Skip to content
2000
Volume 22, Issue 14
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Cerebral Edema (CE) is the final common pathway of brain death. In severe neurological disease, neuronal cell damage first contributes to tissue edema, and then Increased Intracranial Pressure (ICP) occurs, which results in diminishing cerebral perfusion pressure. In turn, anoxic brain injury brought on by decreased cerebral perfusion pressure eventually results in neuronal cell impairment, creating a vicious cycle. Traditionally, CE is understood to be tightly linked to elevated ICP, which ultimately generates cerebral hernia and is therefore regarded as a risk factor for mortality. Intracranial hypertension and brain edema are two serious neurological disorders that are commonly treated with mannitol. However, mannitol usage should be monitored since inappropriate utilization of the substance could conversely have negative effects on CE patients. CE is thought to be related to blood-brain barrier dysfunction. Nonetheless, a fluid clearance mechanism called the glial-lymphatic or glymphatic system was updated. This pathway facilitates the transport of cerebrospinal fluid (CSF) into the brain along arterial perivascular spaces and later into the brain interstitium. After removing solutes from the neuropil into meningeal and cervical lymphatic drainage arteries, the route then directs flows into the venous perivascular and perineuronal regions. Remarkably, the dual function of the glymphatic system was observed to protect the brain from further exacerbated damage. From our point of view, future studies ought to concentrate on the management of CE based on numerous targets of the updated glymphatic system. Further clinical trials are encouraged to apply these agents to the clinic as soon as possible.

Loading

Article metrics loading...

/content/journals/cn/10.2174/1570159X22666240528160237
2024-12-01
2025-01-28
Loading full text...

Full text loading...

References

  1. SteinerL.A. AndrewsP.J.D. Monitoring the injured brain: ICP and CBF.Br. J. Anaesth.2006971263810.1093/bja/ael110 16698860
    [Google Scholar]
  2. CanacN. JalaleddiniK. ThorpeS.G. ThibeaultC.M. HamiltonR.B. Review: pathophysiology of intracranial hypertension and noninvasive intracranial pressure monitoring.Fluids Barriers CNS20201714010.1186/s12987‑020‑00201‑8 32576216
    [Google Scholar]
  3. MarkeyK.A. MollanS.P. JensenR.H. SinclairA.J. Understanding idiopathic intracranial hypertension: mechanisms, management, and future directions.Lancet Neurol.2016151789110.1016/S1474‑4422(15)00298‑7 26700907
    [Google Scholar]
  4. PapadopoulosM.C. SaadounS. BinderD.K. ManleyG.T. KrishnaS. VerkmanA.S. Molecular mechanisms of brain tumor edema.Neuroscience200412941009101810.1016/j.neuroscience.2004.05.044 15561416
    [Google Scholar]
  5. KoenigM.A. Cerebral Edema and Elevated Intracranial Pressure.Continuum (Minneap. Minn.)20182461588160210.1212/CON.0000000000000665 30516597
    [Google Scholar]
  6. ChenS. ShaoL. MaL. Cerebral edema formation after stroke: emphasis on blood-brain barrier and the lymphatic drainage system of the brain.Front. Cell. Neurosci.20211571682510.3389/fncel.2021.716825 34483842
    [Google Scholar]
  7. IliffJ.J. WangM. LiaoY. PloggB.A. PengW. GundersenG.A. BenvenisteH. VatesG.E. DeaneR. GoldmanS.A. NagelhusE.A. NedergaardM. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β.Sci. Transl. Med.20124147147ra11110.1126/scitranslmed.3003748 22896675
    [Google Scholar]
  8. MestreH. DuT. SweeneyA.M. LiuG. SamsonA.J. PengW. MortensenK.N. StægerF.F. BorkP.A.R. BashfordL. ToroE.R. TithofJ. KelleyD.H. ThomasJ.H. HjorthP.G. MartensE.A. MehtaR.I. SolisO. BlinderP. KleinfeldD. HiraseH. MoriY. NedergaardM. Cerebrospinal fluid influx drives acute ischemic tissue swelling.Science20203676483eaax717110.1126/science.aax7171 32001524
    [Google Scholar]
  9. StarlingE.H. On the absorption of fluids from the connective tissue spaces.J. Physiol.189619431232610.1113/jphysiol.1896.sp000596 16992325
    [Google Scholar]
  10. StokumJ.A. GerzanichV. SimardJ.M. Molecular pathophysiology of cerebral edema.J. Cereb. Blood Flow Metab.201636351353810.1177/0271678X15617172 26661240
    [Google Scholar]
  11. ZhangC. JiangM. WangW. ZhaoS. YinY. MiQ. YangM. SongY. SunB. ZhangZ. Selective mGluR1 negative allosteric modulator reduces blood-brain barrier permeability and cerebral edema after experimental subarachnoid hemorrhage.Transl. Stroke Res.202011479981110.1007/s12975‑019‑00758‑z 31833035
    [Google Scholar]
  12. AspelundA. AntilaS. ProulxS.T. KarlsenT.V. KaramanS. DetmarM. WiigH. AlitaloK. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules.J. Exp. Med.2015212799199910.1084/jem.20142290 26077718
    [Google Scholar]
  13. DanemanR. The blood-brain barrier in health and disease.Ann. Neurol.201272564867210.1002/ana.23648 23280789
    [Google Scholar]
  14. WestergaardE. The blood-brain barrier to horseradish peroxidase under normal and experimental conditions.Acta Neuropathol.197739318118710.1007/BF00691695 333857
    [Google Scholar]
  15. YamamizuK. IwasakiM. TakakuboH. SakamotoT. IkunoT. MiyoshiM. KondoT. NakaoY. NakagawaM. InoueH. YamashitaJ.K. RETRACTED: In vitro modeling of blood-brain barrier with human iPSC-derived endothelial cells, pericytes, neurons, and astrocytes via notch signaling.Stem Cell Reports20178363464710.1016/j.stemcr.2017.01.023 28238797
    [Google Scholar]
  16. MizeeM.R. de VriesH.E. Blood-brain barrier regulation.Tissue Barriers201315e2688210.4161/tisb.26882 24868496
    [Google Scholar]
  17. ArmulikA. AbramssonA. BetsholtzC. Endothelial/pericyte interactions.Circ. Res.200597651252310.1161/01.RES.0000182903.16652.d7 16166562
    [Google Scholar]
  18. WinklerE.A. BellR.D. ZlokovicB.V. Central nervous system pericytes in health and disease.Nat. Neurosci.201114111398140510.1038/nn.2946 22030551
    [Google Scholar]
  19. ArmulikA. GenovéG. MäeM. NisanciogluM.H. WallgardE. NiaudetC. HeL. NorlinJ. LindblomP. StrittmatterK. JohanssonB.R. BetsholtzC. Pericytes regulate the blood-brain barrier.Nature2010468732355756110.1038/nature09522 20944627
    [Google Scholar]
  20. AttwellD. BuchanA.M. CharpakS. LauritzenM. MacVicarB.A. NewmanE.A. Glial and neuronal control of brain blood flow.Nature2010468732123224310.1038/nature09613 21068832
    [Google Scholar]
  21. HayashiY. NomuraM. YamagishiS.I. HaradaS.I. YamashitaJ. YamamotoH. Induction of various blood-brain barrier properties in non-neural endothelial cells by close apposition to co-cultured astrocytes.Glia1997191132610.1002/(SICI)1098‑1136(199701)19:1<13:AID‑GLIA2>3.0.CO;2‑B 8989564
    [Google Scholar]
  22. DehouckM.P. MéresseS. DelormeP. FruchartJ.C. CecchelliR. An easier, reproducible, and mass-production method to study the blood-brain barrier in vitro.J. Neurochem.19905451798180110.1111/j.1471‑4159.1990.tb01236.x 2182777
    [Google Scholar]
  23. RubinL.L. HallD.E. PorterS. BarbuK. CannonC. HornerH.C. JanatpourM. LiawC.W. ManningK. MoralesJ. A cell culture model of the blood-brain barrier.J. Cell Biol.199111561725173510.1083/jcb.115.6.1725 1661734
    [Google Scholar]
  24. WilliamsK. AlvarezX. LacknerA.A. Central nervous system perivascular cells are immunoregulatory cells that connect the CNS with the peripheral immune system.Glia200136215616410.1002/glia.1105 11596124
    [Google Scholar]
  25. KutuzovN. FlyvbjergH. LauritzenM. Contributions of the glycocalyx, endothelium, and extravascular compartment to the blood-brain barrier.Proc. Natl. Acad. Sci. USA201811540E9429E943810.1073/pnas.1802155115 30217895
    [Google Scholar]
  26. MilfordE.M. ReadeM.C. Resuscitation fluid choices to preserve the endothelial glycocalyx.Crit. Care20192317710.1186/s13054‑019‑2369‑x 30850020
    [Google Scholar]
  27. PinchiE. FratiA. CipolloniL. AromatarioM. GattoV. La RussaR. PesceA. SanturroA. FraschettiF. FratiP. FineschiV. Clinical-pathological study on β-APP, IL-1β, GFAP, NFL, Spectrin II, 8OHdG, TUNEL, miR-21, miR-16, miR-92 expressions to verify DAI-diagnosis, grade and prognosis.Sci. Rep.201881238710.1038/s41598‑018‑20699‑1 29402984
    [Google Scholar]
  28. ItoJ. MarmarouA. BarzóP. FatourosP. CorwinF. Characterization of edema by diffusion-weighted imaging in experimental traumatic brain injury.J. Neurosurg.19968419710310.3171/jns.1996.84.1.0097 8613843
    [Google Scholar]
  29. MaieseA. SpinaF. VisiG. Del DucaF. De MatteisA. La RussaR. Di PaoloM. FratiP. FineschiV. The expression of FOXO3a as a forensic diagnostic tool in cases of traumatic brain injury: An immunohistochemical study.Int. J. Mol. Sci.2023243258410.3390/ijms24032584 36768906
    [Google Scholar]
  30. RiezzoI. CerretaniD. FioreC. BelloS. CentiniF. D’ErricoS. FiaschiA.I. GiorgiG. NeriM. PomaraC. TurillazziE. FineschiV. Enzymatic-nonenzymatic cellular antioxidant defense systems response and immunohistochemical detection of MDMA, VMAT2, HSP70, and apoptosis as biomarkers for MDMA (Ecstasy) neurotoxicity.J. Neurosci. Res.201088490591610.1002/jnr.22245 19798748
    [Google Scholar]
  31. StokumJ.A. KwonM.S. WooS.K. TsymbalyukO. VennekensR. GerzanichV. SimardJ.M. SUR1‐TRPM4 and AQP4 form a heteromultimeric complex that amplifies ion/water osmotic coupling and drives astrocyte swelling.Glia201866110812510.1002/glia.23231 28906027
    [Google Scholar]
  32. RenZ. IliffJ.J. YangL. YangJ. ChenX. ChenM.J. GieseR.N. WangB. ShiX. NedergaardM. ‘Hit & Run’ model of closed-skull traumatic brain injury (TBI) reveals complex patterns of post-traumatic AQP4 dysregulation.J. Cereb. Blood Flow Metab.201333683484510.1038/jcbfm.2013.30 23443171
    [Google Scholar]
  33. VerkmanA.S. BinderD.K. BlochO. AugusteK. PapadopoulosM.C. Three distinct roles of aquaporin-4 in brain function revealed by knockout mice.Biochim. Biophys. Acta Biomembr.2006175881085109310.1016/j.bbamem.2006.02.018 16564496
    [Google Scholar]
  34. KitauraH. TsujitaM. HuberV.J. KakitaA. ShibukiK. SakimuraK. KweeI.L. NakadaT. Activity-dependent glial swelling is impaired in aquaporin-4 knockout mice.Neurosci. Res.200964220821210.1016/j.neures.2009.03.002 19428702
    [Google Scholar]
  35. Haj-YaseinN.N. BuggeC.E. JensenV. ØstbyI. OttersenO.P. HvalbyØ. NagelhusE.A. Deletion of aquaporin-4 increases extracellular K+ concentration during synaptic stimulation in mouse hippocampus.Brain Struct. Funct.201522042469247410.1007/s00429‑014‑0767‑z 24744149
    [Google Scholar]
  36. SteinerE. EnzmannG.U. LinS. GhavampourS. HannocksM.J. ZuberB. RüeggM.A. SorokinL. EngelhardtB. Loss of astrocyte polarization upon transient focal brain ischemia as a possible mechanism to counteract early edema formation.Glia201260111646165910.1002/glia.22383 22782669
    [Google Scholar]
  37. FukudaA.M. PopV. SpagnoliD. AshwalS. ObenausA. BadautJ. Delayed increase of astrocytic aquaporin 4 after juvenile traumatic brain injury: Possible role in edema resolution?Neuroscience201222236637810.1016/j.neuroscience.2012.06.033 22728101
    [Google Scholar]
  38. MehtaR.I. TosunC. IvanovaS. TsymbalyukN. FamakinB.M. KwonM.S. CastellaniR.J. GerzanichV. SimardJ.M. Sur1-Trpm4 cation channel expression in human cerebral infarcts.J. Neuropathol. Exp. Neurol.201574883584910.1097/NEN.0000000000000223 26172285
    [Google Scholar]
  39. MehtaR.I. IvanovaS. TosunC. CastellaniR.J. GerzanichV. SimardJ.M. Sulfonylurea receptor 1 expression in human cerebral infarcts.J. Neuropathol. Exp. Neurol.201372987188310.1097/NEN.0b013e3182a32e40 23965746
    [Google Scholar]
  40. JhaR.M. KochanekP.M. SimardJ.M. Pathophysiology and treatment of cerebral edema in traumatic brain injury.Neuropharmacology2019145Pt B23024610.1016/j.neuropharm.2018.08.00430086289
    [Google Scholar]
  41. KingZ.A. ShethK.N. KimberlyW.T. SimardJ.M. Profile of intravenous glyburide for the prevention of cerebral edema following large hemispheric infarction: Evidence to date.Drug Des. Devel. Ther.2018122539255210.2147/DDDT.S150043 30147301
    [Google Scholar]
  42. StokumJ.A. GerzanichV. ShethK.N. KimberlyW.T. SimardJ.M. Emerging pharmacological treatments for cerebral edema: evidence from clinical studies.Annu. Rev. Pharmacol. Toxicol.202060129130910.1146/annurev‑pharmtox‑010919‑023429 31914899
    [Google Scholar]
  43. SimardJ.M. KentT.A. ChenM. TarasovK.V. GerzanichV. Brain oedema in focal ischaemia: molecular pathophysiology and theoretical implications.Lancet Neurol.20076325826810.1016/S1474‑4422(07)70055‑8 17303532
    [Google Scholar]
  44. NiliusB. PrenenJ. TangJ. WangC. OwsianikG. JanssensA. VoetsT. ZhuM.X. Regulation of the Ca2+ sensitivity of the nonselective cation channel TRPM4.J. Biol. Chem.200528086423643310.1074/jbc.M411089200 15590641
    [Google Scholar]
  45. ChenM. SimardJ.M. Cell swelling and a nonselective cation channel regulated by internal Ca2+ and ATP in native reactive astrocytes from adult rat brain.J. Neurosci.200121176512652110.1523/JNEUROSCI.21‑17‑06512.2001 11517240
    [Google Scholar]
  46. JhaR.M. BellJ. CiterioG. HemphillJ.C. KimberlyW.T. NarayanR.K. SahuquilloJ. ShethK.N. SimardJ.M. Role of sulfonylurea receptor 1 and glibenclamide in traumatic brain injury: A review of the evidence.Int. J. Mol. Sci.202021240910.3390/ijms21020409 31936452
    [Google Scholar]
  47. SimardJ.M. WooS.K. SchwartzbauerG.T. GerzanichV. Sulfonylurea receptor 1 in central nervous system injury: a focused review.J. Cereb. Blood Flow Metab.20123291699171710.1038/jcbfm.2012.91 22714048
    [Google Scholar]
  48. ChenM. DongY. SimardJ.M. Functional coupling between sulfonylurea receptor type 1 and a nonselective cation channel in reactive astrocytes from adult rat brain.J. Neurosci.200323248568857710.1523/JNEUROSCI.23‑24‑08568.2003 13679426
    [Google Scholar]
  49. GerzanichV. KwonM.S. WooS.K. IvanovA. SimardJ.M. SUR1-TRPM4 channel activation and phasic secretion of MMP-9 induced by tPA in brain endothelial cells.PLoS One2018134e019552610.1371/journal.pone.0195526 29617457
    [Google Scholar]
  50. KurlandD.B. GerzanichV. KarimyJ.K. WooS.K. VennekensR. FreichelM. NiliusB. BryanJ. SimardJ.M. The Sur1-Trpm4 channel regulates NOS2 transcription in TLR4-activated microglia.J. Neuroinflammation201613113010.1186/s12974‑016‑0599‑2 27246103
    [Google Scholar]
  51. ShethK.N. ElmJ.J. MolyneauxB.J. HinsonH. BeslowL.A. SzeG.K. OstwaldtA.C. del ZoppoG.J. SimardJ.M. JacobsonS. KimberlyW.T. Safety and efficacy of intravenous glyburide on brain swelling after large hemispheric infarction (GAMES-RP): A randomised, double-blind, placebo-controlled phase 2 trial.Lancet Neurol.201615111160116910.1016/S1474‑4422(16)30196‑X 27567243
    [Google Scholar]
  52. WuD. LaiN. DengR. LiangT. PanP. YuanG. LiX. LiH. ShenH. WangZ. ChenG. Activated WNK3 induced by intracerebral hemorrhage deteriorates brain injury maybe via WNK3/SPAK/NKCC1 pathway.Exp. Neurol.202033211338610.1016/j.expneurol.2020.113386 32589890
    [Google Scholar]
  53. GongY. WuM. GaoF. ShiM. GuH. GaoR. DangB.Q. ChenG. Inhibition of the p SPAK/p NKCC1 signaling pathway protects the blood-brain barrier and reduces neuronal apoptosis in a rat model of surgical brain injury.Mol. Med. Rep.202124471710.3892/mmr.2021.12356 34396440
    [Google Scholar]
  54. HampelP. RomermannK. GramerM. LoscherW. The search for brain-permeant NKCC1 inhibitors for the treatment of seizures: Pharmacokinetic-pharmacodynamic modelling of NKCC1 inhibition by azosemide, torasemide, and bumetanide in mouse brain. Epilepsy Behav.2021114Pt A10761610.1016/j.yebeh.2020.10761633279441
    [Google Scholar]
  55. PapadopoulosM.C. ManleyG.T. KrishnaS. VerkmanA.S. Aquaporin‐4 facilitates reabsorption of excess fluid in vasogenic brain edema.FASEB J.200418111291129310.1096/fj.04‑1723fje 15208268
    [Google Scholar]
  56. GascheY. CopinJ.C. SugawaraT. FujimuraM. ChanP.H. Matrix metalloproteinase inhibition prevents oxidative stress-associated blood-brain barrier disruption after transient focal cerebral ischemia.J. Cereb. Blood Flow Metab.200121121393140010.1097/00004647‑200112000‑00003 11740200
    [Google Scholar]
  57. YangC. HawkinsK.E. DoréS. Candelario-JalilE. Neuroinflammatory mechanisms of blood-brain barrier damage in ischemic stroke.Am. J. Physiol. Cell Physiol.20193162C135C15310.1152/ajpcell.00136.2018 30379577
    [Google Scholar]
  58. CopinJ.C. BengualidD.J. Da SilvaR.F. KargiotisO. SchallerK. GascheY. Recombinant tissue plasminogen activator induces blood-brain barrier breakdown by a matrix metalloproteinase-9-independent pathway after transient focal cerebral ischemia in mouse.Eur. J. Neurosci.20113471085109210.1111/j.1460‑9568.2011.07843.x 21895804
    [Google Scholar]
  59. YanW. ZhaoX. ChenH. ZhongD. JinJ. QinQ. ZhangH. MaS. LiG. β-Dystroglycan cleavage by matrix metalloproteinase-2/-9 disturbs aquaporin-4 polarization and influences brain edema in acute cerebral ischemia.Neuroscience201632614115710.1016/j.neuroscience.2016.03.055 27038751
    [Google Scholar]
  60. LiuB. LiY. HanY. WangS. YangH. ZhaoY. LiP. WangY. Notoginsenoside R1 intervenes degradation and redistribution of tight junctions to ameliorate blood-brain barrier permeability by Caveolin-1/MMP2/9 pathway after acute ischemic stroke.Phytomedicine20219015366010.1016/j.phymed.2021.153660 34344565
    [Google Scholar]
  61. BauerA.T. BürgersH.F. RabieT. MartiH.H. Matrix metalloproteinase-9 mediates hypoxia-induced vascular leakage in the brain via tight junction rearrangement.J. Cereb. Blood Flow Metab.201030483784810.1038/jcbfm.2009.248 19997118
    [Google Scholar]
  62. AidS. SilvaA.C. Candelario-JalilE. ChoiS.H. RosenbergG.A. BosettiF. Cyclooxygenase-1 and -2 differentially modulate lipopolysaccharide-induced blood-brain barrier disruption through matrix metalloproteinase activity.J. Cereb. Blood Flow Metab.201030237038010.1038/jcbfm.2009.223 19844242
    [Google Scholar]
  63. YangC. YangY. DeMarsK.M. RosenbergG.A. Candelario-JalilE. Genetic deletion or pharmacological inhibition of cyclooxygenase-2 reduces blood-brain barrier damage in experimental ischemic stroke.Front. Neurol.20201188710.3389/fneur.2020.00887 32973660
    [Google Scholar]
  64. Candelario-JalilE. YangY. RosenbergG.A. Diverse roles of matrix metalloproteinases and tissue inhibitors of metalloproteinases in neuroinflammation and cerebral ischemia.Neuroscience2009158398399410.1016/j.neuroscience.2008.06.025 18621108
    [Google Scholar]
  65. YangQ. YuJ. QinH. LiuL. DiC. ZhuangQ. YinH. Irbesartan suppresses lipopolysaccharide (LPS)-induced blood-brain barrier (BBB) dysfunction by inhibiting the activation of MLCK/MLC.Int. Immunopharmacol.20219810783410.1016/j.intimp.2021.107834 34174702
    [Google Scholar]
  66. FooteC.A. SoaresR.N. Ramirez-PerezF.I. GhiaroneT. AroorA. Manrique-AcevedoC. PadillaJ. Martinez-LemusL. Endothelial Glycocalyx.Compr. Physiol.20221243781381110.1002/cphy.c210029 35997082
    [Google Scholar]
  67. ZhuJ. LiX. YinJ. HuY. GuY. PanS. Glycocalyx degradation leads to blood-brain barrier dysfunction and brain edema after asphyxia cardiac arrest in rats.J. Cereb. Blood Flow Metab.201838111979199210.1177/0271678X17726062 28825336
    [Google Scholar]
  68. ZhuJ. LiZ. JiZ. WuY. HeY. LiuK. ChangY. PengY. LinZ. WangS. WangD. HuangK. PanS. Glycocalyx is critical for blood‐brain barrier integrity by suppressing caveolin1‐dependent endothelial transcytosis following ischemic stroke.Brain Pathol.2022321e1300610.1111/bpa.13006 34286899
    [Google Scholar]
  69. LiX. ZhuJ. LiuK. HuY. HuangK. PanS. Corrigendum to ‘Heparin ameliorates cerebral edema and improves outcomes following status epilepticus by protecting endothelial glycocalyx in mice’. [Exp Neurol. volume 330 (2020) 113320Exp. Neurol.202133811359510.1016/j.expneurol.2020.113595 33485107
    [Google Scholar]
  70. ZhangY-N. WuQ. ZhangN-N. ChenH-S. Ischemic preconditioning alleviates cerebral ischemia-reperfusion injury by interfering with glycocalyx.Transl. Stroke Res.2022146929940 36168082
    [Google Scholar]
  71. KohL. ZakharovA. JohnstonM. Integration of the subarachnoid space and lymphatics: Is it time to embrace a new concept of cerebrospinal fluid absorption?Cerebrospinal Fluid Res.200521610.1186/1743‑8454‑2‑6 16174293
    [Google Scholar]
  72. ProulxS.T. Cerebrospinal fluid outflow: a review of the historical and contemporary evidence for arachnoid villi, perineural routes, and dural lymphatics.Cell. Mol. Life Sci.20217862429245710.1007/s00018‑020‑03706‑5 33427948
    [Google Scholar]
  73. SperaI. CousinN. RiesM. KedrackaA. CastilloA. AleandriS. VladymyrovM. MapundaJ.A. EngelhardtB. LucianiP. DetmarM. ProulxS.T. Open pathways for cerebrospinal fluid outflow at the cribriform plate along the olfactory nerves.EBioMedicine20239110455810.1016/j.ebiom.2023.104558 37043871
    [Google Scholar]
  74. LouveauA. SmirnovI. KeyesT.J. EcclesJ.D. RouhaniS.J. PeskeJ.D. DereckiN.C. CastleD. MandellJ.W. LeeK.S. HarrisT.H. KipnisJ. Structural and functional features of central nervous system lymphatic vessels.Nature2015523756033734110.1038/nature14432 26030524
    [Google Scholar]
  75. AhnJ.H. ChoH. KimJ.H. KimS.H. HamJ.S. ParkI. SuhS.H. HongS.P. SongJ.H. HongY.K. JeongY. ParkS.H. KohG.Y. Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid.Nature20195727767626610.1038/s41586‑019‑1419‑5 31341278
    [Google Scholar]
  76. HuX. DengQ. MaL. LiQ. ChenY. LiaoY. ZhouF. ZhangC. ShaoL. FengJ. HeT. NingW. KongY. HuoY. HeA. LiuB. ZhangJ. AdamsR. HeY. TangF. BianX. LuoJ. Meningeal lymphatic vessels regulate brain tumor drainage and immunity.Cell Res.202030322924310.1038/s41422‑020‑0287‑8 32094452
    [Google Scholar]
  77. IzenR.M. YamazakiT. Nishinaka-AraiY. HongY.K. MukouyamaY.S. Postnatal development of lymphatic vasculature in the brain meninges.Dev. Dyn.2018247574175310.1002/dvdy.24624 29493038
    [Google Scholar]
  78. AntilaS. KaramanS. NurmiH. AiravaaraM. VoutilainenM.H. MathivetT. ChilovD. LiZ. KoppinenT. ParkJ.H. FangS. AspelundA. SaarmaM. EichmannA. ThomasJ.L. AlitaloK. Development and plasticity of meningeal lymphatic vessels.J. Exp. Med.2017214123645366710.1084/jem.20170391 29141865
    [Google Scholar]
  79. MestreH. MoriY. NedergaardM. The Brain’s glymphatic System: Current controversies.Trends Neurosci.202043745846610.1016/j.tins.2020.04.003 32423764
    [Google Scholar]
  80. SimonM. WangM.X. IsmailO. BraunM. SchindlerA.G. ReemmerJ. WangZ. HaveliwalaM.A. O’BoyleR.P. HanW.Y. RoeseN. GrafeM. WoltjerR. BoisonD. IliffJ.J. Loss of perivascular aquaporin-4 localization impairs glymphatic exchange and promotes amyloid β plaque formation in mice.Alzheimers Res. Ther.20221415910.1186/s13195‑022‑00999‑5 35473943
    [Google Scholar]
  81. HarrisonI.F. IsmailO. MachhadaA. ColganN. OheneY. NahavandiP. AhmedZ. FisherA. MeftahS. MurrayT.K. OttersenO.P. NagelhusE.A. O’NeillM.J. WellsJ.A. LythgoeM.F. Impaired glymphatic function and clearance of tau in an Alzheimer’s disease model.Brain202014382576259310.1093/brain/awaa179 32705145
    [Google Scholar]
  82. CuiH. WangW. ZhengX. XiaD. LiuH. QinC. TianH. TengJ. Decreased AQP4 expression aggravates ɑ-synuclein pathology in Parkinson’s disease mice, possibly via impaired glymphatic clearance.J. Mol. Neurosci.202171122500251310.1007/s12031‑021‑01836‑4 33772424
    [Google Scholar]
  83. GoulayR. FlamentJ. GaubertiM. NaveauM. PasquetN. GakubaC. EmeryE. HantrayeP. VivienD. Aron-BadinR. GaberelT. Subarachnoid hemorrhage severely impairs brain parenchymal cerebrospinal fluid circulation in nonhuman primate.Stroke20174882301230510.1161/STROKEAHA.117.017014 28526764
    [Google Scholar]
  84. BolteA.C. DuttaA.B. HurtM.E. SmirnovI. KovacsM.A. McKeeC.A. EnnerfeltH.E. ShapiroD. NguyenB.H. FrostE.L. LammertC.R. KipnisJ. LukensJ.R. Meningeal lymphatic dysfunction exacerbates traumatic brain injury pathogenesis.Nat. Commun.2020111452410.1038/s41467‑020‑18113‑4 32913280
    [Google Scholar]
  85. LiX. QiL. YangD. HaoS. ZhangF. ZhuX. SunY. ChenC. YeJ. YangJ. ZhaoL. AltmannD.M. CaoS. WangH. WeiB. Meningeal lymphatic vessels mediate neurotropic viral drainage from the central nervous system.Nat. Neurosci.202225557758710.1038/s41593‑022‑01063‑z 35524140
    [Google Scholar]
  86. YanevP. PoinsatteK. HominickD. KhuranaN. ZuurbierK.R. BerndtM. PlautzE.J. DellingerM.T. StoweA.M. Impaired meningeal lymphatic vessel development worsens stroke outcome.J. Cereb. Blood Flow Metab.202040226327510.1177/0271678X18822921 30621519
    [Google Scholar]
  87. ChenJ. HeJ. NiR. YangQ. ZhangY. LuoL. Cerebrovascular injuries induce lymphatic invasion into brain parenchyma to guide vascular regeneration in Zebrafish.Dev. Cell2019495697710.e510.1016/j.devcel.2019.03.022 31006646
    [Google Scholar]
  88. VieiraJ.M. NormanS. Villa del CampoC. CahillT.J. BarnetteD.N. Gunadasa-RohlingM. JohnsonL.A. GreavesD.R. CarrC.A. JacksonD.G. RileyP.R. The cardiac lymphatic system stimulates resolution of inflammation following myocardial infarction.J. Clin. Invest.201812883402341210.1172/JCI97192 29985167
    [Google Scholar]
  89. RosenbergG.A. YangY. Vasogenic edema due to tight junction disruption by matrix metalloproteinases in cerebral ischemia.Neurosurg. Focus20072251910.3171/foc.2007.22.5.5 17613235
    [Google Scholar]
  90. KhatriR. McKinneyA.M. SwensonB. JanardhanV. Blood-brain barrier, reperfusion injury, and hemorrhagic transformation in acute ischemic stroke.Neurology201279Suppl. 1S52S5710.1212/WNL.0b013e3182697e70 23008413
    [Google Scholar]
  91. Semyachkina-GlushkovskayaO. AbdurashitovA. DubrovskyA. BraginD. BraginaO. ShushunovaN. MaslyakovaG. NavolokinN. BucharskayaA. TuchindV. KurthsJ. ShirokovA. Application of optical coherence tomography for in vivo monitoring of the meningeal lymphatic vessels during opening of blood-brain barrier: mechanisms of brain clearing.J. Biomed. Opt.201722121910.1117/1.JBO.22.12.121719 29275545
    [Google Scholar]
  92. Semyachkina-GlushkovskayaO. NavolokinN. ShirokovA. TerskovA. KhorovodovA. MamedovaA. KlimovaM. RafailovE. KurthsJ. Meningeal lymphatic pathway of brain clearing from the blood after haemorrhagic injuries.Adv. Exp. Med. Biol.20201232636810.1007/978‑3‑030‑34461‑0_9 31893395
    [Google Scholar]
  93. PlogB.A. DashnawM.L. HitomiE. PengW. LiaoY. LouN. DeaneR. NedergaardM. Biomarkers of traumatic injury are transported from brain to blood via the glymphatic system.J. Neurosci.201535251852610.1523/JNEUROSCI.3742‑14.2015 25589747
    [Google Scholar]
  94. LamanJ.D. WellerR.O. Drainage of cells and soluble antigen from the CNS to regional lymph nodes.J. Neuroimmune Pharmacol.20138484085610.1007/s11481‑013‑9470‑8 23695293
    [Google Scholar]
  95. DaveR.S. JainP. ByrareddyS.N. Functional meningeal lymphatics and cerebrospinal fluid outflow.J. Neuroimmune Pharmacol.201813212312510.1007/s11481‑018‑9778‑5 29464588
    [Google Scholar]
  96. IadecolaC. AnratherJ. The immunology of stroke: from mechanisms to translation.Nat. Med.201117779680810.1038/nm.2399 21738161
    [Google Scholar]
  97. HayakawaK. MiyamotoN. SeoJ.H. PhamL.D.D. KimK.W. LoE.H. AraiK. High‐mobility group box 1 from reactive astrocytes enhances the accumulation of endothelial progenitor cells in damaged white matter.J. Neurochem.2013125227328010.1111/jnc.12120 23227954
    [Google Scholar]
  98. RitzelR.M. PatelA.R. GrenierJ.M. CrapserJ. VermaR. JellisonE.R. McCulloughL.D. Functional differences between microglia and monocytes after ischemic stroke.J. Neuroinflammation201512110610.1186/s12974‑015‑0329‑1 26022493
    [Google Scholar]
  99. MontanerJ. RamiroL. SimatsA. Hernández-GuillamonM. DelgadoP. BustamanteA. RosellA. Matrix metalloproteinases and ADAMs in stroke.Cell. Mol. Life Sci.201976163117314010.1007/s00018‑019‑03175‑5 31165904
    [Google Scholar]
  100. SeifertH.A. PennypackerK.R. Molecular and cellular immune responses to ischemic brain injury.Transl. Stroke Res.20145554355310.1007/s12975‑014‑0349‑7 24895236
    [Google Scholar]
  101. ChamorroÁ. MeiselA. PlanasA.M. UrraX. van de BeekD. VeltkampR. The immunology of acute stroke.Nat. Rev. Neurol.20128740141010.1038/nrneurol.2012.98 22664787
    [Google Scholar]
  102. RussoE. TeijeiraA. VaahtomeriK. WillrodtA.H. BlochJ.S. NitschkéM. SantambrogioL. KerjaschkiD. SixtM. HalinC. Intralymphatic CCL21 promotes tissue egress of dendritic cells through afferent lymphatic vessels.Cell Rep.20161471723173410.1016/j.celrep.2016.01.048 26876174
    [Google Scholar]
  103. LouveauA. HerzJ. AlmeM.N. SalvadorA.F. DongM.Q. ViarK.E. HerodS.G. KnoppJ. SetliffJ.C. LupiA.L. Da MesquitaS. FrostE.L. GaultierA. HarrisT.H. CaoR. HuS. LukensJ.R. SmirnovI. OverallC.C. OliverG. KipnisJ. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature.Nat. Neurosci.201821101380139110.1038/s41593‑018‑0227‑9 30224810
    [Google Scholar]
  104. EngelhardtB. CarareR.O. BechmannI. FlügelA. LamanJ.D. WellerR.O. Vascular, glial, and lymphatic immune gateways of the central nervous system.Acta Neuropathol.2016132331733810.1007/s00401‑016‑1606‑5 27522506
    [Google Scholar]
  105. EspositoE. AhnB.J. ShiJ. NakamuraY. ParkJ.H. MandevilleE.T. YuZ. ChanS.J. DesaiR. HayakawaA. JiX. LoE.H. HayakawaK. Brain-to-cervical lymph node signaling after stroke.Nat. Commun.2019101530610.1038/s41467‑019‑13324‑w 31757960
    [Google Scholar]
  106. XuY. YuanL. MakJ. PardanaudL. CauntM. KasmanI. LarrivéeB. del ToroR. SuchtingS. MedvinskyA. SilvaJ. YangJ. ThomasJ.L. KochA.W. AlitaloK. EichmannA. BagriA. Neuropilin-2 mediates VEGF-C-induced lymphatic sprouting together with VEGFR3.J. Cell Biol.2010188111513010.1083/jcb.200903137 20065093
    [Google Scholar]
  107. AlitaloK. TammelaT. PetrovaT.V. Lymphangiogenesis in development and human disease.Nature2005438707094695310.1038/nature04480 16355212
    [Google Scholar]
  108. YoshimatsuY. LeeY.G. AkatsuY. TaguchiL. SuzukiH.I. CunhaS.I. MaruyamaK. SuzukiY. YamazakiT. KatsuraA. OhS.P. ZimmersT.A. LeeS.J. PietrasK. KohG.Y. MiyazonoK. WatabeT. Bone morphogenetic protein-9 inhibits lymphatic vessel formation via activin receptor-like kinase 1 during development and cancer progression.Proc. Natl. Acad. Sci. USA201311047189401894510.1073/pnas.1310479110 24133138
    [Google Scholar]
  109. ShichitaT. ItoM. MoritaR. KomaiK. NoguchiY. OoboshiH. KoshidaR. TakahashiS. KodamaT. YoshimuraA. MAFB prevents excess inflammation after ischemic stroke by accelerating clearance of damage signals through MSR1.Nat. Med.201723672373210.1038/nm.4312 28394332
    [Google Scholar]
  110. LiuK. ZhuJ. ChangY. LinZ. ShiZ. LiX. ChenX. LinC. PanS. HuangK. Attenuation of cerebral edema facilitates recovery of glymphatic system function after status epilepticus.JCI Insight2021617e15183510.1172/jci.insight.151835 34494549
    [Google Scholar]
  111. Da MesquitaS. LouveauA. VaccariA. SmirnovI. CornelisonR.C. KingsmoreK.M. ContarinoC. Onengut-GumuscuS. FarberE. RaperD. ViarK.E. PowellR.D. BakerW. DabhiN. BaiR. CaoR. HuS. RichS.S. MunsonJ.M. LopesM.B. OverallC.C. ActonS.T. KipnisJ. Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease.Nature2018560771718519110.1038/s41586‑018‑0368‑8 30046111
    [Google Scholar]
  112. LiM. JiaQ. ChenT. ZhaoZ. ChenJ. ZhangJ. The role of vascular endothelial growth factor and vascular endothelial growth inhibitor in clinical outcome of traumatic brain injury.Clin. Neurol. Neurosurg.201614471310.1016/j.clineuro.2016.02.032 26945876
    [Google Scholar]
  113. AnratherJ. IadecolaC. Inflammation and Stroke: An overview.Neurotherapeutics201613466167010.1007/s13311‑016‑0483‑x 27730544
    [Google Scholar]
  114. ChamorroÁ. HallenbeckJ. The harms and benefits of inflammatory and immune responses in vascular disease.Stroke200637229129310.1161/01.STR.0000200561.69611.f8 16410468
    [Google Scholar]
  115. GeocadinR.G. Tahsili-FahadanP. FarrokhS. Hypothermia and brain inflammation after cardiac arrest.Brain Circ.20184111310.4103/bc.BC_4_18 30276330
    [Google Scholar]
  116. RochfortK.D. CumminsP.M. Cytokine-mediated dysregulation of zonula occludens-1 properties in human brain microvascular endothelium.Microvasc. Res.2015100485310.1016/j.mvr.2015.04.010 25953589
    [Google Scholar]
  117. dell’AquilaM. MaieseA. De MatteisA. ViolaR.V. ArcangeliM. La RussaR. FineschiV. Traumatic brain injury: Estimate of the age of the injury based on neuroinflammation, endothelial activation markers and adhesion molecules.Histol. Histopathol.2021368795806 33625724
    [Google Scholar]
  118. GelderblomM. LeypoldtF. SteinbachK. BehrensD. ChoeC.U. SilerD.A. ArumugamT.V. OrtheyE. GerloffC. TolosaE. MagnusT. Temporal and spatial dynamics of cerebral immune cell accumulation in stroke.Stroke20094051849185710.1161/STROKEAHA.108.534503 19265055
    [Google Scholar]
  119. JayarajR.L. AzimullahS. BeiramR. JalalF.Y. RosenbergG.A. Neuroinflammation: Friend and foe for ischemic stroke.J. Neuroinflammation201916114210.1186/s12974‑019‑1516‑2 31291966
    [Google Scholar]
  120. AhnS.J. AnratherJ. NishimuraN. SchafferC.B. Diverse inflammatory response after cerebral microbleeds includes coordinated microglial migration and proliferation.Stroke20184971719172610.1161/STROKEAHA.117.020461 29844029
    [Google Scholar]
  121. NeriM. FratiA. TurillazziE. CantatoreS. CipolloniL. Di PaoloM. FratiP. La RussaR. MaieseA. ScopettiM. SanturroA. SessaF. ZampareseR. FineschiV. Immunohistochemical evaluation of aquaporin-4 and its correlation with CD68, IBA-1, HIF-1α, GFAP, and CD15 expressions in fatal traumatic brain injury.Int. J. Mol. Sci.20181911354410.3390/ijms19113544 30423808
    [Google Scholar]
  122. PrinzM. PrillerJ. Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease.Nat. Rev. Neurosci.201415530031210.1038/nrn3722 24713688
    [Google Scholar]
  123. KetheeswaranathanP. TurnerN.A. SparyE.J. BattenT.F.C. McCollB.W. SahaS. Changes in glutamate transporter expression in mouse forebrain areas following focal ischemia.Brain Res.201114189310310.1016/j.brainres.2011.08.029 21911209
    [Google Scholar]
  124. WangH. SongG. ChuangH. ChiuC. AbdelmaksoudA. YeY. ZhaoL. Portrait of glial scar in neurological diseases.Int. J. Immunopathol. Pharmacol.20183110.1177/2058738418801406 30309271
    [Google Scholar]
  125. FerraraM. BertozziG. VolonninoG. Di FazioN. FratiP. CipolloniL. La RussaR. FineschiV. Glymphatic system a window on TBI pathophysiology: A systematic review.Int. J. Mol. Sci.20222316913810.3390/ijms23169138 36012401
    [Google Scholar]
  126. YangJ. WangT. JinX. WangG. ZhaoF. JinY. Roles of crosstalk between astrocytes and microglia in triggering neuroinflammation and brain edema formation in 1,2-dichloroethane-intoxicated mice.Cells20211010264710.3390/cells10102647 34685627
    [Google Scholar]
  127. LaiA.Y. ToddK.G. Microglia in cerebral ischemia: molecular actions and interactionsThis paper is one of a selection of papers published in this Special Issue, entitled Young Investigator’s Forum.Can. J. Physiol. Pharmacol.2006841495910.1139/Y05‑143 16845890
    [Google Scholar]
  128. AlmoldaB. de LabraC. BarreraI. GruartA. Delgado-GarciaJ.M. VillacampaN. VilellaA. HoferM.J. HidalgoJ. CampbellI.L. GonzálezB. CastellanoB. Alterations in microglial phenotype and hippocampal neuronal function in transgenic mice with astrocyte-targeted production of interleukin-10.Brain Behav. Immun.201545809710.1016/j.bbi.2014.10.015 25449577
    [Google Scholar]
  129. Ortega-GómezA. PerrettiM. SoehnleinO. Resolution of inflammation: an integrated view.EMBO Mol. Med.20135566167410.1002/emmm.201202382 23592557
    [Google Scholar]
  130. TangY. LeW. Differential roles of M1 and M2 microglia in neurodegenerative diseases.Mol. Neurobiol.20165321181119410.1007/s12035‑014‑9070‑5 25598354
    [Google Scholar]
  131. SicaA. MantovaniA. Macrophage plasticity and polarization: In vivo veritas.J. Clin. Invest.2012122378779510.1172/JCI59643 22378047
    [Google Scholar]
  132. KigerlK.A. GenselJ.C. AnkenyD.P. AlexanderJ.K. DonnellyD.J. PopovichP.G. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord.J. Neurosci.20092943134351344410.1523/JNEUROSCI.3257‑09.2009 19864556
    [Google Scholar]
  133. SinghalG. BauneB.T. Microglia: An interface between the loss of neuroplasticity and depression.Front. Cell. Neurosci.20171127010.3389/fncel.2017.00270 28943841
    [Google Scholar]
  134. ShinozakiY. ShibataK. YoshidaK. ShigetomiE. GachetC. IkenakaK. TanakaK.F. KoizumiS. Transformation of astrocytes to a neuroprotective phenotype by microglia via P2Y1 receptor downregulation.Cell Rep.20171961151116410.1016/j.celrep.2017.04.047 28494865
    [Google Scholar]
  135. ShindoA. MakiT. MandevilleE.T. LiangA.C. EgawaN. ItohK. ItohN. BorlonganM. HolderJ.C. ChuangT.T. McNeishJ.D. TomimotoH. LokJ. LoE.H. AraiK. Astrocyte-derived pentraxin 3 supports blood-brain barrier integrity under acute phase of stroke.Stroke20164741094110010.1161/STROKEAHA.115.012133 26965847
    [Google Scholar]
  136. OkoreehA.K. BakeS. SohrabjiF. Astrocyte‐specific insulin‐like growth factor‐1 gene transfer in aging female rats improves stroke outcomes.Glia20176571043105810.1002/glia.23142 28317235
    [Google Scholar]
  137. MorizawaY.M. HirayamaY. OhnoN. ShibataS. ShigetomiE. SuiY. NabekuraJ. SatoK. OkajimaF. TakebayashiH. OkanoH. KoizumiS. Reactive astrocytes function as phagocytes after brain ischemia via ABCA1-mediated pathway.Nat. Commun.2017812810.1038/s41467‑017‑00037‑1 28642575
    [Google Scholar]
  138. LiP. GanY. SunB.L. ZhangF. LuB. GaoY. LiangW. ThomsonA.W. ChenJ. HuX. Adoptive regulatory T‐cell therapy protects against cerebral ischemia.Ann. Neurol.201374345847110.1002/ana.23815 23674483
    [Google Scholar]
  139. ParkK.P. RosellA. FoerchC. XingC. KimW.J. LeeS. OpdenakkerG. FurieK.L. LoE.H. Plasma and brain matrix metalloproteinase-9 after acute focal cerebral ischemia in rats.Stroke20094082836284210.1161/STROKEAHA.109.554824 19556529
    [Google Scholar]
  140. LieszA. HuX. KleinschnitzC. OffnerH. Functional role of regulatory lymphocytes in stroke: facts and controversies.Stroke20154651422143010.1161/STROKEAHA.114.008608 25791715
    [Google Scholar]
  141. XieL. ChoudhuryG.R. WintersA. YangS.H. JinK. Cerebral regulatory T cells restrain microglia/macrophage‐mediated inflammatory responses via IL‐10.Eur. J. Immunol.201545118019110.1002/eji.201444823 25329858
    [Google Scholar]
  142. ItoM. KomaiK. Mise-OmataS. Iizuka-KogaM. NoguchiY. KondoT. SakaiR. MatsuoK. NakayamaT. YoshieO. NakatsukasaH. ChikumaS. ShichitaT. YoshimuraA. Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery.Nature2019565773824625010.1038/s41586‑018‑0824‑5 30602786
    [Google Scholar]
  143. RuanL. LauB.W.M. WangJ. HuangL. ZhuGe, Q.; Wang, B.; Jin, K.; So, K.F. Neurogenesis in neurological and psychiatric diseases and brain injury: From bench to bedside.Prog. Neurobiol.201411511613710.1016/j.pneurobio.2013.12.006 24384539
    [Google Scholar]
  144. MüllerM. FreseA. NassensteinI. HoppenM. MarziniakM. RingelsteinE.B. KimK.S. SchäbitzW.R. KrausJ. Serum from interferon-β-1b-treated patients with early multiple sclerosis stabilizes the blood-brain barrier in vitro.Mult. Scler.201218223623910.1177/1352458511416837 21844066
    [Google Scholar]
  145. DefazioG. LivreaP. GiorelliM. MartinoD. RoselliF. RicchiutiF. TrojanoM. Interferon β-1a downregulates TNFα-induced intercellular adhesion molecule 1 expression on brain microvascular endothelial cells through a tyrosine kinase-dependent pathway.Brain Res.2000881222723010.1016/S0006‑8993(00)02814‑6 11036165
    [Google Scholar]
  146. VeldhuisW.B. DerksenJ.W. FlorisS. van der MeideP.H. de VriesH.E. SchepersJ. VosI.M.P. DijkstraC.D. KappelleL.J. NicolayK. BärP.R. Interferon-beta blocks infiltration of inflammatory cells and reduces infarct volume after ischemic stroke in the rat.J. Cereb. Blood Flow Metab.20032391029103910.1097/01.WCB.0000080703.47016.B6 12973019
    [Google Scholar]
  147. BonaventuraA. LiberaleL. VecchiéA. CasulaM. CarboneF. DallegriF. MontecuccoF. Update on inflammatory biomarkers and treatments in ischemic stroke.Int. J. Mol. Sci.20161712196710.3390/ijms17121967 27898011
    [Google Scholar]
  148. PascualM. Calvo-RodriguezM. NúñezL. VillalobosC. UreñaJ. GuerriC. Toll‐like receptors in neuroinflammation, neurodegeneration, and alcohol‐induced brain damage.IUBMB Life202173790091510.1002/iub.2510 34033211
    [Google Scholar]
  149. SunG. FuT. LiuZ. ZhangY. ChenX. JinS. ChiF. The rule of brain hematoma pressure gradient and its influence on hypertensive cerebral hemorrhage operation.Sci. Rep.2021111459910.1038/s41598‑021‑84108‑w 33633221
    [Google Scholar]
  150. ChandraV.V.R. Mowliswara PrasadB.C. BanavathH.N. Chandrasekhar ReddyK. Cisternostomy versus decompressive craniectomy for the management of traumatic brain injury: A randomized controlled trial.World Neurosurg.2022162e58e6410.1016/j.wneu.2022.02.067 35192970
    [Google Scholar]
  151. ItoU. TomitaH. YamazakiS. TakadaY. InabaY. Brain swelling and brain oedema in acute head injury.Acta Neurochir. (Wien)1986792-412012410.1007/BF01407455 3962741
    [Google Scholar]
  152. MouldW.A. CarhuapomaJ.R. MuschelliJ. LaneK. MorganT.C. McBeeN.A. Bistran-HallA.J. UllmanN.L. VespaP. MartinN.A. AwadI. ZuccarelloM. HanleyD.F. Minimally invasive surgery plus recombinant tissue-type plasminogen activator for intracerebral hemorrhage evacuation decreases perihematomal edema.Stroke201344362763410.1161/STROKEAHA.111.000411 23391763
    [Google Scholar]
  153. SchneweisS. GrondM. StaubF. BrinkerG. NevelingM. DohmenC. GrafR. HeissW.D. Predictive value of neurochemical monitoring in large middle cerebral artery infarction.Stroke20013281863186710.1161/01.STR.32.8.1863 11486118
    [Google Scholar]
  154. RosenbergG.A. Ischemic brain edema.Prog. Cardiovasc. Dis.199942320921610.1016/S0033‑0620(99)70003‑4 10598921
    [Google Scholar]
  155. WiseB.L. ChaterN. The value of hypertonic mannitol solution in decreasing brain mass and lowering cerebro-spinal-fluid pressure.J. Neurosurg.196219121038104310.3171/jns.1962.19.12.1038 14001309
    [Google Scholar]
  156. ToddM.M. TommasinoC. MooreS. Cerebral effects of isovolemic hemodilution with a hypertonic saline solution.J. Neurosurg.198563694494810.3171/jns.1985.63.6.0944 4056907
    [Google Scholar]
  157. KaufmannA.M. CardosoE.R. Aggravation of vasogenic cerebral edema by multiple-dose mannitol.J. Neurosurg.199277458458910.3171/jns.1992.77.4.0584 1527619
    [Google Scholar]
  158. LiS. SunH. LiuX. RenX. HaoS. ZengM. WangD. DongJ. KanQ. PengY. HanR. Mannitol improves intraoperative brain relaxation in patients with a midline shift undergoing supratentorial tumor surgery: A randomized controlled trial.J. Neurosurg. Anesthesiol.202032430731410.1097/ANA.0000000000000585 30789384
    [Google Scholar]
  159. FrankJ.I. Large hemispheric infarction, deterioration, and intracranial pressure.Neurology19954571286129010.1212/WNL.45.7.1286 7617183
    [Google Scholar]
  160. RihaH.M. ErdmanM.J. VandigoJ.E. KimmonsL.A. GoyalN. DavidsonK.E. PandhiA. JonesG.M. Impact of moderate hyperchloremia on clinical outcomes in intracerebral hemorrhage patients treated with continuous infusion hypertonic saline: A pilot study.Crit. Care Med.2017459e947e95310.1097/CCM.0000000000002522 28538442
    [Google Scholar]
  161. CooperD.J. RosenfeldJ.V. MurrayL. ArabiY.M. DaviesA.R. D’UrsoP. KossmannT. PonsfordJ. SeppeltI. ReillyP. WolfeR. Decompressive craniectomy in diffuse traumatic brain injury.N. Engl. J. Med.2011364161493150210.1056/NEJMoa1102077 21434843
    [Google Scholar]
  162. HutchinsonP.J. KoliasA.G. TimofeevI.S. CorteenE.A. CzosnykaM. TimothyJ. AndersonI. BultersD.O. BelliA. EynonC.A. WadleyJ. MendelowA.D. MitchellP.M. WilsonM.H. CritchleyG. SahuquilloJ. UnterbergA. ServadeiF. TeasdaleG.M. PickardJ.D. MenonD.K. MurrayG.D. KirkpatrickP.J. Trial of decompressive craniectomy for traumatic intracranial hypertension.N. Engl. J. Med.2016375121119113010.1056/NEJMoa1605215 27602507
    [Google Scholar]
  163. SimardJ.M. ChenM. TarasovK.V. BhattaS. IvanovaS. MelnitchenkoL. TsymbalyukN. WestG.A. GerzanichV. Newly expressed SUR1-regulated NCCa-ATP channel mediates cerebral edema after ischemic stroke.Nat. Med.200612443344010.1038/nm1390 16550187
    [Google Scholar]
  164. DengG. MaC. ZhaoH. ZhangS. LiuJ. LiuF. ChenZ. ChenA.T. YangX. AveryJ. ZouP. DuF. LimK. HoldenD. LiS. CarsonR.E. HuangY. ChenQ. KimberlyW.T. SimardJ.M. ShethK.N. ZhouJ. Anti-edema and antioxidant combination therapy for ischemic stroke via glyburide-loaded betulinic acid nanoparticles.Theranostics20199236991700210.7150/thno.35791 31660082
    [Google Scholar]
  165. PapadopoulosM.C. VerkmanA.S. Aquaporin water channels in the nervous system.Nat. Rev. Neurosci.201314426527710.1038/nrn3468 23481483
    [Google Scholar]
  166. MdzinarishviliA. SutariyaV. TalasilaP.K. GeldenhuysW.J. SadanaP. Engineering triiodothyronine (T3) nanoparticle for use in ischemic brain stroke.Drug Deliv. Transl. Res.20133430931710.1007/s13346‑012‑0117‑8 23864999
    [Google Scholar]
  167. SadanaP. CoughlinL. BurkeJ. WoodsR. MdzinarishviliA. Anti-edema action of thyroid hormone in MCAO model of ischemic brain stroke: Possible association with AQP4 modulation.J. Neurol. Sci.20153541-2374510.1016/j.jns.2015.04.042 25963308
    [Google Scholar]
  168. WeiX. ZhangB. ChengL. ChiM. DengL. PanH. YaoX. WangG. Hydrogen sulfide induces neuroprotection against experimental stroke in rats by down-regulation of AQP4 via activating PKC.Brain Res.2015162229229910.1016/j.brainres.2015.07.001 26168888
    [Google Scholar]
  169. CatalinB. RogoveanuO.C. PiriciI. BalseanuT.A. StanA. TudoricaV. BaleaM. MindrilaI. AlbuC.V. MohamedG. PiriciD. MuresanuD.F. Cerebrolysin and aquaporin 4 inhibition improve pathological and motor recovery after ischemic stroke.CNS Neurol. Disord. Drug Targets201817429930810.2174/1871527317666180425124340 29692268
    [Google Scholar]
  170. YaoY. ZhangY. LiaoX. YangR. LeiY. LuoJ. Potential therapies for cerebral edema after ischemic stroke: A mini review.Front. Aging Neurosci.20211261881910.3389/fnagi.2020.618819 33613264
    [Google Scholar]
  171. FarrG.W. HallC.H. FarrS.M. WadeR. DetzelJ.M. AdamsA.G. BuchJ.M. BeahmD.L. FlaskC.A. XuK. LaMannaJ.C. McGuirkP.R. BoronW.F. PelletierM.F. Functionalized phenylbenzamides inhibit aquaporin-4 reducing cerebral edema and improving outcome in two models of CNS Injury.Neuroscience201940448449810.1016/j.neuroscience.2019.01.034 30738082
    [Google Scholar]
  172. LöscherW. KailaK. CNS pharmacology of NKCC1 inhibitors.Neuropharmacology202220510891010.1016/j.neuropharm.2021.108910 34883135
    [Google Scholar]
  173. WangF. WangX. ShapiroL.A. CotrinaM.L. LiuW. WangE.W. GuS. WangW. HeX. NedergaardM. HuangJ.H. NKCC1 up-regulation contributes to early post-traumatic seizures and increased post-traumatic seizure susceptibility.Brain Struct. Funct.201722231543155610.1007/s00429‑016‑1292‑z 27586142
    [Google Scholar]
  174. ZhangM. CuiZ. CuiH. CaoY. WangY. ZhongC. Astaxanthin alleviates cerebral edema by modulating NKCC1 and AQP4 expression after traumatic brain injury in mice.BMC Neurosci.20161716010.1186/s12868‑016‑0295‑2 27581370
    [Google Scholar]
  175. ZhangJ. PuH. ZhangH. WeiZ. JiangX. XuM. ZhangL. ZhangW. LiuJ. MengH. StetlerR.A. SunD. ChenJ. GaoY. ChenL. Inhibition of Na+-K+-2Cl− cotransporter attenuates blood-brain-barrier disruption in a mouse model of traumatic brain injury.Neurochem. Int.2017111233110.1016/j.neuint.2017.05.020 28577991
    [Google Scholar]
  176. YanX. LiuJ. WangX. LiW. ChenJ. SunH. Pretreatment with AQP4 and NKCC1 inhibitors concurrently attenuated spinal cord edema and tissue damage after spinal cord injury in rats.Front. Physiol.20189610.3389/fphys.2018.00006 29403391
    [Google Scholar]
  177. JayakumarA.R. PanickarK.S. CurtisK.M. TongX.Y. MoriyamaM. NorenbergM.D. Na-K-Cl cotransporter-1 in the mechanism of cell swelling in cultured astrocytes after fluid percussion injury.J. Neurochem.2011117343744810.1111/j.1471‑4159.2011.07211.x 21306384
    [Google Scholar]
  178. DobrogowskaD.H. LossinskyA.S. TarnawskiM. VorbrodtA.W. Increased blood-brain barrier permeability and endothelial abnormalities induced by vascular endothelial growth factor.J. Neurocytol.199827316317310.1023/A:1006907608230 10640176
    [Google Scholar]
  179. MacheinM.R. KullmerJ. RönickeV. MacheinU. KriegM. DamertA. BreierG. RisauW. PlateK.H. Differential downregulation of vascular endothelial growth factor by dexamethasone in normoxic and hypoxic rat glioma cells.Neuropathol. Appl. Neurobiol.199925210411210.1046/j.1365‑2990.1999.00166.x 10215998
    [Google Scholar]
  180. GonzalezJ. KumarA.J. ConradC.A. LevinV.A. Effect of bevacizumab on radiation necrosis of the brain.Int. J. Radiat. Oncol. Biol. Phys.200767232332610.1016/j.ijrobp.2006.10.010 17236958
    [Google Scholar]
  181. HsuS.J. ZhangC. JeongJ. LeeS. McConnellM. UtsumiT. IwakiriY. Enhanced meningeal lymphatic drainage ameliorates neuroinflammation and hepatic encephalopathy in cirrhotic rats.Gastroenterology2021160413151329.e1310.1053/j.gastro.2020.11.036 33227282
    [Google Scholar]
  182. YaoZ-B. WenY-R. YangJ-H. WangX. Induced dural lymphangiogenesis facilities soluble amyloid-beta clearance from brain in a transgenic mouse model of Alzheimer’s disease.Neural Regen. Res.201813470971610.4103/1673‑5374.230299 29722325
    [Google Scholar]
  183. HauglundN.L. KuskP. KornumB.R. NedergaardM. Meningeal lymphangiogenesis and enhanced glymphatic activity in mice with chronically implanted EEG electrodes.J. Neurosci.202040112371238010.1523/JNEUROSCI.2223‑19.2020 32047056
    [Google Scholar]
  184. Semyachkina-GlushkovskayaO. TerskovA. KhorovodovA. TelnovaV. BlokhinaI. SarancevaE. KurthsJ. Photodynamic opening of the blood-brain barrier and the meningeal lymphatic system: The new niche in immunotherapy for brain tumors.Pharmaceutics20221412261210.3390/pharmaceutics14122612 36559105
    [Google Scholar]
  185. JhaR.M. RaikwarS.P. MihaljevicS. CasabellaA.M. CatapanoJ.S. RaniA. DesaiS. GerzanichV. SimardJ.M. Emerging therapeutic targets for cerebral edema.Expert Opin. Ther. Targets2021251191793810.1080/14728222.2021.2010045 34844502
    [Google Scholar]
  186. HsuM. RayasamA. KijakJ.A. ChoiY.H. HardingJ.S. MarcusS.A. KarpusW.J. SandorM. FabryZ. Neuroinflammation-induced lymphangiogenesis near the cribriform plate contributes to drainage of CNS-derived antigens and immune cells.Nat. Commun.201910122910.1038/s41467‑018‑08163‑0 30651548
    [Google Scholar]
  187. HablitzL.M. VinitskyH.S. SunQ. StægerF.F. SigurdssonB. MortensenK.N. LiliusT.O. NedergaardM. Increased glymphatic influx is correlated with high EEG delta power and low heart rate in mice under anesthesia.Sci. Adv.201952eaav544710.1126/sciadv.aav5447 30820460
    [Google Scholar]
  188. SongE. MaoT. DongH. BoisserandL.S.B. AntilaS. BosenbergM. AlitaloK. ThomasJ.L. IwasakiA. VEGF-C-driven lymphatic drainage enables immunosurveillance of brain tumours.Nature2020577779268969410.1038/s41586‑019‑1912‑x 31942068
    [Google Scholar]
  189. Shibata-GermanosS. GoodmanJ.R. GriegA. TrivediC.A. BensonB.C. FotiS.C. FaroA. CastellanR.F.P. CorreraR.M. BarberM. RuhrbergC. WellerR.O. LashleyT. IliffJ.J. HawkinsT.A. RihelJ. Structural and functional conservation of non-lumenized lymphatic endothelial cells in the mammalian leptomeninges.Acta Neuropathol.2020139238340110.1007/s00401‑019‑02091‑z 31696318
    [Google Scholar]
  190. MezeyÉ. SzalayovaI. HogdenC.T. BradyA. DósaÁ. SótonyiP. PalkovitsM. An immunohistochemical study of lymphatic elements in the human brain.Proc. Natl. Acad. Sci. USA20211183e200257411810.1073/pnas.2002574118 33446503
    [Google Scholar]
  191. Da MesquitaS. PapadopoulosZ. DykstraT. BraseL. FariasF.G. WallM. JiangH. KodiraC.D. de LimaK.A. HerzJ. LouveauA. GoldmanD.H. SalvadorA.F. Onengut-GumuscuS. FarberE. DabhiN. KennedyT. MilamM.G. BakerW. SmirnovI. RichS.S. BenitezB.A. KarchC.M. PerrinR.J. FarlowM. ChhatwalJ.P. HoltzmanD.M. CruchagaC. HarariO. KipnisJ. Meningeal lymphatics affect microglia responses and anti-Aβ immunotherapy.Nature2021593785825526010.1038/s41586‑021‑03489‑0 33911285
    [Google Scholar]
  192. HsuM. LaakerC. MadridA. HerbathM. ChoiY.H. SandorM. FabryZ. Neuroinflammation creates an immune regulatory niche at the meningeal lymphatic vasculature near the cribriform plate.Nat. Immunol.202223458159310.1038/s41590‑022‑01158‑6 35347285
    [Google Scholar]
  193. DaiW. YangM. XiaP. XiaoC. HuangS. ZhangZ. ChengX. LiW. JinJ. ZhangJ. WuB. ZhangY. WuP. LinY. WuW. ZhaoH. ZhangY. LinW.J. YeX. A functional role of meningeal lymphatics in sex difference of stress susceptibility in mice.Nat. Commun.2022131482510.1038/s41467‑022‑32556‑x 35974004
    [Google Scholar]
  194. Holstein-RønsboS. GanY. GiannettoM.J. RasmussenM.K. SigurdssonB. BeinlichF.R.M. RoseL. UntietV. HablitzL.M. KelleyD.H. NedergaardM. Glymphatic influx and clearance are accelerated by neurovascular coupling.Nat. Neurosci.20232661042105310.1038/s41593‑023‑01327‑2 37264158
    [Google Scholar]
  195. WangX. ZhangA. YuQ. WangZ. WangJ. XuP. LiuY. LuJ. ZhengJ. LiH. QiY. ZhangJ. FangY. XuS. ZhouJ. WangK. ChenS. ZhangJ. Single‐Cell RNA sequencing and spatial transcriptomics reveal pathogenesis of meningeal lymphatic dysfunction after experimental subarachnoid hemorrhage.Adv. Sci. (Weinh.)20231021230142810.1002/advs.202301428 37211686
    [Google Scholar]
  196. YeD. ChenS. LiuY. WeixelC. HuZ. YuanJ. ChenH. Mechanically manipulating glymphatic transport by ultrasound combined with microbubbles.Proc. Natl. Acad. Sci. USA202312021e221293312010.1073/pnas.2212933120 37186852
    [Google Scholar]
  197. ShethK.N. ElmJ.J. BeslowL.A. SzeG.K. KimberlyW.T. Glyburide advantage in malignant edema and stroke (GAMES-RP) Trial: Rationale and design.Neurocrit. Care201624113213910.1007/s12028‑015‑0189‑7 26268138
    [Google Scholar]
  198. VazR. SarmentoA. BorgesN. CruzC. AzevedoI. Effect of mechanogated membrane ion channel blockers on experimental traumatic brain oedema.Acta Neurochir. (Wien)1998140437137510.1007/s007010050111 9689329
    [Google Scholar]
  199. FrelinC. BarbryP. VigneP. ChassandeO. CragoeE.J.Jr LazdunskiM. Amiloride and its analogs as tools to inhibit Na+ transport via the Na+ channel, the Na+/H+ antiport and the Na+/Ca2+ exchanger.Biochimie19887091285129010.1016/0300‑9084(88)90196‑4 2852509
    [Google Scholar]
  200. van MegenW.H. BeggsM.R. AnS.W. FerreiraP.G. LeeJ.J. WolfM.T. AlexanderR.T. DimkeH. Gentamicin inhibits Ca2+ channel TRPV5 and induces calciuresis independent of the calcium-sensing receptor-claudin-14 pathway.J. Am. Soc. Nephrol.202233354756410.1681/ASN.2021030392 35022312
    [Google Scholar]
  201. ErmakovY.A. KamarajuK. SenguptaK. SukharevS. Gadolinium ions block mechanosensitive channels by altering the packing and lateral pressure of anionic lipids.Biophys. J.20109861018102710.1016/j.bpj.2009.11.044 20303859
    [Google Scholar]
  202. LiX. ZhuJ. LiuK. HuY. HuangK. PanS. Heparin ameliorates cerebral edema and improves outcomes following status epilepticus by protecting endothelial glycocalyx in mice.Exp. Neurol.202033011332010.1016/j.expneurol.2020.113320 32305420
    [Google Scholar]
  203. KriegS.M. SonaniniS. PlesnilaN. TraboldR. Effect of small molecule vasopressin V1a and V2 receptor antagonists on brain edema formation and secondary brain damage following traumatic brain injury in mice.J. Neurotrauma201532422122710.1089/neu.2013.3274 25111427
    [Google Scholar]
  204. Serradeil-Le GalC. WagnonJ. GarciaC. LacourC. GuiraudouP. ChristopheB. VillanovaG. NisatoD. MaffrandJ.P. Le FurG. Biochemical and pharmacological properties of SR 49059, a new, potent, nonpeptide antagonist of rat and human vasopressin V1a receptors.J. Clin. Invest.199392122423110.1172/JCI116554 8392086
    [Google Scholar]
  205. LuhC. KuhlmannC.R. AckermannB. Timaru-KastR. LuhmannH.J. BehlC. WernerC. EngelhardK. ThalS.C. Inhibition of myosin light chain kinase reduces brain edema formation after traumatic brain injury.J. Neurochem.201011241015102510.1111/j.1471‑4159.2009.06514.x 19943851
    [Google Scholar]
  206. LiuJ. JinX. LiuK.J. LiuW. Matrix metalloproteinase-2-mediated occludin degradation and caveolin-1-mediated claudin-5 redistribution contribute to blood-brain barrier damage in early ischemic stroke stage.J. Neurosci.20123293044305710.1523/JNEUROSCI.6409‑11.2012 22378877
    [Google Scholar]
  207. ZhouJ. TaoP. FisherJ.F. ShiQ. MobasheryS. SchlegelH.B. QM/MM studies of the matrix metalloproteinase 2 (MMP2) inhibition mechanism of (S)-SB-3CT and its oxirane analogue.J. Chem. Theory Comput.20106113580358710.1021/ct100382k 21076643
    [Google Scholar]
  208. BessonV.C. ChenX.R. PlotkineM. Marchand-VerrecchiaC. Fenofibrate, a peroxisome proliferator-activated receptor α agonist, exerts neuroprotective effects in traumatic brain injury.Neurosci. Lett.2005388171210.1016/j.neulet.2005.06.019 16087294
    [Google Scholar]
  209. ChenX.R. BessonV.C. PalmierB. GarciaY. PlotkineM. Marchand-LerouxC. Neurological recovery-promoting, anti-inflammatory, and anti-oxidative effects afforded by fenofibrate, a PPAR alpha agonist, in traumatic brain injury.J. Neurotrauma20072471119113110.1089/neu.2006.0216 17610352
    [Google Scholar]
  210. YiJ.H. ParkS.W. BrooksN. LangB.T. VemugantiR. PPARγ agonist rosiglitazone is neuroprotective after traumatic brain injury via anti-inflammatory and anti-oxidative mechanisms.Brain Res.2008124416417210.1016/j.brainres.2008.09.074 18948087
    [Google Scholar]
  211. QureshiM. Al-SuhaimiE.A. WahidF. ShehzadO. ShehzadA. Therapeutic potential of curcumin for multiple sclerosis.Neurol. Sci.201839220721410.1007/s10072‑017‑3149‑5 29079885
    [Google Scholar]
  212. ZhangZ. JiangM. FangJ. YangM. ZhangS. YinY. LiD. MaoL. FuX. HouY. FuX. FanC. SunB. Enhanced therapeutic potential of nano-curcumin against subarachnoid hemorrhage-induced blood-brain barrier disruption through inhibition of inflammatory response and oxidative stress.Mol. Neurobiol.201754111410.1007/s12035‑015‑9635‑y 26708209
    [Google Scholar]
  213. YuL. YiJ. YeG. ZhengY. SongZ. YangY. SongY. WangZ. BaoQ. Effects of curcumin on levels of nitric oxide synthase and AQP-4 in a rat model of hypoxia-ischemic brain damage.Brain Res.20121475889510.1016/j.brainres.2012.07.055 22902770
    [Google Scholar]
  214. PanY. ZhangY. YuanJ. MaX. ZhaoY. LiY. LiF. GongX. ZhaoJ. TangH. WangJ. Tetrahydrocurcumin mitigates acute hypobaric hypoxia‐induced cerebral oedema and inflammation through the NF‐κB/VEGF/MMP‐9 pathway.Phytother. Res.202034112963297710.1002/ptr.6724 32573860
    [Google Scholar]
  215. YuanJ. LiuW. ZhuH. ZhangX. FengY. ChenY. FengH. LinJ. Curcumin attenuates blood-brain barrier disruption after subarachnoid hemorrhage in mice.J. Surg. Res.2017207859110.1016/j.jss.2016.08.090 27979493
    [Google Scholar]
  216. GaoW. ZhaoZ. YuG. ZhouZ. ZhouY. HuT. JiangR. ZhangJ. VEGI attenuates the inflammatory injury and disruption of blood-brain barrier partly by suppressing the TLR4/NF-κB signaling pathway in experimental traumatic brain injury.Brain Res.2015162223023910.1016/j.brainres.2015.04.035 26080076
    [Google Scholar]
  217. FuruseM. NonoguchiN. KawabataS. MiyataT. TohoT. KuroiwaT. MiyatakeS.I. Intratumoral and peritumoral post-irradiation changes, but not viable tumor tissue, may respond to bevacizumab in previously irradiated meningiomas.Radiat. Oncol.201510115610.1186/s13014‑015‑0446‑0 26223253
    [Google Scholar]
/content/journals/cn/10.2174/1570159X22666240528160237
Loading
/content/journals/cn/10.2174/1570159X22666240528160237
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test