P. WangL. DubersteinK.J. HowerthE.W. KinderH.A. SticeS.L. HessD.C. MaoH. WestF.D. Induced pluripotent stem cell-derived neural stem cell therapy enhances recovery in an ischemic stroke pig model.Sci. Rep.2017711007510.1038/s41598‑017‑10406‑x 28855627
    [Google Scholar]
  45. AraiK. JinG. NavaratnaD. LoE.H. Brain angiogenesis in developmental and pathological processes: Neurovascular injury and angiogenic recovery after stroke.FEBS J.2009276174644465210.1111/j.1742‑4658.2009.07176.x 19664070
    [Google Scholar]
  46. BrummA.J. CarmichaelS.T. Not just a rush of blood to the head.Nat. Med.201218111609161010.1038/nm.2990 23135507
    [Google Scholar]
  47. CaiM. ZhangW. WengZ. StetlerR.A. JiangX. ShiY. GaoY. ChenJ. Promoting neurovascular recovery in aged mice after ischemic stroke - prophylactic effect of omega-3 polyunsaturated fatty acids.Aging Dis.20178553154510.14336/AD.2017.0520 28966799
    [Google Scholar]
  48. JiangX. SuenagaJ. PuH. WeiZ. SmithA.D. HuX. ShiY. ChenJ. Post-stroke administration of omega-3 polyunsaturated fatty acids promotes neurovascular restoration after ischemic stroke in mice: Efficacy declines with aging.Neurobiol. Dis.2019126627510.1016/j.nbd.2018.09.012 30218758
    [Google Scholar]
  49. OkiK. TatarishviliJ. WoodJ. KochP. WattananitS. MineY. MonniE. TorneroD. AhleniusH. LadewigJ. BrüstleO. LindvallO. KokaiaZ. Human-induced pluripotent stem cells form functional neurons and improve recovery after grafting in stroke-damaged brain.Stem Cells20123061120113310.1002/stem.1104 22495829
    [Google Scholar]
  50. ChanS.J. EspositoE. HayakawaK. MandavilleE. SmithR.A.A. GuoS. NiuW. WongP.T.H. CoolS.M. LoE.H. NurcombeV. Vascular endothelial growth factor 165-binding heparan sulfate promotes functional recovery from cerebral ischemia.Stroke20205192844285310.1161/STROKEAHA.119.025304 32772683
    [Google Scholar]
  51. KelleherJ. DickinsonA. CainS. HuY. BatesN. HarveyA. RenJ. ZhangW. MoretonF.C. MuirK.W. WardC. TouyzR.M. SharmaP. XuQ. KimberS.J. WangT. Patient-specific iPSC Model of a genetic vascular dementia syndrome reveals failure of mural cells to stabilize capillary structures.Stem Cell Rep201913581783110.1016/j.stemcr.2019.10.004 31680059
    [Google Scholar]
  52. XiaY. LingX. HuG. ZhuQ. ZhangJ. LiQ. ZhaoB. WangY. DengZ. Small extracellular vesicles secreted by human iPSC-derived MSC enhance angiogenesis through inhibiting STAT3-dependent autophagy in ischemic stroke.Stem Cell Res. Ther.202011131310.1186/s13287‑020‑01834‑0 32698909
    [Google Scholar]
  53. CeradiniD.J. KulkarniA.R. CallaghanM.J. TepperO.M. BastidasN. KleinmanM.E. CaplaJ.M. GalianoR.D. LevineJ.P. GurtnerG.C. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1.Nat. Med.200410885886410.1038/nm1075 15235597
    [Google Scholar]
  54. SuzukiY. RahmanM. MitsuyaH. Diverse transcriptional response of CD4+ T cells to stromal cell-derived factor SDF-1: Cell survival promotion and priming effects of SDF-1 on CD4+ T cells.J. Immunol.200116763064307310.4049/jimmunol.167.6.3064 11544290
    [Google Scholar]
  55. ShyuW.C. LinS.Z. YenP.S. SuC.Y. ChenD.C. WangH.J. LiH. Stromal cell-derived factor-1 alpha promotes neuroprotection, angiogenesis, and mobilization/homing of bone marrow-derived cells in stroke rats.J. Pharmacol. Exp. Ther.2008324283484910.1124/jpet.107.127746 18029549
    [Google Scholar]
  56. ZiaiW.C. Hematology and inflammatory signaling of intracerebral hemorrhage.Stroke2013446)(1S74S7810.1161/STROKEAHA.111.00066223709738
    [Google Scholar]
  57. EckertA. HuangL. GonzalezR. KimH.S. HamblinM.H. LeeJ.P. Bystander effect fuels human induced pluripotent stem cell-derived neural stem cells to quickly attenuate early stage neurological deficits after stroke.Stem Cells Transl. Med.20154784185110.5966/sctm.2014‑0184 26025980
    [Google Scholar]
  58. LiH. WuJ. ShenH. YaoX. LiuC. PiantaS. HanJ. BorlonganC.V. ChenG. Autophagy in hemorrhagic stroke: Mechanisms and clinical implications.Prog. Neurobiol.2018163-164799710.1016/j.pneurobio.2017.04.002 28414101
    [Google Scholar]
  59. ThiebautA.M. HedouE. MarciniakS.J. VivienD. RousselB.D. Proteostasis during cerebral ischemia.Front. Neurosci.20191363710.3389/fnins.2019.00637 31275110
    [Google Scholar]
  60. BuckleyK.M. HessD.L. SazonovaI.Y. Periyasamy-ThandavanS. BarrettJ.R. KirksR. GraceH. KondrikovaG. JohnsonM.H. HessD.C. SchoenleinP.V. HodaM.N. HillW.D. Rapamycin up-regulation of autophagy reduces infarct size and improves outcomes in both permanent MCAL, and embolic MCAO, murine models of stroke.Exp. Transl. Stroke Med.201461810.1186/2040‑7378‑6‑8 24991402
    [Google Scholar]
  61. ShiR. WengJ. ZhaoL. LiX.M. GaoT.M. KongJ. Excessive autophagy contributes to neuron death in cerebral ischemia.CNS Neurosci. Ther.201218325026010.1111/j.1755‑5949.2012.00295.x 22449108
    [Google Scholar]
  62. RyanF. KhodagholiF. DargahiL. Minai-TehraniD. AhmadianiA. Temporal pattern and crosstalk of necroptosis markers with autophagy and apoptosis associated proteins in ischemic hippocampus.Neurotox. Res.2018341799210.1007/s12640‑017‑9861‑3 29313217
    [Google Scholar]
  63. CuiD.R. WangL. JiangW. QiA.H. ZhouQ.H. ZhangX.L. Propofol prevents cerebral ischemia-triggered autophagy activation and cell death in the rat hippocampus through the NF-κB/p53 signaling pathway.Neuroscience201324611713210.1016/j.neuroscience.2013.04.054 23644056
    [Google Scholar]
  64. Al-AhmadA.J. PervaizI. KaramyanV.T. Neurolysin substrates bradykinin, neurotensin and substance P enhance brain microvascular permeability in a human in vitro model.J. Neuroendocrinol.2021332e1293110.1111/jne.12931 33506602
    [Google Scholar]
  65. WuY. WuJ. JuR. ChenZ. XuQ. Comparison of intracerebral transplantation effects of different stem cells on rodent stroke models.Cell Biochem. Funct.201533417418210.1002/cbf.3083 25914321
    [Google Scholar]
  66. TorneroD. TsupykovO. GranmoM. RodriguezC. Grøّnning-Hansen, M.; Thelin, J.; Smozhanik, E.; Laterza, C.; Wattananit, S.; Ge, R.; Tatarishvili, J.; Grealish, S.; Brüstle, O.; Skibo, G.; Parmar, M.; Schouenborg, J.; Lindvall, O.; Kokaia, Z. Synaptic inputs from stroke-injured brain to grafted human stem cell-derived neurons activated by sensory stimuli.Brain20171403aww34710.1093/brain/aww347 28115364
    [Google Scholar]
  67. JensenM.B. YanH. Krishnaney-DavisonR. Al SawafA. ZhangS.C. Survival and differentiation of transplanted neural stem cells derived from human induced pluripotent stem cells in a rat stroke model.J. Stroke Cerebrovasc. Dis.201322430430810.1016/j.jstrokecerebrovasdis.2011.09.008 22078778
    [Google Scholar]
  68. ChangD.J. LeeN. ParkI.H. ChoiC. JeonI. KwonJ. OhS.H. ShinD.A. DoJ.T. LeeD.R. LeeH. HongK.S. DaleyG.Q. SongJ. MoonH. Therapeutic potential of human induced pluripotent stem cells in experimental stroke.Cell Transplant.20132281427144010.3727/096368912X657314 23044029
    [Google Scholar]
  69. OhS.H. JeongY.W. ChoiW. NohJ.E. LeeS. KimH.S. Multimodal therapeutic effects of neural precursor cells derived from human-induced pluripotent stem cells through episomal plasmid-based reprogramming in a rodent model of ischemic stroke.Stem Cells Int.20202020406151610.1155/2020/4061516
    [Google Scholar]
  70. LiuS.P. FuR.H. WuD.C. HsuC.Y. ChangC.H. LeeW. LeeY.D. LiuC.H. ChienY.J. LinS.Z. ShyuW.C. Mouse-induced pluripotent stem cells generated under hypoxic conditions in the absence of viral infection and oncogenic factors and used for ischemic stroke therapy.Stem Cells Dev.201423442143310.1089/scd.2013.0182 24266622
    [Google Scholar]
  71. KawaiH. YamashitaT. OhtaY. DeguchiK. NagotaniS. ZhangX. IkedaY. MatsuuraT. AbeK. Tridermal tumorigenesis of induced pluripotent stem cells transplanted in ischemic brain.J. Cereb. Blood Flow Metab.20103081487149310.1038/jcbfm.2010.32 20216552
    [Google Scholar]
  72. ZongY. XinL. GoldsteinA.S. LawsonD.A. TeitellM.A. WitteO.N. ETS family transcription factors collaborate with alternative signaling pathways to induce carcinoma from adult murine prostate cells.Proc. Natl. Acad. Sci. USA200910630124651247010.1073/pnas.0905931106 19592505
    [Google Scholar]
  73. HuangC.Y. FujimuraM. NoshitaN. ChangY.Y. ChanP.H. SOD1 down-regulates NF-kappaB and c-Myc expression in mice after transient focal cerebral ischemia.J. Cereb. Blood Flow Metab.200121216317310.1097/00004647‑200102000‑00008 11176282
    [Google Scholar]
  74. BaudinoT.A. McKayC. Pendeville-SamainH. NilssonJ.A. MacleanK.H. WhiteE.L. DavisA.C. IhleJ.N. ClevelandJ.L. c-Myc is essential for vasculogenesis and angiogenesis during development and tumor progression.Genes Dev.200216192530254310.1101/gad.1024602 12368264
    [Google Scholar]
  75. MiljanE.A. SindenJ.D. Stem cell treatment of ischemic brain injury.Curr. Opin. Mol. Ther.2009114394403 19649984
    [Google Scholar]
  76. AlbekairiT.H. VaidyaB. PatelR. NozohouriS. VillalbaH. ZhangY. LeeY.S. Al-AhmadA. AbbruscatoT.J. Brain delivery of a potent opioid receptor agonist, biphalin during ischemic stroke: Role of organic anion transporting polypeptide (OATP).Pharmaceutics201911946710.3390/pharmaceutics11090467 31509975
    [Google Scholar]
  77. PayneS.L. AnandakumaranP.N. VargaB.V. MorsheadC.M. NagyA. ShoichetM.S. In vitro maturation of human iPSC-derived neuroepithelial cells influences transplant survival in the stroke-injured rat brain.Tissue Eng. Part A2018243-435136010.1089/ten.tea.2016.0515 28594288
    [Google Scholar]
  78. BenoitJ.P. FaisantN. Venier-JulienneM.C. MeneiP. Development of microspheres for neurological disorders: From basics to clinical applications.J. Control. Release2000651-228529610.1016/S0168‑3659(99)00250‑3 10699288
    [Google Scholar]
  79. NicholasA.P. McInnisC. GuptaK.B. SnowW.W. LoveD.F. MasonD.W. FerrellT.M. StaasJ.K. TiceT.R. The fate of biodegradable microspheres injected into rat brain.Neurosci. Lett.20023232858810.1016/S0304‑3940(01)02534‑4 11950499
    [Google Scholar]
  80. BibleE. ChauD.Y.S. AlexanderM.R. PriceJ. ShakesheffK.M. ModoM. Attachment of stem cells to scaffold particles for intra-cerebral transplantation.Nat. Protoc.20094101440145310.1038/nprot.2009.156 19798079
    [Google Scholar]
  81. TorneroD. WattananitS. Grøّnning Madsen, M.; Koch, P.; Wood, J.; Tatarishvili, J.; Mine, Y.; Ge, R.; Monni, E.; Devaraju, K.; Hevner, R.F.; Brüstle, O.; Lindvall, O.; Kokaia, Z. Human induced pluripotent stem cell-derived cortical neurons integrate in stroke-injured cortex and improve functional recovery.Brain2013136123561357710.1093/brain/awt278 24148272
    [Google Scholar]
  82. KnightD.K. GilliesE.R. MequanintK. Strategies in functional poly(ester amide) syntheses to study human coronary artery smooth muscle cell interactions.Biomacromolecules20111272475248710.1021/bm200149k 21619072
    [Google Scholar]
  83. HuangY. WangL. LiS. LiuX. LeeK. VerbekenE. van de WerfF. de ScheerderI. Stent-based tempamine delivery on neointimal formation in a porcine coronary model.Acute Card. Care20068421021610.1080/17482940600949661 17162547
    [Google Scholar]
  84. KroppM. MorawaK.M. MihovG. SalzA. HarmeningN. FrankenA. KempA. DiasA. ThiesJ. JohnenS. ThumannG. Biocompatibility of poly(ester amide) (PEA) microfibrils in ocular tissues.Polymers (Basel)20146124326010.3390/polym6010243
    [Google Scholar]
  85. DarsaliaV. AllisonS.J. CusulinC. MonniE. KuzdasD. KallurT. LindvallO. KokaiaZ. Cell number and timing of transplantation determine survival of human neural stem cell grafts in stroke-damaged rat brain.J. Cereb. Blood Flow Metab.201131123524210.1038/jcbfm.2010.81 20531461
    [Google Scholar]
  86. MemanishviliT. KupatadzeN. TugushiD. KatsaravaR. WattananitS. HaraN. TorneroD. KokaiaZ. Generation of cortical neurons from human induced-pluripotent stem cells by biodegradable polymeric microspheres loaded with priming factors.Biomed. Mater.201611202501110.1088/1748‑6041/11/2/025011 27007569
    [Google Scholar]
  87. WuR. LuoS. YangH. HuX. LinA. PanG. ZhongX. LiZ. Transplantation of neural progenitor cells generated from human urine epithelial cell-derived induced pluripotent stem cells improves neurological functions in rats with stroke.Discov. Med.2020291565364 32598863
    [Google Scholar]
  88. Ould-BrahimF. SarmaS.N. SyalC. LuK.J. SeegobinM. CarterA. JeffersM.S. DoréC. StanfordW.L. CorbettD. WangJ. Metformin preconditioning of human induced pluripotent stem cell-derived neural stem cells promotes their engraftment and improves post-stroke regeneration and recovery.Stem Cells Dev.201827161085109610.1089/scd.2018.0055 29893190
    [Google Scholar]
  89. ChauM.J. DeveauT.C. SongM. GuX. ChenD. WeiL. iPSC transplantation increases regeneration and functional recovery after ischemic stroke in neonatal rats.Stem Cells201432123075308710.1002/stem.1802 25132189
    [Google Scholar]
  90. McCraryM.R. JessonK. WeiZ.Z. LogunM. LenearC. TanS. GuX. JiangM.Q. KarumbaiahL. YuS.P. WeiL. Cortical transplantation of brain-mimetic glycosaminoglycan scaffolds and neural progenitor cells promotes vascular regeneration and functional recovery after ischemic stroke in mice.Adv. Healthc. Mater.202095190028510.1002/adhm.201900285 31977165
    [Google Scholar]
  91. WangZ. ZhengD. TanY.S. YuanQ. YuanF. ZhangS.C. Enabling survival of transplanted neural precursor cells in the ischemic brain.Adv. Sci. (Weinh.)20231033230252710.1002/advs.202302527 37867250
    [Google Scholar]
  92. YuS.P. TungJ.K. WeiZ.Z. ChenD. BerglundK. ZhongW. ZhangJ.Y. GuX. SongM. GrossR.E. LinS.Z. WeiL. Optochemogenetic stimulation of transplanted iPS-NPCs enhances neuronal repair and functional recovery after ischemic stroke.J. Neurosci.201939336571659410.1523/JNEUROSCI.2010‑18.2019 31263065
    [Google Scholar]
  93. NihL.R. MoshayediP. LlorenteI.L. BergA.R. CinkornpuminJ. LowryW.E. SeguraT. CarmichaelS.T. Engineered HA hydrogel for stem cell transplantation in the brain: Biocompatibility data using a design of experiment approach.Data Brief20171020220910.1016/j.dib.2016.11.069 27995155
    [Google Scholar]
  94. ChauM. DeveauT.C. SongM. WeiZ.Z. GuX. YuS.P. WeiL. Transplantation of iPS cell-derived neural progenitors overexpressing SDF-1α increases regeneration and functional recovery after ischemic stroke.Oncotarget2017857975379755310.18632/oncotarget.22180 29228630
    [Google Scholar]
  95. ZhaoT. ZhangZ.N. RongZ. XuY. Immunogenicity of induced pluripotent stem cells.Nature2011474735021221510.1038/nature10135 21572395
    [Google Scholar]
  96. BangO.Y. KimE.H. ChaJ.M. MoonG.J. Adult stem cell therapy for stroke: Challenges and progress.J. Stroke201618325626610.5853/jos.2016.01263 27733032
    [Google Scholar]
  97. Schenke-LaylandK. RhodesK.E. AngelisE. ButylkovaY. Heydarkhan-HagvallS. GekasC. ZhangR. GoldhaberJ.I. MikkolaH.K. PlathK. MacLellanW.R. Reprogrammed mouse fibroblasts differentiate into cells of the cardiovascular and hematopoietic lineages.Stem Cells20082661537154610.1634/stemcells.2008‑0033 18450826
    [Google Scholar]
  98. HannaJ. MarkoulakiS. SchorderetP. CareyB.W. BeardC. WernigM. CreyghtonM.P. SteineE.J. CassadyJ.P. ForemanR. LengnerC.J. DausmanJ.A. JaenischR. Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency.Cell2008133225026410.1016/j.cell.2008.03.028 18423197
    [Google Scholar]
  99. LeeM.O. MoonS.H. JeongH.C. YiJ.Y. LeeT.H. ShimS.H. RheeY.H. LeeS.H. OhS.J. LeeM.Y. HanM.J. ChoY.S. ChungH.M. KimK.S. ChaH.J. Inhibition of pluripotent stem cell-derived teratoma formation by small molecules.Proc. Natl. Acad. Sci. USA201311035E3281E329010.1073/pnas.1303669110 23918355
    [Google Scholar]
  100. ZhuY. WanS. ZhanR. Inducible pluripotent stem cells for the treatment of ischemic stroke: Current status and problems.Rev. Neurosci.201223439340210.1515/revneuro‑2012‑0042 23089605
    [Google Scholar]
  101. AmabileG. MeissnerA. Induced pluripotent stem cells: Current progress and potential for regenerative medicine.Trends Mol. Med.2009152596810.1016/j.molmed.2008.12.003 19162546
    [Google Scholar]
  102. CaiJ. LiW. SuH. QinD. YangJ. ZhuF. XuJ. HeW. GuoX. LabudaK. PeterbauerA. WolbankS. ZhongM. LiZ. WuW. SoK.F. RedlH. ZengL. EstebanM.A. PeiD. Generation of human induced pluripotent stem cells from umbilical cord matrix and amniotic membrane mesenchymal cells.J. Biol. Chem.201028515112271123410.1074/jbc.M109.086389 20139068
    [Google Scholar]
  103. ListerR. PelizzolaM. KidaY.S. HawkinsR.D. NeryJ.R. HonG. Antosiewicz-BourgetJ. O’MalleyR. CastanonR. KlugmanS. DownesM. YuR. StewartR. RenB. ThomsonJ.A. EvansR.M. EckerJ.R. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells.Nature20114717336687310.1038/nature09798 21289626
    [Google Scholar]
  104. WakabayashiK. NagaiA. SheikhA.M. ShiotaY. NarantuyaD. WatanabeT. MasudaJ. KobayashiS. KimS.U. YamaguchiS. Transplantation of human mesenchymal stem cells promotes functional improvement and increased expression of neurotrophic factors in a rat focal cerebral ischemia model.J. Neurosci. Res.20108851017102510.1002/jnr.22279 19885863
    [Google Scholar]
  105. ChenJ. LiY. KatakowskiM. ChenX. WangL. LuD. LuM. GautamS.C. ChoppM. Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat.J. Neurosci. Res.200373677878610.1002/jnr.10691 12949903
    [Google Scholar]
  106. CuiJ. CuiC. CuiY. LiR. ShengH. JiangX. TianY. WangK. GaoJ. Bone marrow mesenchymal stem cell transplantation increases GAP-43 expression via ERK1/2 and PI3K/Akt pathways in intracerebral hemorrhage.Cell. Physiol. Biochem.201742113714410.1159/000477122 28505619
    [Google Scholar]
  107. Azevedo-PereiraRL. DaadiMM. Isolation and purification of self-renewable human neural stem cells for cell therapy in experimental model of ischemic stroke.Methods Mol. Biol.2013105915716710.1007/978‑1‑62703‑574‑3_14
    [Google Scholar]
  108. GaoL. XuW. LiT. ChenJ. ShaoA. YanF. ChenG. Stem cell therapy: A promising therapeutic method for intracerebral hemorrhage.Cell Transplant.201827121809182410.1177/0963689718773363 29871521
    [Google Scholar]
  109. HuC. ZhaoL. ZhangL. BaoQ. LiL. Mesenchymal stem cell-based cell-free strategies: Safe and effective treatments for liver injury.Stem Cell Res. Ther.202011137710.1186/s13287‑020‑01895‑1 32883343
    [Google Scholar]
  110. VillarrealC.F. EvangelistaA.F. SoaresM.B.P. Cell-free therapy: A neuroregenerative approach to sensory neuropathy?Neural Regen. Res.20191481383138410.4103/1673‑5374.253522 30964062
    [Google Scholar]
  111. SinghA.B. HarrisR.C. Autocrine, paracrine and juxtacrine signaling by EGFR ligands.Cell. Signal.200517101183119310.1016/j.cellsig.2005.03.026 15982853
    [Google Scholar]
  112. BudnikV. Ruiz-Cañٌada, C.; Wendler, F. Extracellular vesicles round off communication in the nervous system.Nat. Rev. Neurosci.201617316017210.1038/nrn.2015.29 26891626
    [Google Scholar]
  113. CastellanaD. TotiF. FreyssinetJ.M. Membrane microvesicles: Macromessengers in cancer disease and progression.Thromb. Res.2010125Suppl. 2S84S8810.1016/S0049‑3848(10)70021‑9 20434014
    [Google Scholar]
  114. CastellanaD. ZobairiF. MartinezM.C. PanaroM.A. MitoloV. FreyssinetJ.M. KunzelmannC. Membrane microvesicles as actors in the establishment of a favorable prostatic tumoral niche: A role for activated fibroblasts and CX3CL1-CX3CR1 axis.Cancer Res.200969378579310.1158/0008‑5472.CAN‑08‑1946 19155311
    [Google Scholar]
  115. MaasS.L.N. BreakefieldX.O. WeaverA.M. Extracellular vesicles: Unique intercellular delivery vehicles.Trends Cell Biol.201727317218810.1016/j.tcb.2016.11.003 27979573
    [Google Scholar]
  116. HurY.H. CerioneR.A. AntonyakM.A. Extracellular vesicles and their roles in stem cell biology.Stem Cells202038446947610.1002/stem.3140 31828924
    [Google Scholar]
  117. ReclusaP. TavernaS. PucciM. DurendezE. CalabuigS. MancaP. SerranoM.J. SoberL. PauwelsP. RussoA. RolfoC. Exosomes as diagnostic and predictive biomarkers in lung cancer.J. Thorac. Dis.20179S13S1373S138210.21037/jtd.2017.10.67 29184676
    [Google Scholar]
  118. PengG. YuanY. WuS. HeF. HuY. LuoB. MicroRNA let-7e is a potential circulating biomarker of acute stage ischemic stroke.Transl. Stroke Res.20156643744510.1007/s12975‑015‑0422‑x 26415639
    [Google Scholar]
  119. FrühbeisC. Fröِhlich, D.; Krämer-Albers, E.M. Emerging roles of exosomes in neuron-glia communication.Front. Physiol.2012311910.3389/fphys.2012.00119 22557979
    [Google Scholar]
  120. AryaniA. DeneckeB. Exosomes as a nanodelivery system: A key to the future of neuromedicine?Mol. Neurobiol.201653281883410.1007/s12035‑014‑9054‑5 25502465
    [Google Scholar]
  121. Fröِhlich, D.; Kuo, W.P.; Frühbeis, C.; Sun, J.J.; Zehendner, C.M.; Luhmann, H.J.; Pinto, S.; Toedling, J.; Trotter, J.; Krämer-Albers, E.M. Multifaceted effects of oligodendroglial exosomes on neurons: Impact on neuronal firing rate, signal transduction and gene regulation.Philos. Trans. R. Soc. Lond. B Biol. Sci.201436916522013051010.1098/rstb.2013.0510 25135971
    [Google Scholar]
  122. Krämer-Albers, E.M.; Bretz, N.; Tenzer, S.; Winterstein, C.; Möِbius, W.; Berger, H.; Nave, K.A.; Schild, H.; Trotter, J. Oligodendrocytes secrete exosomes containing major myelin and stress-protective proteins: Trophic support for axons?Proteomics Clin. Appl.20071111446146110.1002/prca.200700522 21136642
    [Google Scholar]
  123. YouL. WangZ. LiH. ShouJ. JingZ. XieJ. SuiX. PanH. HanW. The role of STAT3 in autophagy.Autophagy201511572973910.1080/15548627.2015.1017192 25951043
    [Google Scholar]
  124. OhM. LeeJ. KimY. RheeW. ParkJ. Exosomes derived from human induced pluripotent stem cells ameliorate the aging of skin fibroblasts.Int. J. Mol. Sci.2018196171510.3390/ijms19061715 29890746
    [Google Scholar]
  125. YeM. NiQ. QiH. QianX. ChenJ. GuoX. LiM. ZhaoY. XueG. DengH. ZhangL. Exosomes derived from human induced pluripotent stem cells-endothelia cells promotes postnatal angiogenesis in mice bearing ischemic limbs.Int. J. Biol. Sci.201915115816810.7150/ijbs.28392 30662356
    [Google Scholar]
  126. TianT. ZhangH.X. HeC.P. FanS. ZhuY.L. QiC. HuangN.P. XiaoZ.D. LuZ.H. TannousB.A. GaoJ. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy.Biomaterials201815013714910.1016/j.biomaterials.2017.10.012 29040874
    [Google Scholar]
  127. JoladarashiD. GarikipatiV.N.S. ThandavarayanR.A. VermaS.K. MackieA.R. KhanM. GumpertA.M. BhimarajA. YoukerK.A. UribeC. Suresh BabuS. JeyabalP. KishoreR. KrishnamurthyP. Enhanced cardiac regenerative ability of stem cells after ischemia-reperfusion injury.J. Am. Coll. Cardiol.201566202214222610.1016/j.jacc.2015.09.009 26564600
    [Google Scholar]
  128. SantosoM.R. IkedaG. TadaY. JungJ.H. VaskovaE. SierraR.G. GatiC. GoldstoneA.B. von BornstaedtD. ShuklaP. WuJ.C. WakatsukiS. WooY.J. YangP.C. Exosomes from induced pluripotent stem cell-derived cardiomyocytes promote autophagy for myocardial repair.J. Am. Heart Assoc.202096e01434510.1161/JAHA.119.014345 32131688
    [Google Scholar]
  129. NongK. WangW. NiuX. HuB. MaC. BaiY. WuB. WangY. AiK. Hepatoprotective effect of exosomes from human-induced pluripotent stem cell-derived mesenchymal stromal cells against hepatic ischemia-reperfusion injury in rats.Cytotherapy201618121548155910.1016/j.jcyt.2016.08.002 27592404
    [Google Scholar]
  130. HettiarachchiNT. BoyleJP. DallasML. Al-OwaisMM. ScraggJL. Peers, C Heme oxygenase-1 derived carbon monoxide suppresses Aβ1-42 toxicity in astrocytes.Cell Death Dis.201786e288410.1038/cddis.2017.276
    [Google Scholar]
  131. CarmichaelS.T. Rodent models of focal stroke: Size, mechanism, and purpose.NeuroRx20052339640910.1602/neurorx.2.3.396 16389304
    [Google Scholar]
  132. KrencikR. WeickJ.P. LiuY. ZhangZ.J. ZhangS.C. Specification of transplantable astroglial subtypes from human pluripotent stem cells.Nat. Biotechnol.201129652853410.1038/nbt.1877 21602806
    [Google Scholar]
  133. LiX. TaoY. BradleyR. DuZ. TaoY. KongL. DongY. JonesJ. YanY. HarderC.R.K. FriedmanL.M. BilalM. HoffmannB. ZhangS.C. Fast generation of functional subtype astrocytes from human pluripotent stem cells.Stem Cell Rep2018114998100810.1016/j.stemcr.2018.08.019 30269954
    [Google Scholar]
  134. LlorenteI.L. XieY. MazzitelliJ.A. HatanakaE.A. CinkornpuminJ. MillerD.R. LinY. LowryW.E. CarmichaelS.T. Patient-derived glial enriched progenitors repair functional deficits due to white matter stroke and vascular dementia in rodents.Sci. Transl. Med.202113590eaaz674710.1126/scitranslmed.aaz6747 33883275
    [Google Scholar]
  135. MaD.K. MingG. SongH. Glial influences on neural stem cell development: Cellular niches for adult neurogenesis.Curr. Opin. Neurobiol.200515551452010.1016/j.conb.2005.08.003 16144763
    [Google Scholar]
  136. CurtisMA. KamM. NannmarkU. AndersonMF. AxellMZ. WikkelsoC. Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension.Science2007315581612431249
    [Google Scholar]
  137. GageF.H. Mammalian neural stem cells.Science200028754571433143810.1126/science.287.5457.1433 10688783
    [Google Scholar]
  138. ChenK-H. LinK-C. WallaceC.G. LiY-C. ShaoP-L. ChiangJ.Y. SungP.H. YipH.K. Human induced pluripotent stem cell-derived mesenchymal stem cell therapy effectively reduced brain infarct volume and preserved neurological function in rat after acute intracranial hemorrhage.Am. J. Transl. Res.201911962326248 31632590
    [Google Scholar]
  139. ChenL. ZhangG. KhanA.A. GuoX. GuY. Clinical efficacy and meta-analysis of stem cell therapies for patients with brain ischemia.Stem Cells Int.201620161810.1155/2016/6129579 27656217
    [Google Scholar]
  140. DetanteO. MoisanA. HommelM. JaillardA. Controlled clinical trials of cell therapy in stroke: Meta-analysis at six months after treatment.Int. J. Stroke201712774875110.1177/1747493017696098 28884654
    [Google Scholar]
  141. Díez-TejedorE. Gutiérrez-FernándezM. Martínez-SánchezP. Rodríguez-FrutosB. Ruiz-Ares, G.; Lara, M.L.; Gimeno, B.F. Reparative therapy for acute ischemic stroke with allogeneic mesenchymal stem cells from adipose tissue: A safety assessment: A phase II randomized, double-blind, placebo-controlled, single-center, pilot clinical trial.J. Stroke Cerebrovasc. Dis.201423102694270010.1016/j.jstrokecerebrovasdis.2014.06.011 25304723
    [Google Scholar]
  142. LiuX JiaX. RNeuroprotection of stem cells against ischemic brain injury: From bench to clinic. Transl. Stroke Res20271001163
    [Google Scholar]
/content/journals/cn/10.2174/1570159X22666240603084558
Loading
/content/journals/cn/10.2174/1570159X22666240603084558
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test