Skip to content
2000
Volume 22, Issue 14
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Psychiatric disorders are complex, multifactorial illnesses. It is challenging for us to understand the underlying mechanism of psychiatric disorders. In recent years, the morbidity of psychiatric disorders has increased yearly, causing huge economic losses to the society. Although some progress, such as psychotherapy drugs and electroconvulsive therapy, has been made in the treatment of psychiatric disorders, including depression, anxiety, bipolar disorder, obsessive-compulsive and autism spectrum disorders, antidepressants and psychotropic drugs have the characteristics of negative effects and high rate of relapse. Therefore, researchers continue to seek suitable interventions. cAMP response element binding protein (CREB) belongs to a protein family and is widely distributed in the majority of brain cells that function as a transcription factor. It has been demonstrated that CREB plays an important role in neurogenesis, synaptic plasticity, and neuronal growth. This review provides a 10-year update of the 2013 systematic review on the multidimensional roles of CREB-mediated transcriptional signaling in psychiatric disorders. We also summarize the classification of psychiatric disorders and elucidate the involvement of CREB and related downstream signalling pathways in psychiatric disorders. Importantly, we analyse the CREB-related signal pathways involving antidepressants and antipsychotics to relieve the pathological process of psychiatric disorders. This review emphasizes that CREB signalling may have a vast potential to treat psychiatric disorders like depression. Furthermore, it would be helpful for the development of potential medicine to make up for the imperfection of current antidepressants and antipsychotics.

Loading

Article metrics loading...

/content/journals/cn/10.2174/1570159X22666240206111838
2024-12-01
2024-11-23
Loading full text...

Full text loading...

References

  1. BarlattaniT.D.A. Autism spectrum disorders and psychiatric comorbidities: A narrative review.J. Psychopathol.2023291-2
    [Google Scholar]
  2. HossainM.M. KhanN. SultanaA. MaP. McKyerE.L.J. AhmedH.U. PurohitN. Prevalence of comorbid psychiatric disorders among people with autism spectrum disorder: An umbrella review of systematic reviews and meta-analyses.Psychiatry Res.202028711292210.1016/j.psychres.2020.112922 32203749
    [Google Scholar]
  3. FangY. MaoR. Depressive disorders: Mechanisms, measurement and menagement.Adv. Exp. Med. Biol.20191180179191
    [Google Scholar]
  4. BarlattaniT. D’AmelioC. CapelliF. MantenutoS. RossiR. SocciV. StrattaP. Di StefanoR. RossiA. PacittiF. Suicide and COVID-19: A rapid scoping review.Ann. Gen. Psychiatry20232211010.1186/s12991‑023‑00441‑6 36932453
    [Google Scholar]
  5. BetcherH.K. WisnerK.L. Psychotropic treatment during pregnancy: Research synthesis and clinical care principles.J. Womens Health 202029331031810.1089/jwh.2019.7781 31800350
    [Google Scholar]
  6. MiyamotoS. MiyakeN. JarskogL.F. FleischhackerW.W. LiebermanJ.A. Pharmacological treatment of schizophrenia: A critical review of the pharmacology and clinical effects of current and future therapeutic agents.Mol. Psychiatry201217121206122710.1038/mp.2012.47 22584864
    [Google Scholar]
  7. MiyamotoS. DuncanG.E. MarxC.E. LiebermanJ.A. Treatments for schizophrenia: A critical review of pharmacology and mechanisms of action of antipsychotic drugs.Mol. Psychiatry20051017910410.1038/sj.mp.4001556 15289815
    [Google Scholar]
  8. CarlssonA. LindqvistM. Effect of chlorpromazine or haloperidol on formation of 3methoxytyramine and normetanephrine in mouse brain.Acta Pharmacol. Toxicol. 196320214014410.1111/j.1600‑0773.1963.tb01730.x 14060771
    [Google Scholar]
  9. van RossumJ.M. The significance of dopamine-receptor blockade for the mechanism of action of neuroleptic drugs.Arch. Int. Pharmacodyn. Ther.19661602492494 5954044
    [Google Scholar]
  10. ZamponiG.W. Targeting voltage-gated calcium channels in neurological and psychiatric diseases.Nat. Rev. Drug Discov.2016151193410.1038/nrd.2015.5 26542451
    [Google Scholar]
  11. KesselheimA.S. HwangT.J. FranklinJ.M. Two decades of new drug development for central nervous system disorders.Nat. Rev. Drug Discov.2015141281581610.1038/nrd4793 26585536
    [Google Scholar]
  12. KaarS.J. NatesanS. McCutcheonR. HowesO.D. Antipsychotics: Mechanisms underlying clinical response and side-effects and novel treatment approaches based on pathophysiology.Neuropharmacology202017210770410.1016/j.neuropharm.2019.107704 31299229
    [Google Scholar]
  13. JiangY. WangX. LiX. LiuA. FanQ. YangL. FengB. ZhangK. LuL. QiJ. YangF. SongD. WuY. ZhaoM. LiuS. Tanshinone IIA improves contextual fear‐ and anxiety‐like behaviors in mice via the CREB/BDNF/TRKB signaling pathway.Phytother. Res.202236103932394810.1002/ptr.7540 35801985
    [Google Scholar]
  14. KeshavarziS. KermanshahiS. KaramiL. MotaghinejadM. MotevalianM. SadrS. Protective role of metformin against methamphetamine induced anxiety, depression, cognition impairment and neurodegeneration in rat: The role of CREB/BDNF and Akt/GSK3 signaling pathways.Neurotoxicology201972748410.1016/j.neuro.2019.02.004 30742852
    [Google Scholar]
  15. SharmaP. KumarA. SinghD. Dietary flavonoids interaction with CREB-BDNF pathway: An unconventional approach for comprehensive management of epilepsy.Curr. Neuropharmacol.201917121158117510.2174/1570159X17666190809165549 31400269
    [Google Scholar]
  16. PandeyG.N. DwivediY. RenX. RizaviH.S. RobertsR.C. ConleyR.R. Cyclic AMP response element-binding protein in post-mortem brain of teenage suicide victims: Specific decrease in the prefrontal cortex but not the hippocampus.Int. J. Neuropsychopharmacol.200710562162910.1017/S1461145706007231 16978443
    [Google Scholar]
  17. AguiarA.S.Jr CastroA.A. MoreiraE.L. GlaserV. SantosA.R.S. TascaC.I. LatiniA. PredigerR.D.S. Short bouts of mild-intensity physical exercise improve spatial learning and memory in aging rats: Involvement of hippocampal plasticity via AKT, CREB and BDNF signaling.Mech. Ageing Dev.201113211-1256056710.1016/j.mad.2011.09.005 21983475
    [Google Scholar]
  18. RéusG.Z. StringariR.B. RibeiroK.F. FerraroA.K. VittoM.F. CesconettoP. SouzaC.T. QuevedoJ. Ketamine plus imipramine treatment induces antidepressant-like behavior and increases CREB and BDNF protein levels and PKA and PKC phosphorylation in rat brain.Behav. Brain Res.2011221116617110.1016/j.bbr.2011.02.024 21397634
    [Google Scholar]
  19. LiuJ. LiuB. YuanP. ChengL. SunH. GuiJ. PanY. HuangD. ChenH. JiangL. Role of PKA/CREB/BDNF signaling in PM2.5-induced neurodevelopmental damage to the hippocampal neurons of rats.Ecotoxicol. Environ. Saf.202121411200510.1016/j.ecoenv.2021.112005 33640725
    [Google Scholar]
  20. TanP. XueT. WangY. HuZ. SuJ. YangR. JiJ. YeM. ChenZ. HuangC. LuX. Hippocampal NR6A1 impairs CREB-BDNF signaling and leads to the development of depression-like behaviors in mice.Neuropharmacology202220910899010.1016/j.neuropharm.2022.108990 35183538
    [Google Scholar]
  21. JiangN. WangH. LvJ. WangQ. LuC. LiY. LiuX. Dammarane sapogenins attenuates stress‐induced anxiety‐like behaviors by upregulating ERK/CREB/BDNF pathways.Phytother. Res.202034102721272910.1002/ptr.6713 32431006
    [Google Scholar]
  22. JagannathA. FosterR.G. CREB signalling in bipolar disease (commentary on Gaspar et al.): commentary on Gaspar et al. 2014.Eur. J. Neurosci.2014401220510.1111/ejn.12649 25040051
    [Google Scholar]
  23. BroderickD.F. Neuroimaging in neuropsychiatry.Psychiatr. Clin. North Am., 2005283549566, 64.10.1016/j.psc.2005.05.00716122566
    [Google Scholar]
  24. ZhangY. LongY. YuS. LiD. YangM. GuanY. ZhangD. WanJ. LiuS. ShiA. LiN. PengW. Natural volatile oils derived from herbal medicines: A promising therapy way for treating depressive disorder.Pharmacol. Res.202116410537610.1016/j.phrs.2020.105376 33316383
    [Google Scholar]
  25. PenninxB.W.J.H. PineD.S. HolmesE.A. ReifA. Benzodiazepines for the long-term treatment of anxiety disorders? – Authors’ reply.Lancet20213981029512010.1016/S0140‑6736(21)00931‑4 34246346
    [Google Scholar]
  26. SimpsonC.A. Diaz-ArtecheC. ElibyD. SchwartzO.S. SimmonsJ.G. CowanC.S.M. The gut microbiota in anxiety and depression – A systematic review.Clin. Psychol. Rev.20218310194310.1016/j.cpr.2020.101943 33271426
    [Google Scholar]
  27. SteinD.J. CostaD.L.C. LochnerC. MiguelE.C. ReddyY.C.J. ShavittR.G. van den HeuvelO.A. SimpsonH.B. Obsessive–compulsive disorder.Nat. Rev. Dis. Primers2019515210.1038/s41572‑019‑0102‑3 31371720
    [Google Scholar]
  28. StępnickiP. KondejM. KaczorA.A. Current concepts and treatments of schizophrenia.Molecules2018238208710.3390/molecules23082087 30127324
    [Google Scholar]
  29. McIntyreR.S. BerkM. BrietzkeE. GoldsteinB.I. López-JaramilloC. KessingL.V. MalhiG.S. NierenbergA.A. RosenblatJ.D. MajeedA. VietaE. VinbergM. YoungA.H. MansurR.B. Bipolar disorders.Lancet2020396102651841185610.1016/S0140‑6736(20)31544‑0 33278937
    [Google Scholar]
  30. XuW. KasperL.H. LerachS. JeevanT. BrindleP.K. Individual CREB-target genes dictate usage of distinct cAMP-responsive coactivation mechanisms.EMBO J.200726122890290310.1038/sj.emboj.7601734 17525731
    [Google Scholar]
  31. IchikiT. Role of cAMP response element binding protein in cardiovascular remodeling: good, bad, or both?Arterioscler. Thromb. Vasc. Biol.200626344945510.1161/01.ATV.0000196747.79349.d1 16293792
    [Google Scholar]
  32. WangH. XuJ. LazaroviciP. QuirionR. ZhengW. cAMP response element-binding protein (CREB): A possible signaling molecule link in the pathophysiology of schizophrenia.Front. Mol. Neurosci.20181125510.3389/fnmol.2018.00255 30214393
    [Google Scholar]
  33. WangG. ZhuZ. XuD. SunL. Advances in understanding CREB signaling-mediated regulation of the pathogenesis and progression of epilepsy.Clin. Neurol. Neurosurg.202019610601810.1016/j.clineuro.2020.106018 32574967
    [Google Scholar]
  34. StevenA. SeligerB. Control of CREB expression in tumors: From molecular mechanisms and signal transduction pathways to therapeutic target.Oncotarget2016723354543546510.18632/oncotarget.7721 26934558
    [Google Scholar]
  35. IrwinM.R. CarrilloC. SadeghiN. BjurstromM.F. BreenE.C. OlmsteadR. Prevention of incident and recurrent major depression in older adults with insomnia.JAMA Psychiatry2022791334110.1001/jamapsychiatry.2021.3422 34817561
    [Google Scholar]
  36. National Center for Health. Health, United States, 2016: With Chartbook on Long-term Trends in Health; National Center for Health Statistics (US): Hyattsville (MD),2017
    [Google Scholar]
  37. StatPearls; StatPearls Publishing LLC.: Treasure Island (FL) ineligible companies2023
    [Google Scholar]
  38. Figueroa-HallL.K. PaulusM.P. SavitzJ. Toll-like receptor signaling in depression.Psychoneuroendocrinology202012110484310.1016/j.psyneuen.2020.104843 32911436
    [Google Scholar]
  39. CuijpersP. van StratenA. AnderssonG. van OppenP. Psychotherapy for depression in adults: A meta-analysis of comparative outcome studies.J. Consult. Clin. Psychol.200876690992210.1037/a0013075 19045960
    [Google Scholar]
  40. MarwahaS. PalmerE. SuppesT. ConsE. YoungA.H. UpthegroveR. Novel and emerging treatments for major depression.Lancet20234011037114115310.1016/S0140‑6736(22)02080‑3 36535295
    [Google Scholar]
  41. YaoW. CaoQ. LuoS. HeL. YangC. ChenJ. QiQ. HashimotoK. ZhangJ. Microglial ERK-NRBP1-CREB-BDNF signaling in sustained antidepressant actions of (R)-ketamine.Mol. Psychiatry20222731618162910.1038/s41380‑021‑01377‑7 34819637
    [Google Scholar]
  42. ShiL.S. JiC.H. LiuY. GuJ.H. TangW.Q. ZhangW. GuanW. Ginsenoside Rh2 administration produces crucial antidepressant‐like effects in a CUMS‐induced mice model of depression.Brain Behav.2022128e270510.1002/brb3.2705 35848938
    [Google Scholar]
  43. MannersM.T. BrynildsenJ.K. SchechterM. LiuX. EacretD. BlendyJ.A. CREB deletion increases resilience to stress and downregulates inflammatory gene expression in the hippocampus.Brain Behav. Immun.20198138839810.1016/j.bbi.2019.06.035 31255680
    [Google Scholar]
  44. MoF. TangY. DuP. ShenZ. YangJ. CaiM. ZhangY. LiH. ShenH. GPR39 protects against corticosterone-induced neuronal injury in hippocampal cells through the CREB-BDNF signaling pathway.J. Affect. Disord.202027247448410.1016/j.jad.2020.03.137 32553391
    [Google Scholar]
  45. ZhangT. WangY. YaoW. ChenY. ZhangD. GaoY. JinS. LiL. YangS. WuY. Metformin antagonizes nickel-refining fumes-induced cell pyroptosis via Nrf2/GOLPH3 pathway in vitro and in vivo.Ecotoxicol. Environ. Saf.202224711423310.1016/j.ecoenv.2022.114233 36334342
    [Google Scholar]
  46. StröhleA. GensichenJ. DomschkeK. The diagnosis and treatment of anxiety disorders.Dtsch. Arztebl. Int.20181553761162010.3238/arztebl.2018.0611 30282583
    [Google Scholar]
  47. NarasimhamurthyR.K. AndradeD. MumbrekarK.D. Modulation of CREB and its associated upstream signaling pathways in pesticide-induced neurotoxicity.Mol. Cell. Biochem.2022477112581259310.1007/s11010‑022‑04472‑7 35596844
    [Google Scholar]
  48. WangX. GuanS. LiuA. YueJ. HuL. ZhangK. YangL. LuL. TianZ. ZhaoM. LiuS. Anxiolytic effects of Formononetin in an inflammatory pain mouse model.Mol. Brain20191213610.1186/s13041‑019‑0453‑4 30961625
    [Google Scholar]
  49. YangJ. LiS. LvH. WangW. ZhangJ. ChuL. ZhangY. CREB1 and BDNF gene polymorphisms are associated with early treatment response to escitalopram in panic disorder.J. Affect. Disord.202127853654110.1016/j.jad.2020.09.076 33017682
    [Google Scholar]
  50. LallyJ. MaloudiS. KrivoyA. MurphyK.C. Simple schizophrenia.J. Nerv. Ment. Dis.2019207972172510.1097/NMD.0000000000000936 31082962
    [Google Scholar]
  51. PrataD.P. Costa-NevesB. CosmeG. VassosE. Unravelling the genetic basis of schizophrenia and bipolar disorder with GWAS: A systematic review.J. Psychiatr. Res.201911417820710.1016/j.jpsychires.2019.04.007 31096178
    [Google Scholar]
  52. MillanM.J. AndrieuxA. BartzokisG. CadenheadK. DazzanP. Fusar-PoliP. GallinatJ. GieddJ. GraysonD.R. HeinrichsM. KahnR. KrebsM.O. LeboyerM. LewisD. MarinO. MarinP. Meyer-LindenbergA. McGorryP. McGuireP. OwenM.J. PattersonP. SawaA. SpeddingM. UhlhaasP. VaccarinoF. WahlestedtC. WeinbergerD. Altering the course of schizophrenia: Progress and perspectives.Nat. Rev. Drug Discov.201615748551510.1038/nrd.2016.28 26939910
    [Google Scholar]
  53. MaricN.P. JovicicM.J. MihaljevicM. MiljevicC. Improving current treatments for schizophrenia.Drug Dev. Res.201677735736710.1002/ddr.21337 27633376
    [Google Scholar]
  54. SharmaV.K. SinghT.G. CREB: A multifaceted target for Alzheimer’s disease.Curr. Alzheimer Res.202117141280129310.2174/1567205018666210218152253 33602089
    [Google Scholar]
  55. D’AmicoA.G. ScuderiS. LeggioG.M. CastorinaA. DragoF. D’AgataV. Increased hippocampal CREB phosphorylation in dopamine D3 receptor knockout mice following passive avoidance conditioning.Neurochem. Res.201338122516252310.1007/s11064‑013‑1164‑3 24100927
    [Google Scholar]
  56. AbieroA. BotanasC.J. CustodioR.J. SaysonL.V. KimM. LeeH.J. KimH.J. LeeK.W. JeongY. SeoJ.W. RyuI.S. LeeY.S. CheongJ.H. 4-MeO-PCP and 3-MeO-PCMo, new dissociative drugs, produce rewarding and reinforcing effects through activation of mesolimbic dopamine pathway and alteration of accumbal CREB, deltaFosB, and BDNF levels.Psychopharmacology 2020237375777210.1007/s00213‑019‑05412‑y 31828394
    [Google Scholar]
  57. LiS. LuC. KangL. LiQ. ChenH. ZhangH. TangZ. LinY. BaiM. XiongP. Study on correlations of BDNF, PI3K, AKT and CREB levels with depressive emotion and impulsive behaviors in drug-naïve patients with first-episode schizophrenia.BMC Psychiatry202323122510.1186/s12888‑023‑04718‑8 37013544
    [Google Scholar]
  58. GuoC. LiuY. FangM. LiY. LiW. MahamanY.A.R. ZengK. XiaY. KeD. LiuR. WangJ.Z. ShenH. ShuX. WangX. ω-3PUFAs improve cognitive impairments through Ser133 phosphorylation of CREB upregulating BDNF/TrkB signal in schizophrenia.Neurotherapeutics20201731271128610.1007/s13311‑020‑00859‑w 32367475
    [Google Scholar]
  59. EinochR. WeinrebO. MandiukN. YoudimM.B.H. BilkerW. SilverH. The involvement of BDNF-CREB signaling pathways in the pharmacological mechanism of combined SSRI- antipsychotic treatment in schizophrenia.Eur. Neuropsychopharmacol.201727547048310.1016/j.euroneuro.2017.03.005 28410959
    [Google Scholar]
  60. SchuylerM. GellerD.A. Childhood obsessive-compulsive disorder.Psychiatr. Clin. North Am.20234618910610.1016/j.psc.2022.10.002 36740357
    [Google Scholar]
  61. SteinD.J. Obsessive-compulsive disorder.Lancet2002360933039740510.1016/S0140‑6736(02)09620‑4 12241794
    [Google Scholar]
  62. GrünblattE. MarinovaZ. RothA. GardiniE. BallJ. GeisslerJ. WojdaczT.K. RomanosM. WalitzaS. Combining genetic and epigenetic parameters of the serotonin transporter gene in obsessive-compulsive disorder.J. Psychiatr. Res.20189620921710.1016/j.jpsychires.2017.10.010 29102815
    [Google Scholar]
  63. FluitmanS.B.A.H.A. DenysD.A.J.P. HeijnenC.J. WestenbergH.G.M. Disgust affects TNF-α, IL-6 and noradrenalin levels in patients with obsessive–compulsive disorder.Psychoneuroendocrinology201035690691110.1016/j.psyneuen.2009.12.005 20044210
    [Google Scholar]
  64. HazariN. NarayanaswamyJ.C. ArumughamS.S. Predictors of response to serotonin reuptake inhibitors in obsessive-compulsive disorder.Expert Rev. Neurother.201616101175119110.1080/14737175.2016.1199960 27282021
    [Google Scholar]
  65. GoodmanW.K. StorchE.A. ShethS.A. Harmonizing the neurobiology and treatment of obsessive-compulsive disorder.Am. J. Psychiatry20211781172910.1176/appi.ajp.2020.20111601 33384007
    [Google Scholar]
  66. GradosM. AtkinsE. KovacikovaG.I. McVicarE. A selective review of glutamate pharmacological therapy in obsessive–compulsive and related disorders.Psychol. Res. Behav. Manag.2015811513110.2147/PRBM.S58601 25995654
    [Google Scholar]
  67. PittengerC. BlochM.H. Pharmacological treatment of obsessive-compulsive disorder.Psychiatr. Clin. North Am.201437337539110.1016/j.psc.2014.05.006 25150568
    [Google Scholar]
  68. WaltonM.R. DragunowM. Is CREB a key to neuronal survival?Trends Neurosci.2000232485310.1016/S0166‑2236(99)01500‑3 10652539
    [Google Scholar]
  69. AroraT. BhowmikM. KhanamR. VohoraD. Oxcarbazepine and fluoxetine protect against mouse models of obsessive compulsive disorder through modulation of cortical serotonin and creb pathway.Behav. Brain Res.201324714615210.1016/j.bbr.2013.02.038 23473877
    [Google Scholar]
  70. RohbaniK. SabzevariS. Sadat-ShiraziM.S. Nouri Zadeh-TehraniS. AshabiG. KhalifehS. Ale-EbrahimM. ZarrindastM.R. Parental morphine exposure affects repetitive grooming actions and marble burying behavior in the offspring: Potential relevance for obsessive-compulsive like behavior.Eur. J. Pharmacol.201986517275710.1016/j.ejphar.2019.172757 31693870
    [Google Scholar]
  71. GrandeI. BerkM. BirmaherB. VietaE. Bipolar disorder.Lancet2016387100271561157210.1016/S0140‑6736(15)00241‑X 26388529
    [Google Scholar]
  72. RybakowskiJ. Etiopathogenesis of bipolar affective disorder – the state of the art for 2021.Psychiatr. Pol.202155348149610.12740/PP/132961 34460876
    [Google Scholar]
  73. KatoT. Current understanding of bipolar disorder: Toward integration of biological basis and treatment strategies.Psychiatry Clin. Neurosci.201973952654010.1111/pcn.12852 31021488
    [Google Scholar]
  74. HaggartyS.J. KarmacharyaR. PerlisR.H. Advances toward precision medicine for bipolar disorder: Mechanisms & molecules.Mol. Psychiatry202126116818510.1038/s41380‑020‑0831‑4 32636474
    [Google Scholar]
  75. DubovskyS.L. GhoshB.M. SerotteJ.C. CranwellV. Psychotic depression: Diagnosis, differential diagnosis, and treatment.Psychother. Psychosom.202190316017710.1159/000511348 33166960
    [Google Scholar]
  76. KernerB. RaoA.R. ChristensenB. DandekarS. YourshawM. NelsonS.F. Rare genomic variants link bipolar disorder with anxiety disorders to creb-regulated intracellular signaling pathways.Front. Psychiatry2013415410.3389/fpsyt.2013.00154 24348429
    [Google Scholar]
  77. OzakiN. ChuangD.M. Lithium increases transcription factor binding to AP-1 and cyclic AMP-responsive element in cultured neurons and rat brain.J. Neurochem.19976962336234410.1046/j.1471‑4159.1997.69062336.x 9375664
    [Google Scholar]
  78. ChenB. WangJ.F. HillB.C. YoungL.T. Lithium and valproate differentially regulate brain regional expression of phosphorylated CREB and c-Fos.Brain Res. Mol. Brain Res.1999701455310.1016/S0169‑328X(99)00125‑4 10381542
    [Google Scholar]
  79. TangQ. KeH. WuC. ZengJ. LiZ. LiuY. FengS. XueQ. XuX. Aqueous extract from You-Gui-Yin ameliorates cognitive impairment of chronic renal failure mice through targeting hippocampal CaMKIIα/CREB/BDNF and EPO/EPOR pathways.J. Ethnopharmacol.201923911192510.1016/j.jep.2019.111925 31055001
    [Google Scholar]
  80. LiD. LiaoQ. TaoY. NiS. WangC. XuD. ZhouD. LiX. JinX. ChenX. CuiW. ZhangJ. Downregulation of CRTC1 is involved in CUMS-induced depression-like behavior in the hippocampus and its RNA sequencing analysis.Mol. Neurobiol.20225974405441810.1007/s12035‑022‑02787‑6 35556215
    [Google Scholar]
  81. AldaM. ShaoL. WangJ.F. de LaraC.L. Jaitovich-GroismanI. LebelV. SunX. DuffyA. GrofP. RouleauG.A. TureckiG. YoungL.T. Alterations in phosphorylated cAMP response element-binding protein (pCREB) signaling: An endophenotype of lithium-responsive bipolar disorder?Bipolar Disord.201315882483110.1111/bdi.12131 24238631
    [Google Scholar]
  82. OdagakiY. García-SevillaJ.A. HugueletP. La HarpeR. KoyamaT. GuimónJ. Cyclic AMP-mediated signaling components are upregulated in the prefrontal cortex of depressed suicide victims.Brain Res.2001898222423110.1016/S0006‑8993(01)02188‑6 11306008
    [Google Scholar]
  83. GasparL. van de WerkenM. JohanssonA.S. MoriggiE. Owe-LarssonB. KocksJ.W.H. LundkvistG.B. GordijnM.C.M. BrownS.A. Human cellular differences in CAMP ‐ CREB signaling correlate with light‐dependent melatonin suppression and bipolar disorder.Eur. J. Neurosci.20144012206221510.1111/ejn.12602 24898566
    [Google Scholar]
  84. RenX. RizaviH.S. KhanM.A. BhaumikR. DwivediY. PandeyG.N. Alteration of cyclic-AMP response element binding protein in the postmortem brain of subjects with bipolar disorder and schizophrenia.J. Affect. Disord.2014152-15432633310.1016/j.jad.2013.09.033 24148789
    [Google Scholar]
  85. MorozovaA. ZorkinaY. AbramovaO. PavlovaO. PavlovK. SolovevaK. VolkovaM. AlekseevaP. AndryshchenkoA. KostyukG. GurinaO. ChekhoninV. Neurobiological highlights of cognitive impairment in psychiatric disorders.Int. J. Mol. Sci.2022233121710.3390/ijms23031217 35163141
    [Google Scholar]
  86. ZhengW. WangH. ZengZ. LinJ. LittleP.J. SrivastavaL.K. QuirionR. The possible role of the Akt signaling pathway in schizophrenia.Brain Res.2012147014515810.1016/j.brainres.2012.06.032 22771711
    [Google Scholar]
  87. WangC.S. KavalaliE.T. MonteggiaL.M. BDNF signaling in context: From synaptic regulation to psychiatric disorders.Cell20221851627610.1016/j.cell.2021.12.003 34963057
    [Google Scholar]
  88. SunY. ZhangH. WuZ. YuX. YinY. QianS. WangZ. HuangJ. WangW. LiuT. XueW. ChenG. Quercitrin rapidly alleviated depression-like behaviors in lipopolysaccharide-treated mice: The involvement of PI3K/AKT/NF-κB signaling suppression and CREB/BDNF signaling restoration in the hippocampus.ACS Chem. Neurosci.202112183387339610.1021/acschemneuro.1c00371 34469122
    [Google Scholar]
  89. WilliamsC.M. El MohsenM.A. VauzourD. RendeiroC. ButlerL.T. EllisJ.A. WhitemanM. SpencerJ.P.E. Blueberry-induced changes in spatial working memory correlate with changes in hippocampal CREB phosphorylation and brain-derived neurotrophic factor (BDNF) levels.Free Radic. Biol. Med.200845329530510.1016/j.freeradbiomed.2008.04.008 18457678
    [Google Scholar]
  90. LianW. ZhouW. ZhangB. JiaH. XuL. LiuA. DuG. DL0410 ameliorates cognitive disorder in SAMP8 mice by promoting mitochondrial dynamics and the NMDAR-CREB-BDNF pathway.Acta Pharmacol. Sin.20214271055106810.1038/s41401‑020‑00506‑2 32868905
    [Google Scholar]
  91. ColasantoM. MadiganS. KorczakD.J. Depression and inflammation among children and adolescents: A meta-analysis.J. Affect. Disord.202027794094810.1016/j.jad.2020.09.025 33065836
    [Google Scholar]
  92. JiaZ. YangJ. CaoZ. ZhaoJ. ZhangJ. LuY. ChuL. ZhangS. ChenY. PeiL. Baicalin ameliorates chronic unpredictable mild stress-induced depression through the BDNF/ERK/CREB signaling pathway.Behav. Brain Res.202141411346310.1016/j.bbr.2021.113463 34280458
    [Google Scholar]
  93. ZhaoX. KongD. ZhouQ. WeiG. SongJ. LiangY. DuG. Baicalein alleviates depression-like behavior in rotenone- induced Parkinson’s disease model in mice through activating the BDNF/TrkB/CREB pathway.Biomed. Pharmacother.202114011155610.1016/j.biopha.2021.111556 34087694
    [Google Scholar]
  94. WangA. MiL. ZhangZ. HuM. ZhaoZ. LiuB. LiY. ZhengS. Saikosaponin A improved depression-like behavior and inhibited hippocampal neuronal apoptosis after cerebral ischemia through p-CREB/BDNF pathway.Behav. Brain Res.202140311313810.1016/j.bbr.2021.113138 33493495
    [Google Scholar]
  95. FangW. ZhangJ. HongL. HuangW. DaiX. YeQ. ChenX. Metformin ameliorates stress-induced depression-like behaviors via enhancing the expression of BDNF by activating AMPK/CREB-mediated histone acetylation.J. Affect. Disord.202026030231310.1016/j.jad.2019.09.013 31521867
    [Google Scholar]
  96. XieL.L. RuiC. LiZ.Z. LiS.S. FanY.J. QiM.M. Melatonin mitigates traumatic brain injury-induced depression-like behaviors through HO-1/CREB signal in rats.Neurosci. Lett.202278413675410.1016/j.neulet.2022.136754 35753614
    [Google Scholar]
  97. LiuZ. YangJ. FangQ. ShaoH. YangD. SunJ. GaoL. MiRNA‐199a‐5p targets WNT2 to regulate depression through the CREB/BDNF signaling in hippocampal neuron.Brain Behav.2021118e0210710.1002/brb3.2107 34333859
    [Google Scholar]
  98. QiaoX. GaiH. SuR. DejiC. CuiJ. LaiJ. ZhuY. PI3K-AKT-GSK3β-CREB signaling pathway regulates anxiety-like behavior in rats following alcohol withdrawal.J. Affect. Disord.20182359610410.1016/j.jad.2018.04.039 29655081
    [Google Scholar]
  99. Abdo QaidE.Y. AbdullahZ. ZakariaR. LongI. Minocycline attenuates lipopolysaccharide-induced locomotor deficit and anxiety-like behavior and related expression of the BDNF/CREB protein in the rat medial prefrontal cortex (mPFC).Int. J. Mol. Sci.202223211347410.3390/ijms232113474 36362262
    [Google Scholar]
  100. GengX. WuH. LiZ. LiC. ChenD. ZongJ. LiuZ. WeiS. PengW. Jie-yu-he-huan capsule ameliorates anxiety-like behaviours in rats exposed to chronic restraint stress via the cAMP/PKA/CREB/BDNF signalling pathway.Oxid. Med. Cell. Longev.2021202111910.1155/2021/1703981 34646421
    [Google Scholar]
  101. BorgonettiV. LesF. LópezV. GaleottiN. Attenuation of anxiety-like behavior by Helichrysum stoechas (L.) moench methanolic extract through up-regulation of ERK signaling pathways in noradrenergic neurons.Pharmaceuticals2020131247210.3390/ph13120472 33348565
    [Google Scholar]
  102. LiM. PengY. AnY. LiG. LanY. LY395756 promotes NR2B expression via activation of AKT/CREB signaling in the juvenile methylazoxymethanol mice model of schizophrenia.Brain Behav.2022122e246610.1002/brb3.2466 35025141
    [Google Scholar]
  103. KutluM.D. KoseS. AkilliogluK. GLP-1 agonist Liraglutide prevents MK 801-induced schizophrenia like behaviors and BDNF, CREB, p-CREB, Trk-B expressions in the hippocampus and prefrontal cortex in Balb/c mice.Behav. Brain Res.202344511438610.1016/j.bbr.2023.114386 36948022
    [Google Scholar]
  104. BaluD.T. CoyleJ.T. Altered CREB binding to activity-dependent genes in serine racemase deficient mice, a mouse model of schizophrenia.ACS Chem. Neurosci.2018992205220910.1021/acschemneuro.7b00404 29172439
    [Google Scholar]
  105. GuoC. LiW. LiuY. MahamanY.A.R. ZhangB. WangJ. LiuR. LiH. WangX. GaoX. Inactivation of ERK1/2-CREB pathway is implicated in MK801-induced cognitive impairment.Curr. Med. Sci.2023431132110.1007/s11596‑022‑2690‑5 36867359
    [Google Scholar]
  106. Rodríguez-SeoaneC. RamosA. KorthC. RequenaJ.R. DISC 1 regulates expression of the neurotrophin VGF through the PI 3K/AKT/CREB pathway.J. Neurochem.2015135359860510.1111/jnc.13258 26212236
    [Google Scholar]
  107. TarditoD. TiraboschiE. KasaharaJ. RacagniG. PopoliM. Reduced CREB phosphorylation after chronic lithium treatment is associated with down-regulation of CaM kinase IV in rat hippocampus.Int. J. Neuropsychopharmacol.200710449149610.1017/S1461145706007140 16923323
    [Google Scholar]
  108. ValvassoriS.S. Dal-PontG.C. VarelaR.B. ResendeW.R. GavaF.F. MinaF.G. BudniJ. QuevedoJ. Ouabain induces memory impairment and alter the BDNF signaling pathway in an animal model of bipolar disorder.J. Affect. Disord.20212821195120210.1016/j.jad.2020.12.190 33601696
    [Google Scholar]
  109. HeinrichA. der HeydeA.S. BöerU. PhuD.T. TzvetkovM. OetjenE. Lithium enhances CRTC oligomer formation and the interaction between the CREB coactivators CRTC and CBP — Implications for CREB-dependent gene transcription.Cell. Signal.201325111312510.1016/j.cellsig.2012.09.016 23000340
    [Google Scholar]
/content/journals/cn/10.2174/1570159X22666240206111838
Loading
/content/journals/cn/10.2174/1570159X22666240206111838
Loading

Data & Media loading...

Supplements


  • Article Type:
    Review Article
Keyword(s): CREB; depression; expression levels; human diseases; psychiatric disorders; target gene
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test