Skip to content
2000
Volume 22, Issue 14
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Alzheimer's disease (AD) is the most prevalent type of dementia, but its etiopathogenesis is not yet fully understood. Recent preclinical studies and clinical evidence indicate that changes in the gut microbiome could potentially play a role in the accumulation of amyloid beta. However, the relationship between gut dysbiosis and AD is still elusive. In this review, the potential impact of the gut microbiome on AD development and progression is discussed. Pre-clinical and clinical literature exploring changes in gut microbiome composition is assessed, which can contribute to AD pathology including increased amyloid beta deposition and cognitive impairment. The gut-brain axis and the potential involvement of metabolites produced by the gut microbiome in AD are also highlighted. Furthermore, the potential of antibiotics, prebiotics, probiotics, fecal microbiota transplantation, and dietary interventions as complementary therapies for the management of AD is summarized. This review provides valuable insights into potential therapeutic strategies to modulate the gut microbiome in AD.

Loading

Article metrics loading...

/content/journals/cn/10.2174/1570159X22666240308090741
2024-12-01
2024-11-26
Loading full text...

Full text loading...

References

  1. SongE.J. LeeE.S. NamY.D. Progress of analytical tools and techniques for human gut microbiome research.J. Microbiol.2018561069370510.1007/s12275‑018‑8238‑5 30267313
    [Google Scholar]
  2. HodkinsonB.P. GriceE.A. Next-generation sequencing: A review of technologies and tools for wound microbiome research.Adv. Wound Care (New Rochelle)201541505810.1089/wound.2014.0542 25566414
    [Google Scholar]
  3. QinJ. LiR. RaesJ. ArumugamM. BurgdorfK.S. ManichanhC. NielsenT. PonsN. LevenezF. YamadaT. MendeD.R. LiJ. XuJ. LiS. LiD. CaoJ. WangB. LiangH. ZhengH. XieY. TapJ. LepageP. BertalanM. BattoJ.M. HansenT. Le PaslierD. LinnebergA. NielsenH.B. PelletierE. RenaultP. Sicheritz-PontenT. TurnerK. ZhuH. YuC. LiS. JianM. ZhouY. LiY. ZhangX. LiS. QinN. YangH. WangJ. BrunakS. DoréJ. GuarnerF. KristiansenK. PedersenO. ParkhillJ. WeissenbachJ. BorkP. EhrlichS.D. WangJ. A human gut microbial gene catalogue established by metagenomic sequencing.Nature20104647285596510.1038/nature08821 20203603
    [Google Scholar]
  4. EckburgP.B. BikE.M. BernsteinC.N. PurdomE. DethlefsenL. SargentM. GillS.R. NelsonK.E. RelmanD.A. Diversity of the human intestinal microbial flora.Science200530857281635163810.1126/science.1110591 15831718
    [Google Scholar]
  5. CanforaE.E. MeexR.C.R. VenemaK. BlaakE.E. Gut microbial metabolites in obesity, NAFLD and T2DM.Nat. Rev. Endocrinol.201915526127310.1038/s41574‑019‑0156‑z 30670819
    [Google Scholar]
  6. CryanJ.F. O’RiordanK.J. SandhuK. PetersonV. DinanT.G. The gut microbiome in neurological disorders.Lancet Neurol.202019217919410.1016/S1474‑4422(19)30356‑4 31753762
    [Google Scholar]
  7. Lloyd-PriceJ. ArzeC. AnanthakrishnanA.N. SchirmerM. Avila-PachecoJ. PoonT.W. AndrewsE. AjamiN.J. BonhamK.S. BrislawnC.J. CaseroD. CourtneyH. GonzalezA. GraeberT.G. HallA.B. LakeK. LandersC.J. MallickH. PlichtaD.R. PrasadM. RahnavardG. SaukJ. ShunginD. Vázquez-BaezaY. WhiteR.A.III BraunJ. DensonL.A. JanssonJ.K. KnightR. KugathasanS. McGovernD.P.B. PetrosinoJ.F. StappenbeckT.S. WinterH.S. ClishC.B. FranzosaE.A. VlamakisH. XavierR.J. HuttenhowerC. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases.Nature2019569775865566210.1038/s41586‑019‑1237‑9 31142855
    [Google Scholar]
  8. ChokK.C. NgK.Y. KohR.Y. ChyeS.M. Role of the gut microbiome in Alzheimer’s disease.Rev. Neurosci.202132776778910.1515/revneuro‑2020‑0122 33725748
    [Google Scholar]
  9. ZhangL. WangY. XiayuX. ShiC. ChenW. SongN. FuX. ZhouR. XuY.F. HuangL. ZhuH. HanY. QinC. Altered gut microbiota in a mouse model of Alzheimer’s disease.J. Alzheimers Dis.20176041241125710.3233/JAD‑170020 29036812
    [Google Scholar]
  10. dos Santos GuilhermeM. TodorovH. OsterhofC. MöllerkeA. CubK. HankelnT. GerberS. EndresK. Impact of acute and chronic amyloid-β peptide exposure on gut microbial commensals in the mouse.Front. Microbiol.202011100810.3389/fmicb.2020.01008 32508799
    [Google Scholar]
  11. ZhangY. ShenY. LiufuN. LiuL. LiW. ShiZ. ZhengH. MeiX. ChenC.Y. JiangZ. AbtahiS. DongY. LiangF. ShiY. ChengL.L. YangG. KangJ.X. WilkinsonJ.E. XieZ. Transmission of Alzheimer’s disease-associated microbiota dysbiosis and its impact on cognitive function: Evidence from mice and patients.Mol. Psychiatry202328104421443710.1038/s41380‑023‑02216‑7 37604976
    [Google Scholar]
  12. ChenC. AhnE.H. KangS.S. LiuX. AlamA. YeK. Gut dysbiosis contributes to amyloid pathology, associated with C/EBPβ/AEP signaling activation in Alzheimer’s disease mouse model.Sci. Adv.2020631eaba046610.1126/sciadv.aba0466 32832679
    [Google Scholar]
  13. GrabruckerS. MarizzoniM. SilajdžićE. LopizzoN. MombelliE. NicolasS. Dohm-HansenS. ScassellatiC. MorettiD.V. RosaM. HoffmannK. CryanJ.F. O’LearyO.F. EnglishJ.A. LavelleA. O’NeillC. ThuretS. CattaneoA. NolanY.M. Microbiota from Alzheimer’s patients induce deficits in cognition and hippocampal neurogenesis.Brain2023146124916493410.1093/brain/awad303 37849234
    [Google Scholar]
  14. LiZ. ZhuH. GuoY. DuX. QinC. Gut microbiota regulate cognitive deficits and amyloid deposition in a model of Alzheimer’s disease.J. Neurochem.2020155444846110.1111/jnc.15031 32319677
    [Google Scholar]
  15. BrandscheidC. SchuckF. ReinhardtS. SchäferK.H. PietrzikC.U. GrimmM. HartmannT. SchwiertzA. EndresK. Altered gut microbiome composition and tryptic activity of the 5xfad Alzheimer’s mouse model.J. Alzheimers Dis.201756277578810.3233/JAD‑160926 28035935
    [Google Scholar]
  16. Cuervo-ZanattaD. Garcia-MenaJ. Perez-CruzC. Gut microbiota alterations and cognitive impairment are sexually dissociated in a transgenic mice model of Alzheimer’s disease.J. Alzheimers Dis.202182s1S195S21410.3233/JAD‑201367 33492296
    [Google Scholar]
  17. ParkJ.Y. ChoiJ. LeeY. LeeJ.E. LeeE.H. KwonH.J. YangJ. JeongB.R. KimY.K. HanP.L. Metagenome analysis of bodily microbiota in a mouse model of Alzheimer disease using bacteria-derived membrane vesicles in blood.Exp. Neurobiol.201726636937910.5607/en.2017.26.6.369 29302204
    [Google Scholar]
  18. ZhanG. YangN. LiS. HuangN. FangX. ZhangJ. ZhuB. YangL. YangC. LuoA. Abnormal gut microbiota composition contributes to cognitive dysfunction in SAMP8 mice.Aging (Albany NY)20181061257126710.18632/aging.101464 29886457
    [Google Scholar]
  19. CaoJ. AmakyeW.K. QiC. LiuX. MaJ. RenJ. Bifidobacterium lactis Probio-M8 regulates gut microbiota to alleviate Alzheimer’s disease in the APP/PS1 mouse model.Eur. J. Nutr.20216073757376910.1007/s00394‑021‑02543‑x 33796919
    [Google Scholar]
  20. SunY. SommervilleN.R. LiuJ.Y.H. NganM.P. PoonD. PonomarevE.D. LuZ. KungJ.S.C. RuddJ.A. Intra‐gastrointestinal amyloid‐β1–42 oligomers perturb enteric function and induce Alzheimer’s disease pathology.J. Physiol.2020598194209422310.1113/JP279919 32617993
    [Google Scholar]
  21. FungT.C. OlsonC.A. HsiaoE.Y. Interactions between the microbiota, immune and nervous systems in health and disease.Nat. Neurosci.201720214515510.1038/nn.4476 28092661
    [Google Scholar]
  22. WangX. SunG. FengT. ZhangJ. HuangX. WangT. XieZ. ChuX. YangJ. WangH. ChangS. GongY. RuanL. ZhangG. YanS. LianW. DuC. YangD. ZhangQ. LinF. LiuJ. ZhangH. GeC. XiaoS. DingJ. GengM. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression.Cell Res.2019291078780310.1038/s41422‑019‑0216‑x 31488882
    [Google Scholar]
  23. ShuklaP.K. DelotterieD.F. XiaoJ. PierreJ.F. RaoR. McDonaldM.P. KhanM.M. Alterations in the gut-microbial-inflammasome-brain axis in a mouse model of Alzheimer’s disease.Cells202110477910.3390/cells10040779 33916001
    [Google Scholar]
  24. DalileB. Van OudenhoveL. VervlietB. VerbekeK. The role of short-chain fatty acids in microbiota–gut–brain communication.Nat. Rev. Gastroenterol. Hepatol.201916846147810.1038/s41575‑019‑0157‑3 31123355
    [Google Scholar]
  25. TranT.T.T. CorsiniS. KellingrayL. HegartyC. Le GallG. NarbadA. MüllerM. TejeraN. O’TooleP.W. MinihaneA.M. VauzourD. APOE genotype influences the gut microbiome structure and function in humans and mice: Relevance for Alzheimer’s disease pathophysiology.FASEB J.20193378221823110.1096/fj.201900071R 30958695
    [Google Scholar]
  26. KunduP. TorresE.R.S. StagamanK. KasschauK. OkhovatM. HoldenS. WardS. NevonenK.A. DavisB.A. SaitoT. SaidoT.C. CarboneL. SharptonT.J. RaberJ. Integrated analysis of behavioral, epigenetic, and gut microbiome analyses in AppNL-G-F, AppNL-F, and wild type mice.Sci. Rep.2021111467810.1038/s41598‑021‑83851‑4 33633159
    [Google Scholar]
  27. OrgE. MehrabianM. ParksB.W. ShipkovaP. LiuX. DrakeT.A. LusisA.J. Sex differences and hormonal effects on gut microbiota composition in mice.Gut Microbes20167431332210.1080/19490976.2016.1203502 27355107
    [Google Scholar]
  28. WangJ. TanilaH. PuoliväliJ. KadishI. GroenT. Gender differences in the amount and deposition of amyloidβ in APPswe and PS1 double transgenic mice.Neurobiol. Dis.200314331832710.1016/j.nbd.2003.08.009 14678749
    [Google Scholar]
  29. BäuerlC. ColladoM.C. Diaz CuevasA. ViñaJ. Pérez MartínezG. Shifts in gut microbiota composition in an APP/PSS1 transgenic mouse model of Alzheimer’s disease during lifespan.Lett. Appl. Microbiol.201866646447110.1111/lam.12882 29575030
    [Google Scholar]
  30. ShenL. LiuL. JiH-F. Alzheimer’s disease histological and behavioral manifestations in transgenic mice correlate with specific gut microbiome state.J. Alzheimers Dis.20175638539010.3233/JAD‑160884 27911317
    [Google Scholar]
  31. XinY. DilingC. JianY. TingL. GuoyanH. HualunL. XiaocuiT. GuoxiaoL. OuS. ChaoqunZ. JunZ. YizhenX. Effects of oligosaccharides from Morinda officinalis on gut microbiota and metabolome of APP/PS1 transgenic mice.Front. Neurol.2018941210.3389/fneur.2018.00412 29962999
    [Google Scholar]
  32. CoxL.M. SchaferM.J. SohnJ. VincentiniJ. WeinerH.L. GinsbergS.D. BlaserM.J. Calorie restriction slows age-related microbiota changes in an Alzheimer’s disease model in female mice.Sci. Rep.2019911790410.1038/s41598‑019‑54187‑x 31784610
    [Google Scholar]
  33. WangS. JiangW. OuyangT. ShenX.Y. WangF. QuY. ZhangM. LuoT. WangH.Q. Jatrorrhizine balances the gut microbiota and reverses learning and memory deficits in APP/PS1 transgenic mice.Sci. Rep.2019911957510.1038/s41598‑019‑56149‑9 31862965
    [Google Scholar]
  34. SunB.L. LiW.W. WangJ. XuY.L. SunH.L. TianD.Y. WangY.J. YaoX.Q. Gut microbiota alteration and its time course in a tauopathy mouse model.J. Alzheimers Dis.201970239941210.3233/JAD‑181220 31177213
    [Google Scholar]
  35. KimM.S. KimY. ChoiH. KimW. ParkS. LeeD. KimD.K. KimH.J. ChoiH. HyunD.W. LeeJ.Y. ChoiE.Y. LeeD.S. BaeJ.W. Mook-JungI. Transfer of a healthy microbiota reduces amyloid and tau pathology in an Alzheimer’s disease animal model.Gut202069228329410.1136/gutjnl‑2018‑317431 31471351
    [Google Scholar]
  36. ColomboA.V. SadlerR.K. LloveraG. SinghV. RothS. HeindlS. Sebastian MonasorL. VerhoevenA. PetersF. ParhizkarS. KampF. Gomez de AgueroM. MacPhersonA.J. WinklerE. HermsJ. BenakisC. DichgansM. SteinerH. GieraM. HaassC. TahirovicS. LieszA. Microbiota-derived short chain fatty acids modulate microglia and promote Aβ plaque deposition.eLife202110e5982610.7554/eLife.59826 33845942
    [Google Scholar]
  37. LiuS. GaoJ. ZhuM. LiuK. ZhangH.L. Gut microbiota and dysbiosis in Alzheimer’s disease: implications for pathogenesis and treatment.Mol. Neurobiol.202057125026504310.1007/s12035‑020‑02073‑3 32829453
    [Google Scholar]
  38. GiauV. WuS. JamerlanA. AnS. KimS. HulmeJ. Gut microbiota and their neuroinflammatory implications in Alzheimer’s disease.Nutrients20181011176510.3390/nu10111765 30441866
    [Google Scholar]
  39. SzabadyR.L. LouissaintC. LubbenA. XieB. ReekstingS. TuohyC. DemmaZ. FoleyS.E. FahertyC.S. Llanos-CheaA. OliveA.J. MrsnyR.J. McCormickB.A. Intestinal P-glycoprotein exports endocannabinoids to prevent inflammation and maintain homeostasis.J. Clin. Invest.201812894044405610.1172/JCI96817 30102254
    [Google Scholar]
  40. LingZ. ZhuM. YanX. ChengY. ShaoL. LiuX. JiangR. WuS. Structural and functional dysbiosis of fecal microbiota in chinese patients with Alzheimer’s disease.Front. Cell Dev. Biol.2021863406910.3389/fcell.2020.634069 33614635
    [Google Scholar]
  41. HaranJ.P. BhattaraiS.K. FoleyS.E. DuttaP. WardD.V. BucciV. McCormickB.A. Alzheimer’s disease microbiome is associated with dysregulation of the anti-inflammatory p-glycoprotein pathway.MBio2019103e00632e1910.1128/mBio.00632‑19 31064831
    [Google Scholar]
  42. ZhangX. WangY. LiuW. WangT. WangL. HaoL. JuM. XiaoR. Diet quality, gut microbiota, and microRNAs associated with mild cognitive impairment in middle-aged and elderly Chinese population.Am. J. Clin. Nutr.2021114242944010.1093/ajcn/nqab078 33871591
    [Google Scholar]
  43. LiuP. WuL. PengG. HanY. TangR. GeJ. ZhangL. JiaL. YueS. ZhouK. LiL. LuoB. WangB. Altered microbiomes distinguish Alzheimer’s disease from amnestic mild cognitive impairment and health in a Chinese cohort.Brain Behav. Immun.20198063364310.1016/j.bbi.2019.05.008 31063846
    [Google Scholar]
  44. VogtN.M. KerbyR.L. Dill-McFarlandK.A. HardingS.J. MerluzziA.P. JohnsonS.C. CarlssonC.M. AsthanaS. ZetterbergH. BlennowK. BendlinB.B. ReyF.E. Gut microbiome alterations in Alzheimer’s disease.Sci. Rep.2017711353710.1038/s41598‑017‑13601‑y 29051531
    [Google Scholar]
  45. ZhuangZ.Q. ShenL.L. LiW.W. FuX. ZengF. GuiL. LüY. CaiM. ZhuC. TanY.L. ZhengP. LiH.Y. ZhuJ. ZhouH.D. BuX.L. WangY.J. Gut microbiota is altered in patients with Alzheimer’s disease.J. Alzheimers Dis.20186341337134610.3233/JAD‑180176 29758946
    [Google Scholar]
  46. ZhanX. StamovaB. JinL.W. DeCarliC. PhinneyB. SharpF.R. Gram-negative bacterial molecules associate with Alzheimer disease pathology.Neurology201687222324233210.1212/WNL.0000000000003391 27784770
    [Google Scholar]
  47. ZhaoY. CongL. JaberV. LukiwW.J. Microbiome-derived lipopolysaccharide enriched in the perinuclear region of Alzheimer’s disease brain.Front. Immunol.20178106410.3389/fimmu.2017.01064 28928740
    [Google Scholar]
  48. CattaneoA. CattaneN. GalluzziS. ProvasiS. LopizzoN. FestariC. FerrariC. GuerraU.P. PagheraB. MuscioC. BianchettiA. VoltaG.D. TurlaM. CotelliM.S. GennusoM. PrelleA. ZanettiO. LussignoliG. MirabileD. BellandiD. GentileS. BelottiG. VillaniD. HarachT. BolmontT. PadovaniA. BoccardiM. FrisoniG.B. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly.Neurobiol. Aging201749606810.1016/j.neurobiolaging.2016.08.019 27776263
    [Google Scholar]
  49. SochockaM. Donskow-ŁysoniewskaK. DinizB.S. KurpasD. BrzozowskaE. LeszekJ. The gut microbiome alterations and inflammation-driven pathogenesis of Alzheimer’s disease—a critical review.Mol. Neurobiol.20195631841185110.1007/s12035‑018‑1188‑4 29936690
    [Google Scholar]
  50. LiB. HeY. MaJ. HuangP. DuJ. CaoL. WangY. XiaoQ. TangH. ChenS. Mild cognitive impairment has similar alterations as Alzheimer’s disease in gut microbiota.Alzheimers Dement.201915101357136610.1016/j.jalz.2019.07.002 31434623
    [Google Scholar]
  51. GuoM. PengJ. HuangX. XiaoL. HuangF. ZuoZ. Gut microbiome features of chinese patients newly diagnosed with Alzheimer’s disease or mild cognitive impairment.J. Alzheimers Dis.202180129931010.3233/JAD‑201040 33523001
    [Google Scholar]
  52. CammannD. LuY. CummingsM.J. ZhangM.L. CueJ.M. DoJ. EbersoleJ. ChenX. OhE.C. CummingsJ.L. ChenJ. Genetic correlations between Alzheimer’s disease and gut microbiome genera.Sci. Rep.2023131525810.1038/s41598‑023‑31730‑5 37002253
    [Google Scholar]
  53. LaskeC. MüllerS. PreischeO. RuschilV. MunkM.H.J. HonoldI. PeterS. SchoppmeierU. WillmannM. Signature of Alzheimer’s disease in intestinal microbiome: Results from the AlzBiom study.Front. Neurosci.20221679299610.3389/fnins.2022.792996 35516807
    [Google Scholar]
  54. JeongS. HuangL.K. TsaiM.J. LiaoY.T. LinY.S. ChangC. ChiW-K. HuC-J. HsuY-H. Whole genome shotgun metagenomic sequencing to identify differential abundant microbiome features between dementia and mild cognitive impairment (MCI) in AD subjects.Alzheimers Dement.202117S5e05191410.1002/alz.051914
    [Google Scholar]
  55. MarizzoniM. CattaneoA. MirabelliP. FestariC. LopizzoN. NicolosiV. MombelliE. MazzelliM. LuongoD. NaviglioD. CoppolaL. SalvatoreM. FrisoniG.B. Short-chain fatty acids and lipopolysaccharide as mediators between gut dysbiosis and amyloid pathology in Alzheimer’s disease.J. Alzheimers Dis.202078268369710.3233/JAD‑200306 33074224
    [Google Scholar]
  56. NingJ. HuangS.Y. ChenS.D. ZhangY.R. HuangY.Y. YuJ.T. Investigating casual associations among gut microbiota, metabolites, and neurodegenerative diseases: A mendelian randomization study.J. Alzheimers Dis.202287121122210.3233/JAD‑215411 35275534
    [Google Scholar]
  57. VogtN.M. RomanoK.A. DarstB.F. EngelmanC.D. JohnsonS.C. CarlssonC.M. AsthanaS. BlennowK. ZetterbergH. BendlinB.B. ReyF.E. The gut microbiota-derived metabolite trimethylamine N-oxide is elevated in Alzheimer’s disease.Alzheimers Res. Ther.201810112410.1186/s13195‑018‑0451‑2 30579367
    [Google Scholar]
  58. GulajE. PawlakK. BienB. PawlakD. Kynurenine and its metabolites in Alzheimer’s disease patients.Adv. Med. Sci.201055220421110.2478/v10039‑010‑0023‑6 20639188
    [Google Scholar]
  59. GuilleminG.J. BrewB.J. NoonanC.E. TakikawaO. CullenK.M. Indoleamine 2,3 dioxygenase and quinolinic acid Immunoreactivity in Alzheimer’s disease hippocampus.Neuropathol. Appl. Neurobiol.200531439540410.1111/j.1365‑2990.2005.00655.x 16008823
    [Google Scholar]
  60. Kaddurah-DaoukR. ZhuH. SharmaS. BogdanovM. RozenS.G. MatsonW. OkiN.O. Motsinger-ReifA.A. ChurchillE. LeiZ. ApplebyD. KlingM.A. TrojanowskiJ.Q. DoraiswamyP.M. ArnoldS.E. Alterations in metabolic pathways and networks in Alzheimer’s disease.Transl. Psychiatry201334e24410.1038/tp.2013.18 23571809
    [Google Scholar]
  61. FerreiroA.L. ChoiJ. RyouJ. NewcomerE.P. ThompsonR. BollingerR.M. Hall-MooreC. NdaoI.M. SaxL. BenzingerT.L.S. StarkS.L. HoltzmanD.M. FaganA.M. SchindlerS.E. CruchagaC. ButtO.H. MorrisJ.C. TarrP.I. AncesB.M. DantasG. Gut microbiome composition may be an indicator of preclinical Alzheimer’s disease.Sci. Transl. Med.202315700eabo298410.1126/scitranslmed.abo2984 37315112
    [Google Scholar]
  62. DoifodeT. GiridharanV.V. GenerosoJ.S. BhattiG. CollodelA. SchulzP.E. ForlenzaO.V. BarichelloT. The impact of the microbiota-gut-brain axis on Alzheimer’s disease pathophysiology.Pharmacol. Res.202116410531410.1016/j.phrs.2020.105314 33246175
    [Google Scholar]
  63. FröhlichE.E. FarziA. MayerhoferR. ReichmannF. JačanA. WagnerB. ZinserE. BordagN. MagnesC. FröhlichE. KashoferK. GorkiewiczG. HolzerP. Cognitive impairment by antibiotic-induced gut dysbiosis: Analysis of gut microbiota-brain communication.Brain Behav. Immun.20165614015510.1016/j.bbi.2016.02.020 26923630
    [Google Scholar]
  64. MinterM.R. ZhangC. LeoneV. RingusD.L. ZhangX. Oyler-CastrilloP. MuschM.W. LiaoF. WardJ.F. HoltzmanD.M. ChangE.B. TanziR.E. SisodiaS.S. Antibiotic-induced perturbations in gut microbial diversity influences neuro-inflammation and amyloidosis in a murine model of Alzheimer’s disease.Sci. Rep.2016613002810.1038/srep30028 27443609
    [Google Scholar]
  65. WangT. HuX. LiangS. LiW. WuX. WangL. JinF. Lactobacillus fermentum NS9 restores the antibiotic induced physiological and psychological abnormalities in rats.Benef. Microbes20156570771710.3920/BM2014.0177 25869281
    [Google Scholar]
  66. RavelliK.G. RosárioB.A. CamariniR. HernandesM.S. BrittoL.R. Intracerebroventricular streptozotocin as a model of Alzheimer’s disease: Neurochemical and behavioral characterization in mice.Neurotox. Res.201731332733310.1007/s12640‑016‑9684‑7 27913964
    [Google Scholar]
  67. DesbonnetL. ClarkeG. TraplinA. O’SullivanO. CrispieF. MoloneyR.D. CotterP.D. DinanT.G. CryanJ.F. Gut microbiota depletion from early adolescence in mice: Implications for brain and behaviour.Brain Behav. Immun.20154816517310.1016/j.bbi.2015.04.004 25866195
    [Google Scholar]
  68. PayneL.E. GagnonD.J. RikerR.R. SederD.B. GlisicE.K. MorrisJ.G. FraserG.L. Cefepime-induced neurotoxicity: A systematic review.Crit. Care201721127610.1186/s13054‑017‑1856‑1 29137682
    [Google Scholar]
  69. MehtaR.S. LochheadP. WangY. MaW. NguyenL.H. KocharB. HuttenhowerC. GrodsteinF. ChanA.T. Association of midlife antibiotic use with subsequent cognitive function in women.PLoS One2022173e026464910.1371/journal.pone.0264649 35320274
    [Google Scholar]
  70. UmedaT. OnoK. SakaiA. YamashitaM. MizuguchiM. KleinW.L. YamadaM. MoriH. TomiyamaT. Rifampicin is a candidate preventive medicine against amyloid-β and tau oligomers.Brain201613951568158610.1093/brain/aww042 27020329
    [Google Scholar]
  71. TuckerS. AhlM. BushA. WestawayD. HuangX. RogersJ. Pilot study of the reducing effect on amyloidosis in vivo by three FDA pre-approved drugs via the Alzheimer’s APP 5′ untranslated region.Curr. Alzheimer Res.20052224925410.2174/1567205053585855 15974925
    [Google Scholar]
  72. ParachikovaA. VasilevkoV. CribbsD.H. LaFerlaF.M. GreenK.N. Reductions in amyloid-beta-derived neuroinflammation, with minocycline, restore cognition but do not significantly affect tau hyperphosphorylation.J. Alzheimers Dis.201021252754210.3233/JAD‑2010‑100204 20555131
    [Google Scholar]
  73. KountourasJ. BozikiM. GavalasE. ZavosC. GrigoriadisN. DeretziG. TzilvesD. KatsinelosP. TsolakiM. ChatzopoulosD. VenizelosI. Eradication of helicobacter pylori may be beneficial in the management of Alzheimer’s disease.J. Neurol.2009256575876710.1007/s00415‑009‑5011‑z 19240960
    [Google Scholar]
  74. LoebM.B. MolloyD.W. SmiejaM. StandishT. GoldsmithC.H. MahonyJ. SmithS. BorrieM. DecoteauE. DavidsonW. McdougallA. GnarpeJ. O’donnellM. CherneskyM. A randomized, controlled trial of doxycycline and rifampin for patients with Alzheimer’s disease.J. Am. Geriatr. Soc.200452338138710.1111/j.1532‑5415.2004.52109.x 14962152
    [Google Scholar]
  75. DavidL.A. MauriceC.F. CarmodyR.N. GootenbergD.B. ButtonJ.E. WolfeB.E. LingA.V. DevlinA.S. VarmaY. FischbachM.A. BiddingerS.B. DuttonR.J. TurnbaughP.J. Diet rapidly and reproducibly alters the human gut microbiome.Nature2014505748455956310.1038/nature12820 24336217
    [Google Scholar]
  76. VaresiA. PierellaE. RomeoM. PicciniG.B. AlfanoC. BjørklundG. OppongA. RicevutiG. EspositoC. ChirumboloS. PascaleA. The potential role of gut microbiota in Alzheimer’s disease: From diagnosis to treatment.Nutrients202214366810.3390/nu14030668 35277027
    [Google Scholar]
  77. Martínez-GonzálezM.A. GeaA. Ruiz-CanelaM. The mediterranean diet and cardiovascular health.Circ. Res.2019124577979810.1161/CIRCRESAHA.118.313348 30817261
    [Google Scholar]
  78. WuL. SunD. Adherence to Mediterranean diet and risk of developing cognitive disorders: An updated systematic review and meta-analysis of prospective cohort studies.Sci. Rep.2017714131710.1038/srep41317 28112268
    [Google Scholar]
  79. LoughreyD.G. LavecchiaS. BrennanS. LawlorB.A. KellyM.E. The impact of the mediterranean diet on the cognitive functioning of healthy older adults: A systematic review and meta-analysis.Adv. Nutr.20178457158610.3945/an.117.015495 28710144
    [Google Scholar]
  80. KeenanT.D. AgrónE. MaresJ.A. ClemonsT.E. van AstenF. SwaroopA. ChewE.Y. Adherence to a mediterranean diet and cognitive function in the age‐related eye disease studies 1 & 2.Alzheimers Dement.202016683184210.1002/alz.12077 32285590
    [Google Scholar]
  81. MantzorouM. VadikoliasK. PavlidouE. TryfonosC. VasiosG. SerdariA. GiaginisC. Mediterranean diet adherence is associated with better cognitive status and less depressive symptoms in a Greek elderly population.Aging Clin. Exp. Res.20213341033104010.1007/s40520‑020‑01608‑x 32488472
    [Google Scholar]
  82. WadeA.T. DavisC.R. DyerK.A. HodgsonJ.M. WoodmanR.J. KeageH.A.D. MurphyK.J. A mediterranean diet with fresh, lean pork improves processing speed and mood: Cognitive findings from the MedPork randomised controlled trial.Nutrients2019117152110.3390/nu11071521 31277446
    [Google Scholar]
  83. WadeA.T. EliasM.F. MurphyK.J. Adherence to a Mediterranean diet is associated with cognitive function in an older non-Mediterranean sample: Findings from the Maine-Syracuse Longitudinal Study.Nutr. Neurosci.202124754255310.1080/1028415X.2019.1655201 31432770
    [Google Scholar]
  84. KnightA. BryanJ. WilsonC. HodgsonJ. DavisC. MurphyK. The mediterranean diet and cognitive function among healthy older adults in a 6-month randomised controlled trial: The medley study.Nutrients20168957910.3390/nu8090579 27657119
    [Google Scholar]
  85. WardleJ. RogersP. JuddP. TaylorM.A. RapoportL. GreenM. Nicholson PerryK. Randomized trial of the effects of cholesterol-lowering dietary treatment on psychological function.Am. J. Med.2000108754755310.1016/S0002‑9343(00)00330‑2 10806283
    [Google Scholar]
  86. GhoshT.S. RampelliS. JefferyI.B. SantoroA. NetoM. CapriM. GiampieriE. JenningsA. CandelaM. TurroniS. ZoetendalE.G. HermesG.D.A. ElodieC. MeunierN. BrugereC.M. Pujos-GuillotE. BerendsenA.M. De GrootL.C.P.G.M. FeskinsE.J.M. KaluzaJ. PietruszkaB. BielakM.J. ComteB. Maijo-FerreM. NicolettiC. De VosW.M. Fairweather-TaitS. CassidyA. BrigidiP. FranceschiC. O’TooleP.W. Mediterranean diet intervention alters the gut microbiome in older people reducing frailty and improving health status: The NU-AGE 1-year dietary intervention across five European countries.Gut20206971218122810.1136/gutjnl‑2019‑319654 32066625
    [Google Scholar]
  87. BaileyM.A. HolscherH.D. Microbiome-Mediated effects of the Mediterranean diet on inflammation.Adv. Nutr.20189319320610.1093/advances/nmy013 29767701
    [Google Scholar]
  88. MerraG. NoceA. MarroneG. CintoniM. TarsitanoM.G. CapacciA. De LorenzoA. Influence of Mediterranean diet on human gut microbiota.Nutrients2020131710.3390/nu13010007 33375042
    [Google Scholar]
  89. HoL. OnoK. TsujiM. MazzolaP. SinghR. PasinettiG.M. Protective roles of intestinal microbiota derived short chain fatty acids in Alzheimer’s disease-type beta-amyloid neuropathological mechanisms.Expert Rev. Neurother.2018181839010.1080/14737175.2018.1400909 29095058
    [Google Scholar]
  90. LevitanE.B. WolkA. MittlemanM.A. Consistency with the DASH diet and incidence of heart failure.Arch. Intern. Med.2009169985185710.1001/archinternmed.2009.56 19433696
    [Google Scholar]
  91. AppelL.J. MooreT.J. ObarzanekE. VollmerW.M. SvetkeyL.P. SacksF.M. BrayG.A. VogtT.M. CutlerJ.A. WindhauserM.M. LinP.H. KaranjaN. Simons-MortonD. McCulloughM. SwainJ. SteeleP. EvansM.A. MillerE.R. HarshaD.W. A clinical trial of the effects of dietary patterns on blood pressure.N. Engl. J. Med.1997336161117112410.1056/NEJM199704173361601 9099655
    [Google Scholar]
  92. WengreenH. MungerR.G. CutlerA. QuachA. BowlesA. CorcoranC. TschanzJ.T. NortonM.C. Welsh-BohmerK.A. Prospective study of dietary approaches to stop hypertension- and mediterranean-style dietary patterns and age-related cognitive change: The cache county study on memory, health and aging.Am. J. Clin. Nutr.20139851263127110.3945/ajcn.112.051276 24047922
    [Google Scholar]
  93. BlumenthalJ.A. SmithP.J. MabeS. HinderliterA. LinP.H. LiaoL. Welsh-BohmerK.A. BrowndykeJ.N. KrausW.E. DoraiswamyP.M. BurkeJ.R. SherwoodA. Lifestyle and neurocognition in older adults with cognitive impairments.Neurology2019923e212e22310.1212/WNL.0000000000006784 30568005
    [Google Scholar]
  94. MorrisM.C. TangneyC.C. WangY. SacksF.M. BennettD.A. AggarwalN.T. MIND diet associated with reduced incidence of Alzheimer’s disease.Alzheimers Dement.20151191007101410.1016/j.jalz.2014.11.009 25681666
    [Google Scholar]
  95. KheirouriS. AlizadehM. MIND diet and cognitive performance in older adults: A systematic review.Crit. Rev. Food Sci. Nutr.202262298059807710.1080/10408398.2021.1925220 33989093
    [Google Scholar]
  96. McEvoyC.T. GuyerH. LangaK.M. YaffeK. Neuroprotective diets are associated with better cognitive function: The health and retirement study.J. Am. Geriatr. Soc.20176581857186210.1111/jgs.14922 28440854
    [Google Scholar]
  97. HoskingD.E. EramudugollaR. CherbuinN. AnsteyK.J. MIND not Mediterranean diet related to 12‐year incidence of cognitive impairment in an Australian longitudinal cohort study.Alzheimers Dement.201915458158910.1016/j.jalz.2018.12.011 30826160
    [Google Scholar]
  98. ChuC.Q. YuL. QiG. MiY.S. WuW.Q. LeeY. ZhaiQ.X. TianF.W. ChenW. Can dietary patterns prevent cognitive impairment and reduce Alzheimer’s disease risk: Exploring the underlying mechanisms of effects.Neurosci. Biobehav. Rev.202213510455610.1016/j.neubiorev.2022.104556 35122783
    [Google Scholar]
  99. FortierM. CastellanoC.A. St-PierreV. Myette-CôtéÉ. LangloisF. RoyM. MorinM.C. BoctiC. FulopT. GodinJ.P. DelannoyC. CuenoudB. CunnaneS.C. A ketogenic drink improves cognition in mild cognitive impairment: Results of a 6‐month RCT.Alzheimers Dement.202117354355210.1002/alz.12206 33103819
    [Google Scholar]
  100. OtaM. MatsuoJ. IshidaI. TakanoH. YokoiY. HoriH. YoshidaS. AshidaK. NakamuraK. TakahashiT. KunugiH. Effects of a medium-chain triglyceride-based ketogenic formula on cognitive function in patients with mild-to-moderate Alzheimer’s disease.Neurosci. Lett.201969023223610.1016/j.neulet.2018.10.048 30367958
    [Google Scholar]
  101. OtaM. MatsuoJ. IshidaI. HattoriK. TeraishiT. TonouchiH. AshidaK. TakahashiT. KunugiH. Effect of a ketogenic meal on cognitive function in elderly adults: Potential for cognitive enhancement.Psychopharmacology (Berl.)201623321-223797380210.1007/s00213‑016‑4414‑7 27568199
    [Google Scholar]
  102. NagpalR. NethB.J. WangS. CraftS. YadavH. Modified Mediterranean-ketogenic diet modulates gut microbiome and short-chain fatty acids in association with Alzheimer’s disease markers in subjects with mild cognitive impairment.EBioMedicine20194752954210.1016/j.ebiom.2019.08.032 31477562
    [Google Scholar]
  103. NiccoC. PauleA. KonturekP. EdeasM. From Donor to Patient: Collection, preparation and cryopreservation of fecal samples for fecal microbiota transplantation.Diseases202082910.3390/diseases8020009 32326509
    [Google Scholar]
  104. DaileyF.E. TurseE.P. DaglilarE. TahanV. The dirty aspects of fecal microbiota transplantation: A review of its adverse effects and complications.Curr. Opin. Pharmacol.201949293310.1016/j.coph.2019.04.008 31103793
    [Google Scholar]
  105. Craig-SchapiroR. FaganA.M. HoltzmanD.M. Biomarkers of Alzheimer’s disease.Neurobiol. Dis.200935212814010.1016/j.nbd.2008.10.003 19010417
    [Google Scholar]
  106. HazanS. Rapid improvement in Alzheimer’s disease symptoms following fecal microbiota transplantation: A case report.J. Int. Med. Res.202048610.1177/0300060520925930 32600151
    [Google Scholar]
  107. ParkS.H. LeeJ.H. ShinJ. KimJ.S. ChaB. LeeS. KwonK.S. ShinY.W. ChoiS.H. Cognitive function improvement after fecal microbiota transplantation in Alzheimer’s dementia patient: A case report.Curr. Med. Res. Opin.202137101739174410.1080/03007995.2021.1957807 34289768
    [Google Scholar]
  108. RoberfroidM. GibsonG.R. HoylesL. McCartneyA.L. RastallR. RowlandI. WolversD. WatzlB. SzajewskaH. StahlB. GuarnerF. RespondekF. WhelanK. CoxamV. DaviccoM.J. LéotoingL. WittrantY. DelzenneN.M. CaniP.D. NeyrinckA.M. MeheustA. Prebiotic effects: Metabolic and health benefits.Br. J. Nutr.2010104S2Suppl. 2S1S6310.1017/S0007114510003363 20920376
    [Google Scholar]
  109. McLoughlinR.F. BerthonB.S. JensenM.E. BainesK.J. WoodL.G. Short-chain fatty acids, prebiotics, synbiotics, and systemic inflammation: A systematic review and meta-analysis.Am. J. Clin. Nutr.2017106393094510.3945/ajcn.117.156265 28793992
    [Google Scholar]
  110. PaivaI.H.R. Duarte-SilvaE. PeixotoC.A. The role of prebiotics in cognition, anxiety, and depression.Eur. Neuropsychopharmacol.20203411810.1016/j.euroneuro.2020.03.006 32241688
    [Google Scholar]
  111. GuY. NishikawaM. BrickmanA.M. ManlyJ.J. SchupfN. MayeuxR.P. Association of dietary prebiotic consumption with reduced risk of Alzheimer’s disease in a multiethnic population.Curr. Alzheimer Res.2021181298499210.2174/1567205019666211222115142 34951365
    [Google Scholar]
  112. AlfaM.J. StrangD. TappiaP.S. GrahamM. Van DomselaarG. ForbesJ.D. LaminmanV. OlsonN. DeGagneP. BrayD. MurrayB.L. DufaultB. LixL.M. A randomized trial to determine the impact of a digestion resistant starch composition on the gut microbiome in older and mid-age adults.Clin. Nutr.201837379780710.1016/j.clnu.2017.03.025 28410921
    [Google Scholar]
  113. VulevicJ. JuricA. WaltonG.E. ClausS.P. TzortzisG. TowardR.E. GibsonG.R. Influence of galacto-oligosaccharide mixture (B-GOS) on gut microbiota, immune parameters and metabonomics in elderly persons.Br. J. Nutr.2015114458659510.1017/S0007114515001889 26218845
    [Google Scholar]
  114. WaltonG.E. van den HeuvelE.G.H.M. KostersM.H.W. RastallR.A. TuohyK.M. GibsonG.R. A randomised crossover study investigating the effects of galacto-oligosaccharides on the faecal microbiota in men and women over 50 years of age.Br. J. Nutr.2012107101466147510.1017/S0007114511004697 21910949
    [Google Scholar]
  115. Parada VenegasD. De la FuenteM.K. LandskronG. GonzálezM.J. QueraR. DijkstraG. HarmsenH.J.M. FaberK.N. HermosoM.A. Short Chain Fatty Acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases.Front. Immunol.20191027710.3389/fimmu.2019.00277 30915065
    [Google Scholar]
  116. Larroya-GarcíaA. Navas-CarrilloD. Orenes-PiñeroE. Impact of gut microbiota on neurological diseases: Diet composition and novel treatments.Crit. Rev. Food Sci. Nutr.201959193102311610.1080/10408398.2018.1484340 29870270
    [Google Scholar]
  117. AkbariE. AsemiZ. Daneshvar KakhakiR. BahmaniF. KouchakiE. TamtajiO.R. HamidiG.A. SalamiM. Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer’s disease: A randomized, double-blind and controlled trial.Front. Aging Neurosci.2016825610.3389/fnagi.2016.00256 27891089
    [Google Scholar]
  118. AgahiA. HamidiG.A. DaneshvarR. HamdiehM. SoheiliM. AlinaghipourA. EsmaeiliT.S.M. SalamiM. Does severity of Alzheimer’s disease contribute to its responsiveness to modifying gut microbiota? A double blind clinical trial.Front. Neurol.2018966210.3389/fneur.2018.00662 30158897
    [Google Scholar]
  119. LeblhuberF. SteinerK. SchuetzB. FuchsD. GostnerJ.M. Probiotic supplementation in patients with Alzheimer’s dementia - An explorative intervention study.Curr. Alzheimer Res.201815121106111310.2174/1389200219666180813144834 30101706
    [Google Scholar]
  120. TamtajiO.R. Heidari-soureshjaniR. MirhosseiniN. KouchakiE. BahmaniF. AghadavodE. Tajabadi-EbrahimiM. AsemiZ. Probiotic and selenium co-supplementation, and the effects on clinical, metabolic and genetic status in Alzheimer’s disease: A randomized, double-blind, controlled trial.Clin. Nutr.20193862569257510.1016/j.clnu.2018.11.034 30642737
    [Google Scholar]
/content/journals/cn/10.2174/1570159X22666240308090741
Loading
/content/journals/cn/10.2174/1570159X22666240308090741
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test