Skip to content
2000
Volume 22, Issue 14
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Alzheimer’s Disease (AD) is a progressive neurodegenerative disorder that greatly affects the health and life quality of the elderly population. Existing drugs mainly alleviate symptoms but fail to halt disease progression, underscoring the urgent need for the development of novel drugs. Based on the neuroprotective effects of flavonoid quercetin in AD, this study was designed to identify potential AD-related targets for quercetin and perform prediction of promising analogs for the treatment of AD. Database mining suggested death-associated protein kinase 1 (DAPK1) as the most promising AD-related target for quercetin among seven protein candidates. To achieve better biological effects for the treatment of AD, we devised a series of quercetin analogs as ligands for DAPK1, and molecular docking analyses, absorption, distribution, metabolism, and excretion (ADME) predictions, as well as molecular dynamics (MD) simulations, were performed. The energy for drug-protein interaction was predicted and ranked. As a result, quercetin-A1a and quercetin-A1a1 out of 19 quercetin analogs exhibited the lowest interaction energy for binding to DAPK1 than quercetin, and they had similar dynamics performance with quercetin. In addition, quercetin-A1a and quercetin-A1a1 were predicted to have better water solubility. Thus, quercetin-A1a and quercetin-A1a1 could be promising agents for the treatment of AD. Our findings paved the way for further experimental studies and the development of novel drugs.

Loading

Article metrics loading...

/content/journals/cn/10.2174/1570159X22666240515090434
2024-12-01
2024-11-22
Loading full text...

Full text loading...

References

  1. NicholsE. SzoekeC.E.I. VollsetS.E. AbbasiN. Abd-AllahF. AbdelaJ. AichourM.T.E. AkinyemiR.O. AlahdabF. AsgedomS.W. AwasthiA. Barker-ColloS.L. BauneB.T. BéjotY. BelachewA.B. BennettD.A. BiadgoB. BijaniA. Bin SayeedM.S. BrayneC. CarpenterD.O. CarvalhoF. Catalá-LópezF. CerinE. ChoiJ-Y.J. DangA.K. DegefaM.G. DjalaliniaS. DubeyM. DukenE.E. EdvardssonD. EndresM. EskandariehS. FaroA. FarzadfarF. FereshtehnejadS-M. FernandesE. FilipI. FischerF. GebreA.K. GeremewD. Ghasemi-KasmanM. GnedovskayaE.V. GuptaR. HachinskiV. HagosT.B. HamidiS. HankeyG.J. HaroJ.M. HayS.I. IrvaniS.S.N. JhaR.P. JonasJ.B. KalaniR. KarchA. KasaeianA. KhaderY.S. KhalilI.A. KhanE.A. KhannaT. KhojaT.A.M. KhubchandaniJ. KisaA. Kissimova-SkarbekK. KivimäkiM. KoyanagiA. KrohnK.J. LogroscinoG. LorkowskiS. MajdanM. MalekzadehR. MärzW. MassanoJ. MengistuG. MeretojaA. MohammadiM. Mohammadi-KhanaposhtaniM. MokdadA.H. MondelloS. MoradiG. NagelG. NaghaviM. NaikG. NguyenL.H. NguyenT.H. NirayoY.L. NixonM.R. Ofori-AsensoR. OgboF.A. OlagunjuA.T. OwolabiM.O. Panda-JonasS. PassosV.M.A. PereiraD.M. Pinilla-MonsalveG.D. PiradovM.A. PondC.D. PoustchiH. QorbaniM. RadfarA. ReinerR.C.Jr RobinsonS.R. RoshandelG. RostamiA. RussT.C. SachdevP.S. SafariH. SafiriS. SahathevanR. SalimiY. SatpathyM. SawhneyM. SaylanM. SepanlouS.G. ShafieesabetA. ShaikhM.A. SahraianM.A. ShigematsuM. ShiriR. ShiueI. SilvaJ.P. SmithM. SobhaniS. SteinD.J. Tabarés-SeisdedosR. Tovani-PaloneM.R. TranB.X. TranT.T. TsegayA.T. UllahI. VenketasubramanianN. VlassovV. WangY-P. WeissJ. WestermanR. WijeratneT. WyperG.M.A. YanoY. YimerE.M. YonemotoN. YousefifardM. ZaidiZ. ZareZ. VosT. FeiginV.L. MurrayC.J.L. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990-2016: A systematic analysis for the global burden of disease study 2016.Lancet Neurol.20191818810610.1016/S1474‑4422(18)30403‑4 30497964
    [Google Scholar]
  2. 2020 Alzheimer’s disease facts and figures.Alzheimers Dement.20202020 32157811
    [Google Scholar]
  3. ChenG. XuT. YanY. ZhouY. JiangY. MelcherK. XuH.E. Amyloid beta: Structure, biology and structure-based therapeutic development.Acta Pharmacol. Sin.20173891205123510.1038/aps.2017.28 28713158
    [Google Scholar]
  4. BinderL.I. Guillozet-BongaartsA.L. Garcia-SierraF. BerryR.W. Tau, tangles, and Alzheimer’s disease.Biochim. Biophys. Acta Mol. Basis Dis.200517392-321622310.1016/j.bbadis.2004.08.014 15615640
    [Google Scholar]
  5. LyketsosC.G. CarrilloM.C. RyanJ.M. KhachaturianA.S. TrzepaczP. AmatniekJ. CedarbaumJ. BrashearR. MillerD.S. Neuropsychiatric symptoms in Alzheimer’s disease.Alzheimers Dement.20117553253910.1016/j.jalz.2011.05.2410 21889116
    [Google Scholar]
  6. JacobsenJ.S. WuC.C. RedwineJ.M. ComeryT.A. AriasR. BowlbyM. MartoneR. MorrisonJ.H. PangalosM.N. ReinhartP.H. BloomF.E. Early-onset behavioral and synaptic deficits in a mouse model of Alzheimer’s disease.Proc. Natl. Acad. Sci. 2006103135161516610.1073/pnas.0600948103 16549764
    [Google Scholar]
  7. MurphyM.P. LeVineH.III Alzheimer’s disease and the amyloid-beta peptide.J. Alzheimers Dis.201019131132310.3233/JAD‑2010‑1221 20061647
    [Google Scholar]
  8. YaoM. NguyenT.V.V. PikeC.J. Beta-amyloid-induced neuronal apoptosis involves c-Jun N-terminal kinase-dependent downregulation of Bcl-w.J. Neurosci.20052551149115810.1523/JNEUROSCI.4736‑04.2005 15689551
    [Google Scholar]
  9. TanZ. ShiL. SchreiberS.S. Differential expression of redox factor-1 associated with beta-amyloid-mediated neurotoxicity.Open Neurosci. J.200931263410.2174/1874082000903010026 19898678
    [Google Scholar]
  10. MisonouH. Morishima-KawashimaM. IharaY. Oxidative stress induces intracellular accumulation of amyloid beta-protein (Abeta) in human neuroblastoma cells.Biochemistry200039236951695910.1021/bi000169p 10841777
    [Google Scholar]
  11. SunX. ChenW.D. WangY.D. β-Amyloid: The key peptide in the pathogenesis of Alzheimer’s disease.Front. Pharmacol.2015622110.3389/fphar.2015.00221 26483691
    [Google Scholar]
  12. PanzaF. SolfrizziV. SeripaD. ImbimboB.P. LozuponeM. SantamatoA. ZeccaC. BarulliM.R. BellomoA. PilottoA. DanieleA. GrecoA. LogroscinoG. Tau-centric targets and drugs in clinical development for the treatment of alzheimer’s disease.BioMed Res. Int.2016201611510.1155/2016/3245935 27429978
    [Google Scholar]
  13. WangL. BenzingerT.L. SuY. ChristensenJ. FriedrichsenK. AldeaP. McConathyJ. CairnsN.J. FaganA.M. MorrisJ.C. AncesB.M. Evaluation of tau imaging in staging alzheimer disease and revealing interactions between β-amyloid and tauopathy.JAMA Neurol.20167391070107710.1001/jamaneurol.2016.2078 27454922
    [Google Scholar]
  14. GötzJ. ChenF. van DorpeJ. NitschR.M. Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Abeta 42 fibrils.Science200129355341491149510.1126/science.1062097 11520988
    [Google Scholar]
  15. JaworskiJ. ShengM. The growing role of mTOR in neuronal development and plasticity.Mol. Neurobiol.200634320522010.1385/MN:34:3:205 17308353
    [Google Scholar]
  16. MaT. HoefferC.A. Capetillo-ZarateE. YuF. WongH. LinM.T. TampelliniD. KlannE. BlitzerR.D. GourasG.K. Dysregulation of the mTOR pathway mediates impairment of synaptic plasticity in a mouse model of Alzheimer’s disease.PLoS One201059e1284510.1371/journal.pone.0012845 20862226
    [Google Scholar]
  17. KinneyJ.W. BemillerS.M. MurtishawA.S. LeisgangA.M. SalazarA.M. LambB.T. Inflammation as a central mechanism in Alzheimer’s disease.Alzheimers Dement.20184157559010.1016/j.trci.2018.06.014 30406177
    [Google Scholar]
  18. XuL.Z. LiB.Q. LiF.Y. LiY. QinW. ZhaoY. JiaJ.P. NMDA receptor GluN2B subunit is involved in excitotoxicity mediated by death-associated protein kinase 1 in alzheimer’s disease.J. Alzheimers Dis.202391287789310.3233/JAD‑220747 36502323
    [Google Scholar]
  19. WangL. ShuiX. ZhangM. MeiY. XiaY. LanG. HuL. GanC.L. TianY. LiR. GuX. ZhangT. ChenD. LeeT.H. MiR-191-5p attenuates tau phosphorylation, aβ generation, and neuronal cell death by regulating death-associated protein kinase 1.ACS Chem. Neurosci.202213243554356610.1021/acschemneuro.2c00423 36454178
    [Google Scholar]
  20. XuL. LiB. JiaJ. DAPK1: A novel pathology and treatment target for alzheimer’s disease.Mol. Neurobiol.20195642838284410.1007/s12035‑018‑1242‑2 30062675
    [Google Scholar]
  21. LiR. ZhiS. LanG. ChenX. ZhengX. HuL. WangL. ZhangT. LeeT.H. RaoS. ChenD. Ablation of death-associated protein kinase 1 changes the transcriptomic profile and alters neural-related pathways in the brain.Int. J. Mol. Sci.2023247654210.3390/ijms24076542 37047515
    [Google Scholar]
  22. GuanP.P. DingW.Y. WangP. Molecular mechanism of acetylsalicylic acid in improving learning and memory impairment in APP/PS1 transgenic mice by inhibiting the abnormal cell cycle re-entry of neurons.Front. Mol. Neurosci.202215100621610.3389/fnmol.2022.1006216 36263378
    [Google Scholar]
  23. SongB. DavisK. LiuX.S. LeeH. SmithM. LiuX. Inhibition of polo-like kinase 1 reduces beta-amyloid-induced neuronal cell death in Alzheimer’s disease.Aging 20113984685110.18632/aging.100382 21931181
    [Google Scholar]
  24. ParkJ.Y. DarvasM. LadigesW. Targeting IGF1R signaling for brain aging and Alzheimer’s disease.Aging Pathobiol. Ther.20224412913110.31491/APT.2022.12.103 36776414
    [Google Scholar]
  25. HamasakiH. HondaH. SuzukiS.O. HokamaM. KiyoharaY. NakabeppuY. IwakiT. Down‐regulation of MET in hippocampal neurons of Alzheimer’s disease brains.Neuropathology201434328429010.1111/neup.12095 24444253
    [Google Scholar]
  26. WangL. ChiangH.C. WuW. LiangB. XieZ. YaoX. MaW. DuS. ZhongY. Epidermal growth factor receptor is a preferred target for treating Amyloid-β-induced memory loss.Proc. Natl. Acad. Sci. 201210941167431674810.1073/pnas.1208011109 23019586
    [Google Scholar]
  27. LinW.Y. WuB.T. LeeC.C. SheuJ.J. LiuS.H. WangW.F. TsaiC.H. LiuH.P. TsaiF.J. Association analysis of dopaminergic gene variants (Comt, Drd4 And Dat1) with Alzheimer s disease.J. Biol. Regul. Homeost. Agents2012263401410 23034259
    [Google Scholar]
  28. LannfeltL. MöllerC. BasunH. OsswaldG. SehlinD. SatlinA. LogovinskyV. GellerforsP. Perspectives on future Alzheimer therapies: amyloid-β protofibrils - a new target for immunotherapy with BAN2401 in Alzheimer’s disease.Alzheimers Res. Ther.2014621610.1186/alzrt246 25031633
    [Google Scholar]
  29. BoutajangoutA. SigurdssonE.M. KrishnamurthyP.K. Tau as a therapeutic target for Alzheimer’s disease.Curr. Alzheimer Res.20118666667710.2174/156720511796717195 21679154
    [Google Scholar]
  30. PimplikarS.W. Neuroinflammation in Alzheimer’s disease: From pathogenesis to a therapeutic target.J. Clin. Immunol.201434S1646910.1007/s10875‑014‑0032‑5 24711006
    [Google Scholar]
  31. JiangT. SunQ. ChenS. Oxidative stress: A major pathogenesis and potential therapeutic target of antioxidative agents in Parkinson’s disease and Alzheimer’s disease.Prog. Neurobiol.201614711910.1016/j.pneurobio.2016.07.005 27769868
    [Google Scholar]
  32. NeveR.L. McPhieD.L. The cell cycle as a therapeutic target for Alzheimer’s disease.Pharmacol. Ther.200611119911310.1016/j.pharmthera.2005.09.005 16274748
    [Google Scholar]
  33. KemW.R. The brain α7 nicotinic receptor may be an important therapeutic target for the treatment of Alzheimer’s disease: Studies with DMXBA (GTS-21).Behav. Brain Res.20001131-216918110.1016/S0166‑4328(00)00211‑4 10942043
    [Google Scholar]
  34. YiannopoulouK.G. PapageorgiouS.G. Current and future treatments in Alzheimer Disease: An update.J. Cent. Nerv. Syst. Dis.20201210.1177/1179573520907397 32165850
    [Google Scholar]
  35. TanC.C. YuJ.T. WangH.F. TanM.S. MengX.F. WangC. JiangT. ZhuX.C. TanL. Efficacy and safety of donepezil, galantamine, rivastigmine, and memantine for the treatment of Alzheimer’s disease: A systematic review and meta-analysis.J. Alzheimers Dis.201441261563110.3233/JAD‑132690 24662102
    [Google Scholar]
  36. ChenJ. BianX. LiY. XiaoX. YinY. DuX. WangC. LiL. BaiY. LiuX. Moderate hypothermia induces protection against hypoxia/reoxygenation injury by enhancing SUMOylation in cardiomyocytes.Mol. Med. Rep.20202242617262610.3892/mmr.2020.11374 32945433
    [Google Scholar]
  37. SiemersE.R. SundellK.L. CarlsonC. CaseM. SethuramanG. Liu-SeifertH. DowsettS.A. PontecorvoM.J. DeanR.A. DemattosR. Phase 3 solanezumab trials: Secondary outcomes in mild Alzheimer’s disease patients.Alzheimers Dement.201612211012010.1016/j.jalz.2015.06.1893 26238576
    [Google Scholar]
  38. CummingsJ.L. CohenS. van DyckC.H. BrodyM. CurtisC. ChoW. WardM. FriesenhahnM. RabeC. BrunsteinF. QuartinoA. HonigbergL.A. FujiR.N. ClaytonD. MortensenD. HoC. PaulR. ABBY: A phase 2 randomized trial of crenezumab in mild to moderate Alzheimer disease.Neurology20189021e1889e189710.1212/WNL.0000000000005550 29695589
    [Google Scholar]
  39. KontsekovaE. ZilkaN. KovacechB. SkrabanaR. NovakM. Identification of structural determinants on tau protein essential for its pathological function: Novel therapeutic target for tau immunotherapy in Alzheimer’s disease.Alzheimers Res. Ther.2014644510.1186/alzrt277 25478018
    [Google Scholar]
  40. WischikC.M. EdwardsP.C. LaiR.Y. RothM. HarringtonC.R. Selective inhibition of Alzheimer disease-like tau aggregation by phenothiazines.Proc. Natl. Acad. Sci. 19969320112131121810.1073/pnas.93.20.11213 8855335
    [Google Scholar]
  41. CalabreseV. CorneliusC. Dinkova-KostovaA.T. CalabreseE.J. MattsonM.P. Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders.Antioxid. Redox Signal.201013111763181110.1089/ars.2009.3074 20446769
    [Google Scholar]
  42. CalabreseV. CorneliusC. CuzzocreaS. IavicoliI. RizzarelliE. CalabreseE.J. Hormesis, cellular stress response and vitagenes as critical determinants in aging and longevity.Mol. Aspects Med.2011324-627930410.1016/j.mam.2011.10.007 22020114
    [Google Scholar]
  43. SzekelyC.A. ZandiP.P. Non-steroidal anti-inflammatory drugs and Alzheimer’s disease: The epidemiological evidence.CNS Neurol. Disord. Drug Targets20109213213910.2174/187152710791012026 20205647
    [Google Scholar]
  44. MatsuokaY. JouroukhinY. GrayA.J. MaL. Hirata-FukaeC. LiH.F. FengL. LecanuL. WalkerB.R. PlanelE. ArancioO. GozesI. AisenP.S. A neuronal microtubule-interacting agent, NAPVSIPQ, reduces tau pathology and enhances cognitive function in a mouse model of Alzheimer’s disease.J. Pharmacol. Exp. Ther.2008325114615310.1124/jpet.107.130526 18199809
    [Google Scholar]
  45. ButterfieldD.A. Boyd-KimballD. Oxidative stress, amyloid-β peptide, and altered key molecular pathways in the pathogenesis and progression of alzheimer’s disease.J. Alzheimers Dis.20186231345136710.3233/JAD‑170543 29562527
    [Google Scholar]
  46. AbateG. VezzoliM. SandriM. RungratanawanichW. MemoM. UbertiD. Mitochondria and cellular redox state on the route from ageing to Alzheimer’s disease.Mech. Ageing Dev.202019211138510.1016/j.mad.2020.111385 33129798
    [Google Scholar]
  47. Álvarez-BerbelI. EspargaróA. ViaynaA. CaballeroA.B. BusquetsM.A. GámezP. LuqueF.J. SabatéR. Three to tango: Inhibitory effect of quercetin and apigenin on acetylcholinesterase, amyloid-β aggregation and acetylcholinesterase-amyloid interaction.Pharmaceutics20221411234210.3390/pharmaceutics14112342 36365159
    [Google Scholar]
  48. YoudimK.A. JosephJ.A. A possible emerging role of phytochemicals in improving age-related neurological dysfunctions: A multiplicity of effects.Free Radic. Biol. Med.200130658359410.1016/S0891‑5849(00)00510‑4 11295356
    [Google Scholar]
  49. PiccialliI. TedeschiV. CaputoL. D’ErricoS. CicconeR. De FeoV. SecondoA. PannaccioneA. Exploring the therapeutic potential of phytochemicals in alzheimer’s disease: Focus on polyphenols and monoterpenes.Front. Pharmacol.20221387661410.3389/fphar.2022.876614 35600880
    [Google Scholar]
  50. HertogM.G.L. HollmanP.C.H. van de PutteB. Content of potentially anticarcinogenic flavonoids of tea infusions, wines, and fruit juices.J. Agric. Food Chem.19934181242124610.1021/jf00032a015
    [Google Scholar]
  51. HertogM.G. Flavonols and flavones in foods and their relation with cancer and coronary heart disease risk.Wageningen University and Research1994
    [Google Scholar]
  52. DajasF. Life or death: Neuroprotective and anticancer effects of quercetin.J. Ethnopharmacol.2012143238339610.1016/j.jep.2012.07.005 22820241
    [Google Scholar]
  53. ZhangM. SwartsS.G. YinL. LiuC. TianY. CaoY. SwartsM. YangS. ZhangS.B. ZhangK. JuS. OlekD.J.Jr SchwartzL. KengP.C. HowellR. ZhangL. OkunieffP. Antioxidant properties of quercetin.Adv. Exp. Med. Biol.201170128328910.1007/978‑1‑4419‑7756‑4_38 21445799
    [Google Scholar]
  54. WuW. LiR. LiX. HeJ. JiangS. LiuS. YangJ. Quercetin as an antiviral agent inhibits influenza a virus (IAV) entry.Viruses201581610.3390/v8010006 26712783
    [Google Scholar]
  55. YiL. LiZ. YuanK. QuX. ChenJ. WangG. ZhangH. LuoH. ZhuL. JiangP. ChenL. ShenY. LuoM. ZuoG. HuJ. DuanD. NieY. ShiX. WangW. HanY. LiT. LiuY. DingM. DengH. XuX. Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells.J. Virol.20047820113341133910.1128/JVI.78.20.11334‑11339.2004 15452254
    [Google Scholar]
  56. Colunga BiancatelliR.M.L. BerrillM. CatravasJ.D. MarikP.E. Quercetin and vitamin C: An experimental, synergistic therapy for the prevention and treatment of SARS-CoV-2 related disease (COVID-19).Front. Immunol.202011145110.3389/fimmu.2020.01451 32636851
    [Google Scholar]
  57. VessalM. HemmatiM. VaseiM. Antidiabetic effects of quercetin in streptozocin-induced diabetic rats.Comp. Biochem. Physiol. C Toxicol. Pharmacol.2003135335736410.1016/S1532‑0456(03)00140‑6 12927910
    [Google Scholar]
  58. BruningA. Inhibition of mTOR signaling by quercetin in cancer treatment and prevention.Anticancer. Agents Med. Chem.20131371025103110.2174/18715206113139990114 23272907
    [Google Scholar]
  59. YangH. SongY. LiangY. LiR. Quercetin treatment improves renal function and protects the kidney in a rat model of adenine-induced chronic kidney disease.Med. Sci. Monit.2018244760476610.12659/MSM.909259 29987270
    [Google Scholar]
  60. PatelR.V. MistryB.M. ShindeS.K. SyedR. SinghV. ShinH.S. Therapeutic potential of quercetin as a cardiovascular agent.Eur. J. Med. Chem.201815588990410.1016/j.ejmech.2018.06.053 29966915
    [Google Scholar]
  61. HaleagraharaN. Miranda-HernandezS. AlimM.A. HayesL. BirdG. KetheesanN. Therapeutic effect of quercetin in collagen-induced arthritis.Biomed. Pharmacother.201790384610.1016/j.biopha.2017.03.026 28342364
    [Google Scholar]
  62. AnsariM.A. AbdulH.M. JoshiG. OpiiW.O. ButterfieldD.A. Protective effect of quercetin in primary neurons against Aβ(1-42): Relevance to Alzheimer’s disease.J. Nutr. Biochem.200920426927510.1016/j.jnutbio.2008.03.002 18602817
    [Google Scholar]
  63. NakagawaT. ItohM. OhtaK. HayashiY. HayakawaM. YamadaY. AkanabeH. ChikaishiT. NakagawaK. ItohY. MuroT. YanagidaD. NakabayashiR. MoriT. SaitoK. OhzawaK. SuzukiC. LiS. UedaM. WangM.X. NishidaE. IslamS. Tana; Kobori, M.; Inuzuka, T. Improvement of memory recall by quercetin in rodent contextual fear conditioning and human early-stage Alzheimer’s disease patients.Neuroreport201627967167610.1097/WNR.0000000000000594 27145228
    [Google Scholar]
  64. Sabogal-GuáquetaA.M. Muñoz-MancoJ.I. Ramírez-PinedaJ.R. Lamprea-RodriguezM. OsorioE. Cardona-GómezG.P. The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice.Neuropharmacology20159313414510.1016/j.neuropharm.2015.01.027 25666032
    [Google Scholar]
  65. KangC.H. ChoiY.H. MoonS.K. KimW.J. KimG.Y. Quercetin inhibits lipopolysaccharide-induced nitric oxide production in BV2 microglial cells by suppressing the NF-κB pathway and activating the Nrf2-dependent HO-1 pathway.Int. Immunopharmacol.201317380881310.1016/j.intimp.2013.09.009 24076371
    [Google Scholar]
  66. LiY. ZhouS. LiJ. SunY. HasimuH. LiuR. ZhangT. Quercetin protects human brain microvascular endothelial cells from fibrillar β-amyloid1-40-induced toxicity.Acta Pharm. Sin. B201551475410.1016/j.apsb.2014.12.003 26579424
    [Google Scholar]
  67. ImaiK. NakanishiI. OhkuboK. OhbaY. AraiT. MizunoM. FukuzumiS. MatsumotoK. FukuharaK. Synthesis of methylated quercetin analogs for enhancement of radical-scavenging activity.RSC Advances2017729179681797910.1039/C7RA02329D
    [Google Scholar]
  68. QiP. LiJ. GaoS. YuanY. SunY. LiuN. LiY. WangG. ChenL. ShiJ. Network pharmacology-based and experimental identification of the effects of quercetin on Alzheimer’s Disease.Front. Aging Neurosci.20201258958810.3389/fnagi.2020.589588 33192484
    [Google Scholar]
  69. OlayinkaJ. EduviereA. AdeoluwaO. FafureA. AdebanjoA. OzoluaR. Quercetin mitigates memory deficits in scopolamine mice model via protection against neuroinflammation and neurodegeneration.Life Sci.202229212032610.1016/j.lfs.2022.120326 35031260
    [Google Scholar]
  70. BukhariS.N.A. Dietary polyphenols as therapeutic intervention for Alzheimer’s Disease: A mechanistic insight.Antioxidants202211355410.3390/antiox11030554 35326204
    [Google Scholar]
  71. ZizkovaP. StefekM. RackovaL. PrnovaM. HorakovaL. Novel quercetin derivatives: From redox properties to promising treatment of oxidative stress related diseases.Chem. Biol. Interact.2017265364610.1016/j.cbi.2017.01.019 28137512
    [Google Scholar]
  72. Shah-abadiM.E. AriaeiA. MoradiF. RustamzadehA. TanhaR.R. SadighN. MarzbanM. HeydariM. FerdousieV.T. In silico interactions of natural and synthetic compounds with key proteins involved in Alzheimer’s disease: Prospects for designing new therapeutics compound.Neurotox. Res.202341540843010.1007/s12640‑023‑00648‑1 37086338
    [Google Scholar]
  73. WahidM. SaqibF. QamarM. ZioraZ.M. Antispasmodic activity of the ethanol extract of Citrullus lanatus seeds: Justifying ethnomedicinal use in Pakistan to treat asthma and diarrhea.J. Ethnopharmacol.202229511531410.1016/j.jep.2022.115314 35490899
    [Google Scholar]
  74. NgoF.Y. WangW. ChenQ. ZhaoJ. ChenH. GaoJ.M. RongJ. Network pharmacology analysis and molecular characterization of the herbal medicine formulation Qi-Fu-Yin for the inhibition of the neuroinflammatory biomarker iNOS in microglial BV-2 cells: Implication for the treatment of alzheimer’s disease.Oxid. Med. Cell. Longev.2020202011510.1155/2020/5780703 32952851
    [Google Scholar]
  75. LinA. WangR.T. AhnS. ParkC.C. SmithD.J. A genome-wide map of human genetic interactions inferred from radiation hybrid genotypes.Genome Res.20102081122113210.1101/gr.104216.109 20508145
    [Google Scholar]
  76. JohnsonJ.M. CastleJ. Garrett-EngeleP. KanZ. LoerchP.M. ArmourC.D. SantosR. SchadtE.E. StoughtonR. ShoemakerD.D. Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays.Science200330256532141214410.1126/science.1090100 14684825
    [Google Scholar]
  77. RosenwaldA. AlizadehA.A. WidhopfG. SimonR. DavisR.E. YuX. YangL. PickeralO.K. RassentiL.Z. PowellJ. BotsteinD. ByrdJ.C. GreverM.R. ChesonB.D. ChiorazziN. WilsonW.H. KippsT.J. BrownP.O. StaudtL.M. Relation of gene expression phenotype to immunoglobulin mutation genotype in B cell chronic lymphocytic leukemia.J. Exp. Med.2001194111639164810.1084/jem.194.11.1639 11733578
    [Google Scholar]
  78. AlizadehA.A. EisenM.B. DavisR.E. MaC. LossosI.S. RosenwaldA. BoldrickJ.C. SabetH. TranT. YuX. PowellJ.I. YangL. MartiG.E. MooreT. HudsonJ.Jr LuL. LewisD.B. TibshiraniR. SherlockG. ChanW.C. GreinerT.C. WeisenburgerD.D. ArmitageJ.O. WarnkeR. LevyR. WilsonW. GreverM.R. ByrdJ.C. BotsteinD. BrownP.O. StaudtL.M. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling.Nature2000403676950351110.1038/35000501 10676951
    [Google Scholar]
  79. LuoD. FanN. ZhangX. NgoF.Y. ZhaoJ. ZhaoW. HuangM. LiD. WangY. RongJ. Covalent inhibition of endoplasmic reticulum chaperone GRP78 disconnects the transduction of ER stress signals to inflammation and lipid accumulation in diet-induced obese mice.eLife202211e7218210.7554/eLife.72182 35138251
    [Google Scholar]
  80. SinghP. RavananP. TalwarP. Death associated protein kinase 1 (DAPK1): A regulator of apoptosis and autophagy.Front. Mol. Neurosci.201694610.3389/fnmol.2016.00046 27445685
    [Google Scholar]
  81. HainsworthA.H. AllsoppR.C. JimA. PotterJ.F. LoweJ. TalbotC.J. PrettymanR.J. Death-associated protein kinase (DAPK1) in cerebral cortex of late-onset Alzheimer’s disease patients and aged controls.Neuropathol. Appl. Neurobiol.2010361172410.1111/j.1365‑2990.2009.01035.x 19627511
    [Google Scholar]
  82. KimB.M. YouM.H. ChenC.H. SuhJ. TanziR.E. Ho LeeT. Inhibition of death-associated protein kinase 1 attenuates the phosphorylation and amyloidogenic processing of amyloid precursor protein.Hum. Mol. Genet.20162512ddw11410.1093/hmg/ddw114 27094130
    [Google Scholar]
  83. KimB.M. YouM-H. ChenC-H. LeeS. HongY. HongY. KimchiA. ZhouX.Z. LeeT.H. Death-associated protein kinase 1 has a critical role in aberrant tau protein regulation and function.Cell Death Dis.201455e123710.1038/cddis.2014.216 24853415
    [Google Scholar]
  84. ZhangH. WeiW. ZhaoM. MaL. JiangX. PeiH. CaoY. LiH. Interaction between Aβ and Tau in the Pathogenesis of Alzheimer’s Disease.Int. J. Biol. Sci.20211792181219210.7150/ijbs.57078 34239348
    [Google Scholar]
  85. KimN. ChenD. ZhouX.Z. LeeT.H. Death-associated protein kinase 1 phosphorylation in neuronal cell death and neurodegenerative disease.Int. J. Mol. Sci.20192013313110.3390/ijms20133131 31248062
    [Google Scholar]
  86. ShuS. ZhuH. TangN. ChenW. LiX. LiH. PeiL. LiuD. MuY. TianQ. ZhuL.Q. LuY. Selective degeneration of entorhinal-ca1 synapses in Alzheimer’s disease via activation of DAPK1.J. Neurosci.20163642108431085210.1523/JNEUROSCI.2258‑16.2016 27798139
    [Google Scholar]
  87. ChenD. MeiY. KimN. LanG. GanC.L. FanF. ZhangT. XiaY. WangL. LinC. KeF. ZhouX.Z. LuK.P. LeeT.H. Melatonin directly binds and inhibits death‐associated protein kinase 1 function in Alzheimer’s disease.J. Pineal Res.2020692e1266510.1111/jpi.12665 32358852
    [Google Scholar]
  88. CaiX. FangZ. DouJ. YuA. ZhaiG. Bioavailability of quercetin: Problems and promises.Curr. Med. Chem.201320202572258210.2174/09298673113209990120 23514412
    [Google Scholar]
  89. MassiA. BortoliniO. RagnoD. BernardiT. SacchettiG. TacchiniM. De RisiC. Research progress in the modification of quercetin leading to anticancer agents.Molecules2017228127010.3390/molecules22081270 28758919
    [Google Scholar]
  90. BabaeiP. KouhestaniS. JafariA. Kaempferol attenuates cognitive deficit via regulating oxidative stress and neuroinflammation in an ovariectomized rat model of sporadic dementia.Neural Regen. Res.201813101827183210.4103/1673‑5374.238714 30136699
    [Google Scholar]
  91. MohammadiN. Asle-RoustaM. RahnemaM. AminiR. Morin attenuates memory deficits in a rat model of Alzheimer’s disease by ameliorating oxidative stress and neuroinflammation.Eur. J. Pharmacol.202191017450610.1016/j.ejphar.2021.174506 34534533
    [Google Scholar]
  92. KochP. BrunschweigerA. NamasivayamV. UllrichS. MarucaA. LazzarettoB. KüppersP. HinzS. HockemeyerJ. WieseM. HeerJ. AlcaroS. Kiec-KononowiczK. MüllerC.E. Probing substituents in the 1- and 3-position: Tetrahydropyrazino-annelated water-soluble xanthine derivatives as multi-target drugs with potent adenosine receptor antagonistic activity.Front Chem.2018620610.3389/fchem.2018.00206 29998095
    [Google Scholar]
  93. EganW.J. MerzK.M.Jr BaldwinJ.J. Prediction of drug absorption using multivariate statistics.J. Med. Chem.200043213867387710.1021/jm000292e 11052792
    [Google Scholar]
  94. DelaneyJ.S. ESOL: Estimating aqueous solubility directly from molecular structure.J. Chem. Inf. Comput. Sci.20044431000100510.1021/ci034243x 15154768
    [Google Scholar]
  95. AliJ. CamilleriP. BrownM.B. HuttA.J. KirtonS.B. Revisiting the general solubility equation: In silico prediction of aqueous solubility incorporating the effect of topographical polar surface area.J. Chem. Inf. Model.201252242042810.1021/ci200387c 22196228
    [Google Scholar]
  96. SturgeonJ.B. LairdB.B. Symplectic algorithm for constant-pressure molecular dynamics using a Nosé-Poincaré thermostat.J. Chem. Phys.200011283474348210.1063/1.480502
    [Google Scholar]
  97. KhelfaouiH. HarkatiD. SalehB.A. Molecular docking, molecular dynamics simulations and reactivity, studies on approved drugs library targeting ACE2 and SARS-CoV-2 binding with ACE2.J. Biomol. Struct. Dyn.202139187246726210.1080/07391102.2020.1803967 32752951
    [Google Scholar]
  98. Moya-AlvaradoG. Gershoni-EmekN. PerlsonE. BronfmanF.C. Neurodegeneration and Alzheimer’s disease (AD). What can proteomics tell us about the Alzheimer’s brain?Mol. Cell. Proteomics201615240942510.1074/mcp.R115.053330 26657538
    [Google Scholar]
  99. van der FlierW.M. de VugtM.E. SmetsE.M.A. BlomM. TeunissenC.E. Towards a future where Alzheimer’s disease pathology is stopped before the onset of dementia.Nature. Aging20233549450510.1038/s43587‑023‑00404‑2 37202515
    [Google Scholar]
  100. PasseriE. ElkhouryK. MorsinkM. BroersenK. LinderM. TamayolA. MalaplateC. YenF.T. Arab-TehranyE. Alzheimer’s Disease: Treatment strategies and their limitations.Int. J. Mol. Sci.202223221395410.3390/ijms232213954 36430432
    [Google Scholar]
  101. YouM.H. KimB.M. ChenC.H. BegleyM.J. CantleyL.C. LeeT.H. Death-associated protein kinase 1 phosphorylates NDRG2 and induces neuronal cell death.Cell Death Differ.201724223825010.1038/cdd.2016.114 28141794
    [Google Scholar]
  102. NewmanD.J. CraggG.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019.J. Nat. Prod.202083377080310.1021/acs.jnatprod.9b01285 32162523
    [Google Scholar]
  103. AtanasovA.G. ZotchevS.B. DirschV.M. SupuranC.T. Natural products in drug discovery: Advances and opportunities.Nat. Rev. Drug Discov.202120320021610.1038/s41573‑020‑00114‑z 33510482
    [Google Scholar]
  104. KimJ.H. LeeJ. LeeS. ChoE.J. Quercetin and quercetin-3-β-d-glucoside improve cognitive and memory function in Alzheimer’s disease mouse.Appl. Biol. Chem.201659572172810.1007/s13765‑016‑0217‑0
    [Google Scholar]
/content/journals/cn/10.2174/1570159X22666240515090434
Loading
/content/journals/cn/10.2174/1570159X22666240515090434
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test