Skip to content
2000
Volume 22, Issue 14
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Extrapyramidal hyperkinetic movement disorders comprise a broad range of phenotypic phenomena, including chorea, dystonia, and tics. Treatment is generally challenging and individualized, given the overlapping phenomenology, limited evidence regarding efficacy, and concerns regarding the tolerability and safety of most treatments. Over the past decade, the treatment has become even more intricate due to advancements in the field of deep brain stimulation as well as optimized dopamine-depleting agents. Here, we review the current evidence for treatment modalities of extrapyramidal hyperkinetic movement disorders and provide a comprehensive and practical overview to aid the choice of therapy. Mechanism of action and practical intricacies of each treatment modality are discussed, focusing on dosing and adverse effect management. Finally, future therapeutic developments are also discussed.

Loading

Article metrics loading...

/content/journals/cn/10.2174/1570159X22666240517161444
2024-12-01
2024-11-26
Loading full text...

Full text loading...

References

  1. AbdoW.F. van de WarrenburgB.P.C. BurnD.J. QuinnN.P. BloemB.R. The clinical approach to movement disorders.Nat. Rev. Neurol.201061293710.1038/nrneurol.2009.196
    [Google Scholar]
  2. JankovicJ. Treatment of hyperkinetic movement disorders.Lancet Neurol.20098984485610.1016/S1474‑4422(09)70183‑8
    [Google Scholar]
  3. AndréV.M. CepedaC. LevineM.S. Dopamine and glutamate in huntington’s disease: A balancing act.CNS Neurosci. Ther.201016316317810.1111/j.1755‑5949.2010.00134.x
    [Google Scholar]
  4. FrankS. TestaC.M. StamlerD. KaysonE. DavisC. EdmondsonM.C. KinelS. LeavittB. OakesD. O’NeillC. VaughanC. GoldsteinJ. HerzogM. SnivelyV. WhaleyJ. WongC. SuterG. JankovicJ. Jimenez-ShahedJ. HunterC. ClaassenD.O. RomanO.C. SungV. SmithJ. JanickiS. ClouseR. Saint-HilaireM. HohlerA. TurpinD. JamesR.C. RodriguezR. RizerK. AndersonK.E. HellerH. CarlsonA. CriswellS. RacetteB.A. RevillaF.J. NuciforaF.Jr MargolisR.L. OngM.J. MendisT. MendisN. SingerC. QuesadaM. PaulsenJ.S. Brashers-KrugT. MillerA. KerrJ. DubinskyR.M. GrayC. FactorS.A. SperinE. MolhoE. EglowM. EvansS. KumarR. ReevesC. SamiiA. ChouinardS. BelandM. ScottB.L. HickeyP.T. EsmailS. FungW.L.A. GibbonsC. QiL. ColcherA. HackmyerC. McGarryA. KlosK. GudesblattM. FafardL. GraffittiL. SchneiderD.P. DhallR. WojcieszekJ.M. LaFaverK. DukerA. NeefusE. Wilson-PerezH. ShprecherD. WallP. BlindauerK.A. WheelerL. BoydJ.T. HoustonE. FarbmanE.S. AgarwalP. EberlyS.W. WattsA. TariotP.N. FeiginA. EvansS. BeckC. OrmeC. EdicolaJ. ChristopherE. Effect of deutetrabenazine on chorea among patients with huntington disease.JAMA20163161405010.1001/jama.2016.8655
    [Google Scholar]
  5. BashirH. JankovicJ. Treatment options for chorea.Expert Rev. Neurother.2018181516310.1080/14737175.2018.1403899
    [Google Scholar]
  6. CoppenE.M. RoosR.A.C. Current pharmacological approaches to reduce chorea in huntington’s disease.Drugs2017771294610.1007/s40265‑016‑0670‑4
    [Google Scholar]
  7. CrosbyN.J. DeaneK. ClarkeC.E. Amantadine for dyskinesia in Parkinson’s disease. Cochrane Database of Systematic Reviews.John Wiley and Sons Ltd2010
    [Google Scholar]
  8. ReilmannR. Pharmacological treatment of chorea in Huntington’s disease-good clinical practice versus evidence-based guideline.Mov. Disord.20132881030103310.1002/mds.25500
    [Google Scholar]
  9. SmithK.M. SpindlerM.A. Uncommon applications of deep brain stimulation in hyperkinetic movement disorders.Tremor Other Hyperkinet. Mov. 2015527810.5334/tohm.265
    [Google Scholar]
  10. PosturnaR.B. LangA.E. Hemiballism: Revisiting a classic disorder.Lancet Neurol.200321166166810.1016/S1474‑4422(03)00554‑4
    [Google Scholar]
  11. WhittierJ.R. Ballism and the subthalamic nucleus (Nucleus Hypothalamicus; Corpus Luysi).Arch. Neurol. Psychiatry194758667269210.1001/archneurpsyc.1947.02300350022002
    [Google Scholar]
  12. MehannaR. JankovicJ. Movement disorders in cerebrovascular disease.Lancet Neurol.201312659760810.1016/S1474‑4422(13)70057‑7
    [Google Scholar]
  13. GanapaS.V. RamaniM.D. EbunlomoO.O. RahmanR.K. HerschmanY. MammisA. Treatment of persistent hemiballism with deep brain stimulation of the globus pallidus internus: Case report and literature review.World Neurosurg.201913236837010.1016/j.wneu.2019.08.247
    [Google Scholar]
  14. AlbaneseA. BhatiaK. BressmanS.B. DeLongM.R. FahnS. FungV.S.C. HallettM. JankovicJ. JinnahH.A. KleinC. LangA.E. MinkJ.W. TellerJ.K. Phenomenology and classification of dystonia: A consensus update.Mov. Disord.201328786387310.1002/mds.25475
    [Google Scholar]
  15. BalintB. MencacciN.E. ValenteE.M. PisaniA. RothwellJ. JankovicJ. VidailhetM. BhatiaK.P. Author correction.Dystonia. Nat. Rev. Dis. Primers2018413710.1038/s41572‑018‑0039‑y
    [Google Scholar]
  16. JankovicJ. Botulinum toxin: State of the art.Mov. Disord.20173281131113810.1002/mds.27072
    [Google Scholar]
  17. TermsarasabP. ThammongkolchaiT. FruchtS.J. Medical treatment of dystonia.J. Clin. Mov. Disord.201631910.1186/s40734‑016‑0047‑6 28031858
    [Google Scholar]
  18. CloudL.J. JinnahH.A. Treatment strategies for dystonia.Expert Opin. Pharmacother.201011151510.1517/14656560903426171 20001425
    [Google Scholar]
  19. ReeseR. VolkmannJ. Deep brain stimulation for the dystonias: Evidence, knowledge gaps, and practical considerations.Mov. Disord. Clin. Pract.20174448649410.1002/mdc3.12519
    [Google Scholar]
  20. American Psychiatric Association Diagnostic and Statistical Manual of Mental Disorders.American Psychiatric Association2013
    [Google Scholar]
  21. JohnsonK.A. WorbeY. FooteK.D. ButsonC.R. GunduzA. OkunM.S. Tourette syndrome: Clinical features, pathophysiology, and treatment.Lancet Neurol.2022442222112
    [Google Scholar]
  22. MartinoD. HedderlyT. Tics and stereotypies: A comparative clinical review.Parkinsonism Relat. Disord.20195911712410.1016/j.parkreldis.2019.02.005
    [Google Scholar]
  23. MartinoD. MinkJ.W. Tic disorders.Continuum 20131951287131110.1212/01.CON.0000436157.31662.af
    [Google Scholar]
  24. CothrosN. MedinaA. PringsheimT. Current pharmacotherapy for tic disorders.Expert Opin. Pharmacother.202021556758010.1080/14656566.2020.1721465
    [Google Scholar]
  25. PringsheimT. OkunM.S. Müller-VahlK. MartinoD. JankovicJ. CavannaA.E. WoodsD.W. RobinsonM. JarvieE. RoessnerV. OskouiM. Holler-ManaganY. PiacentiniJ. Practice guideline recommendations summary: Treatment of tics in people with Tourette syndrome and chronic tic disorders.Neurology2019921989690610.1212/WNL.0000000000007466
    [Google Scholar]
  26. RoessnerV. EicheleH. SternJ.S. SkovL. RizzoR. DebesN.M. NagyP. CavannaA.E. TermineC. GanosC. MünchauA. SzejkoN. CathD. Müller-VahlK.R. VerdellenC. HartmannA. RothenbergerA. HoekstraP.J. PlessenK.J. European clinical guidelines for Tourette syndrome and other tic disorders—version 2.0. Part III: Pharmacological treatment.Eur. Child Adolesc. Psychiatry202231342544110.1007/s00787‑021‑01899‑z
    [Google Scholar]
  27. MogwitzS. BuseJ. WolffN. RoessnerV. Update on the pharmacological treatment of tics with dopamine-modulating agents.ACS Chem. Neurosci.20189465167210.1021/acschemneuro.7b00460
    [Google Scholar]
  28. BehlingE. FarhatL.C. Landeros-WeisenbergerA. BlochM.H. META‐ANALYSIS: Efficacy and tolerability of vesicular monoamine transporter type 2 inhibitors in the treatment of tic disorders.Mov. Disord.202237468469310.1002/mds.28957
    [Google Scholar]
  29. ChenJ.J. OndoW.G. DashtipourK. SwopeD.M. Tetrabenazine for the treatment of hyperkinetic movement disorders: A review of the literature.Clin. Ther.20123471487150410.1016/j.clinthera.2012.06.010
    [Google Scholar]
  30. BillnitzerA. JankovicJ. Current Management of Tics and Tourette Syndrome: Behavioral, Pharmacologic, and Surgical Treatments. Neurotherapeutics.Springer Science and Business Media Deutschland GmbH20201716811693
    [Google Scholar]
  31. RoessnerV. EicheleH. SternJ.S. SkovL. RizzoR. DebesN.M. European clinical guidelines for Tourette syndrome and other tic disorders—version 2.0. Part III: pharmacological treatment.European Child and Adolescent Psychiatry.Springer Science and Business Media Deutschland GmbH202231425441
    [Google Scholar]
  32. Martinez-RamirezD. Jimenez-ShahedJ. LeckmanJ.F. PortaM. ServelloD. MengF.G. KuhnJ. HuysD. BaldermannJ.C. FoltynieT. HarizM.I. JoyceE.M. ZrinzoL. KefalopoulouZ. SilburnP. CoyneT. MogilnerA.Y. PourfarM.H. KhandharS.M. AuyeungM. OstremJ.L. Visser-VandewalleV. WelterM-L. MalletL. KarachiC. HouetoJ.L. KlassenB.T. AckermansL. KaidoT. TemelY. GrossR.E. WalkerH.C. LozanoA.M. WalterB.L. MariZ. AndersonW.S. ChangiziB.K. MoroE. ZauberS.E. SchrockL.E. ZhangJ-G. HuW. RizerK. MonariE.H. FooteK.D. MalatyI.A. DeebW. GunduzA. OkunM.S. Efficacy and safety of deep brain stimulation in tourette syndrome. The international tourette syndrome deep brain stimulation public database and registry.JAMA Neurol.201875335335910.1001/jamaneurol.2017.4317
    [Google Scholar]
  33. BaldermannJ.C. KuhnJ. SchüllerT. KohlS. AndradeP. SchleykenS. Prinz-LangenohlR. HellmichM. BarbeM.T. TimmermannL. Visser-VandewalleV. HuysD. Thalamic deep brain stimulation for tourette syndrome: A naturalistic trial with brief randomized, double-blinded sham-controlled periods.Brain Stimul.20211451059106710.1016/j.brs.2021.07.003
    [Google Scholar]
  34. FactorS.A. Management of tardive syndrome: Medications and surgical treatments.Neurotherapeutics20201741694171210.1007/s13311‑020‑00898‑3
    [Google Scholar]
  35. SzotaA.M. Scheel-KrügerJ. The role of glutamate receptors and their interactions with dopamine and other neurotransmitters in the development of tardive dyskinesia: Preclinical and clinical results.Behav. Pharmacol.202031651152310.1097/FBP.0000000000000563
    [Google Scholar]
  36. ZutshiD. CloudL.J. FactorS.A. Tardive syndromes are rarely reversible after discontinuing dopamine receptor blocking agents: Experience from a university-based movement disorder clinic.Tremor Other Hyperkinet. Mov. 2014426610.5334/tohm.199
    [Google Scholar]
  37. PinnintiN.R. FadenJ. AdityanjeeA. Are second-generation antipsychotics useful in tardive dystonia?Clin. Neuropharmacol.201538518319710.1097/WNF.0000000000000106
    [Google Scholar]
  38. MulroyE. BalintB. BhatiaK.P. Tardive syndromes.Pract. Neurol.202020536837610.1136/practneurol‑2020‑002566
    [Google Scholar]
  39. BhidayasiriR. JitkritsadakulO. FriedmanJ.H. FahnS. Updating the recommendations for treatment of tardive syndromes: A systematic review of new evidence and practical treatment algorithm.J. Neurol. Sci.2018389677510.1016/j.jns.2018.02.010
    [Google Scholar]
  40. MentzelT van der SnoekR LieverseR OorschotM ViechtbauerW BloemenO Clozapine monotherapy as a treatment for antipsychotic-induced tardive dyskinesia: A meta-analysis. J. Clin. Psychiatry, 201879617r11852
    [Google Scholar]
  41. AndersonK.E. StamlerD. DavisM.D. FactorS.A. HauserR.A. IsojärviJ. JarskogL.F. Jimenez-ShahedJ. KumarR. McEvoyJ.P. OchudloS. OndoW.G. FernandezH.H. Deutetrabenazine for treatment of involuntary movements in patients with tardive dyskinesia (AIM-TD): A double-blind, randomised, placebo-controlled, phase 3 trial.Lancet Psychiatry20174859560410.1016/S2215‑0366(17)30236‑5
    [Google Scholar]
  42. FernandezH.H. FactorS.A. HauserR.A. Jimenez-ShahedJ. OndoW.G. JarskogL.F. MeltzerH.Y. WoodsS.W. BegaD. LeDouxM.S. ShprecherD.R. DavisC. DavisM.D. StamlerD. AndersonK.E. Randomized controlled trial of deutetrabenazine for tardive dyskinesia.Neurology201788212003201010.1212/WNL.0000000000003960
    [Google Scholar]
  43. RascolO. FabbriM. PoeweW. Amantadine in the treatment of Parkinson’s disease and other movement disorders.Lancet Neurol.202120121048105610.1016/S1474‑4422(21)00249‑0
    [Google Scholar]
  44. PappaS. TsouliS. ApostolouG. MavreasV. KonitsiotisS. Effects of amantadine on tardive dyskinesia.Clin. Neuropharmacol.201033627127510.1097/WNF.0b013e3181ffde32
    [Google Scholar]
  45. LinC-C. OndoW.G. Non-VMAT2 inhibitor treatments for the treatment of tardive dyskinesia.J. Neurol. Sci.2018389485410.1016/j.jns.2018.02.014
    [Google Scholar]
  46. CornettE.M. NovitchM. KayeA.D. KataV. KayeA.M. Medication-induced tardive dyskinesia: A review and update.Ochsner J.2017172162174 28638290
    [Google Scholar]
  47. KrauseP. KronebergD. GruberD. KochK. SchneiderG.H. KühnA.A. Long-term effects of pallidal deep brain stimulation in tardive dystonia: A follow-up of 5–14 years.J. Neurol.202226973563356810.1007/s00415‑022‑10965‑8
    [Google Scholar]
  48. MacerolloA. DeuschlG. Deep brain stimulation for tardive syndromes: Systematic review and meta-analysis.J. Neurol. Sci.2018389556010.1016/j.jns.2018.02.013
    [Google Scholar]
  49. van den HeuvelC.N.A.M. TijssenM.A.J. van de WarrenburgB.P.C. DelnoozC.C.S. The symptomatic treatment of acquired dystonia: A systematic review.Mov. Disord. Clin. Pract.20163654855810.1002/mdc3.12400
    [Google Scholar]
  50. GruberD. SüdmeyerM. DeuschlG. FalkD. KraussJ.K. MuellerJ. Neurostimulation in tardive dystonia/dyskinesia: A delayed start, sham stimulation-controlled randomized trial. Brain Stimulation; Elsevier Inc.,20181113681377
    [Google Scholar]
  51. StahlS.M. Mechanism of action of vesicular monoamine transporter 2 (VMAT2) inhibitors in tardive dyskinesia: reducing dopamine leads to less “go” and more “stop” from the motor striatum for robust therapeutic effects.CNS Spectr.20182311610.1017/S1092852917000621
    [Google Scholar]
  52. ClaassenD.O. CarrollB. De BoerL.M. WuE. AyyagariR. GandhiS. StamlerD. Indirect tolerability comparison of Deutetrabenazine and Tetrabenazine for Huntington disease.J. Clin. Mov. Disord.201741310.1186/s40734‑017‑0051‑5
    [Google Scholar]
  53. MehannaR. HunterC. DavidsonA. Jimenez-ShahedJ. JankovicJ. Analysis of CYP2D6 genotype and response to tetrabenazine.Mov. Disord.201328221021510.1002/mds.25278
    [Google Scholar]
  54. Prestwick Pharmaceuticals, Inc.Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2008/021894lbl.pdf (cited: 7th of November 2022) 2008
  55. Teva Pharmaceuticals USA, Inc. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/209885lbl.pdf (cited: 7th of November 2022). 2017
  56. Neurocrine Biosciences, Inc.Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/209241lbl.pdf (cited: 7th of November 2022). 2017
  57. JankovicJ. Dopamine depleters in the treatment of hyperkinetic movement disorders.Expert Opin. Pharmacother.201617182461247010.1080/14656566.2016.1258063
    [Google Scholar]
  58. KaurN. KumarP. JamwalS. DeshmukhR. GauttamV. Tetrabenazine: Spotlight on drug review.Ann. Neurosci.2016233176185
    [Google Scholar]
  59. WisidagamaS. SelladuraiA. WuP. IsettaM. Serra-MestresJ. Recognition and management of antipsychotic-induced parkinsonism in older adults: A narrative review.Medicines 2021862410.3390/medicines8060024
    [Google Scholar]
  60. BlanchetK. Drug-induced parkinsonism: diagnosis and management. J. Parkinson. Restl. Leg. Syndr., 2016 2016Available from: www.dovepress.com
  61. BashirH. JankovicJ. Treatment options for chorea.Exp. Rev. Neurotherap; Taylor and Francis Ltd, 201818516310.1080/14737175.2018.1403899
    [Google Scholar]
  62. PreskornS.H. FahnestockP.A. CarpenterD. RossR. DochertyJ.P. AlexopoulosS. The roadmap for antipsychotic psychopharmacology: An overview.J. Clin. Psychiatry200768
    [Google Scholar]
  63. GardnerD.M. BaldessariniR.J. WaraichP. Modern antipsychotic drugs: A critical overview.Canad. Med. Assoc. J.200517217031711
    [Google Scholar]
  64. WalnO. JankovicJ. CambridgeH. ArnoldW. WilkinsW.B. An update on tardive dyskinesia: From phenomenology to treatment. Tremor Other Hyperkinet. Mov.,20133, 03.10.5334/tohm.165
    [Google Scholar]
  65. Aguilar-HenriquezA. MbbsT.T. AndrésA.H. LubaL. JamesM. Psychotropic idiosyncratic drug reactions: A brief review of proposed mechanisms. In:; Int. J. Psychiatr. Res20192
    [Google Scholar]
  66. StrawnJ.R. KeckP.E. CaroffS.N. Treatment in psychiatry neuroleptic malignant syndrome scope and nature of neuroleptic malignant syndrome.Am. J. Psychiatry2007164
    [Google Scholar]
  67. JankovicJ. Medical treatment of dystonia.Mov. Disord.20132871001101210.1002/mds.25552
    [Google Scholar]
  68. WongJ. DelvaN. Clozapine-induced seizures: Recognition and treatment.Can. J. Psychiatry200752745746310.1177/070674370705200708
    [Google Scholar]
  69. OsborneI.J. McIvorR.J. Clozapine-induced myoclonus: A case report and review of the literature.Ther. Adv. Psychopharmacol.20155635135610.1177/2045125315612015
    [Google Scholar]
  70. HampeC.S. MitomaH. MantoM. GABA and Glutamate: Their transmitter role in the CNS and pancreatic islets.In: GABA And Glutamate - New Developments In Neurotransmission Research; InTech,2018
    [Google Scholar]
  71. ExcitatoryH. JohnM.S. AdronH.R. GABA and the GABAa receptor. J. Neurochem., 1997211-27131
    [Google Scholar]
  72. SoykaM. Treatment of benzodiazepine dependence.N. Engl. J. Med.2017376121147115710.1056/NEJMra1611832
    [Google Scholar]
  73. de las CuevasC. SanzE. de la FuenteJ. Benzodiazepines: More “behavioural” addiction than dependence.Psychopharmacology 2003167329730310.1007/s00213‑002‑1376‑8
    [Google Scholar]
  74. GraciesJ.M. NanceP. ElovicE. McGuireJ. SimpsonD.M. Traditional pharmacological treatments for spasticity part II: General and regional treatments.Muscle Nerve199720S69212010.1002/(SICI)1097‑4598(1997)6+<92:AID‑MUS7>3.0.CO;2‑E
    [Google Scholar]
  75. JinnahH.A. FactorS.A. Diagnosis and treatment of dystonia.Neurol. Clin.20153317710010.1016/j.ncl.2014.09.002
    [Google Scholar]
  76. HolmK.J. GoaK.L. CluydtsR. Zolpidem: An update of its pharmacology, therapeutic efficacy and tolerability in the treatment of insomnia.Drugs2000594865889
    [Google Scholar]
  77. HuangM.C. LinH.Y. ChenC.H. Dependence on zolpidem.Psychiatry Clin. Neurosci.200761220720810.1111/j.1440‑1819.2007.01644.x
    [Google Scholar]
  78. RomitoJ.W. TurnerE.R. RosenerJ.A. ColdironL. UdipiA. NohrnL. TausianiJ. RomitoB.T. Baclofen therapeutics, toxicity, and withdrawal: A narrative review.SAGE Open Med.2021910.1177/20503121211022197
    [Google Scholar]
  79. CaulfieldMP. Birdsall, NJM International Union of Pharmacology. XVII. Classification of muscarinic acetylcholine receptors.Pharmacol. Rev.1998502279290
    [Google Scholar]
  80. KruseA.C. KobilkaB.K. GautamD. SextonP.M. ChristopoulosA. WessJ. Muscarinic acetylcholine receptors: Novel opportunities for drug development.Nat. Rev. Drug Discov. Nature Publishing Group201413549560
    [Google Scholar]
  81. MillerC.A. Anticholinergics: The good and the bad.Geriatr. Nurs.200223528628710.1067/mgn.2002.128791
    [Google Scholar]
  82. DownsA.M. FanX. DonsanteC. JinnahH.A. HessE.J. Trihexyphenidyl rescues the deficit in dopamine neurotransmission in a mouse model of DYT1 dystonia.Neurobiol. Dis.201912511512210.1016/j.nbd.2019.01.012
    [Google Scholar]
  83. GalarragaE. Herná Ndez-Ló PezS. ReyesA. MirandaI. Bermudez-RattoniF. VilchisC. Cholinergic modulation of neostriatal output: A functional antagonism between different types of muscarinic receptors.J. Neurosci.19991993629363810.1523/JNEUROSCI.19‑09‑03629.1999
    [Google Scholar]
  84. BergmanH. Soares-WeiserK. Anticholinergic medication for antipsychotic-induced tardive dyskinesia.Cochrane Database Syst. Rev.201811CD00020410.1002/14651858.CD000204.pub2
    [Google Scholar]
  85. ArtukogluB.B. LiF. SzejkoN. BlochM.H. Pharmacologic treatment of tardive dyskinesia: A meta-analysis and systematic review.J. Clin. Psychiatry.202081419r1279810.4088/JCP.19r12798
    [Google Scholar]
  86. StroupT.S. GrayN. Management of common adverse effects of antipsychotic medications.World Psychiatry201817334135610.1002/wps.20567
    [Google Scholar]
  87. López-ÁlvarezJ. Sevilla-Llewellyn-JonesJ. Agüera-OrtizL. Anticholinergic drugs in geriatric psychopharmacology.Front. Neurosci.2019131309
    [Google Scholar]
  88. ZhouY. DanboltN.C. Glutamate as a neurotransmitter in the healthy brain.J. Neural Transm.2014121879981710.1007/s00702‑014‑1180‑8
    [Google Scholar]
  89. SanacoraG. ZarateC.A. KrystalJ.H. ManjiH.K. Targeting the glutamatergic system to develop novel, improved therapeutics for mood disorders.Nat. Rev. Drug Discov.20087542643710.1038/nrd2462
    [Google Scholar]
  90. MeldrumBS. Glutamate and glutamine in the brain glutamate as a neurotransmitter in the brain: Review of physiology and pathology.J. Nutr.20001304S1007S1015S
    [Google Scholar]
  91. RascolO. FabbriM. PoeweW. Amantadine in the treatment of Parkinson’s disease and other movement disorders.The Lancet Neurology; Elsevier, 20212010481056
  92. Dragašević-MiškovićN. PetrovićI. StankovićI. KostićV.S. Chemical management of levodopa-induced dyskinesia in Parkinson’s disease patients. Expert Opinion on Pharmacotherapy; Taylor and Francis Ltd,201920219230
    [Google Scholar]
  93. CaroffS.N. JrMJ.F. Revisiting amantadine as a treatment for drug-induced movement disorders.Ann. Clin. Psychiatry2020323198208
    [Google Scholar]
  94. KuboS. IwatakeA. EbiharaN. MurakamiA. HattoriN. Visual impairment in Parkinson’s disease treated with amantadine: Case report and review of the literature.Parkinsonism Relat. Disord.200814216616910.1016/j.parkreldis.2007.03.003
    [Google Scholar]
  95. ChangC. RamphulK. In: StatPearls; StatPearls Publishing,2022Available from: https://www.ncbi.nlm.nih.gov/books/NBK499953/ (cited: 14th November 2022).
  96. SiniscalchiA. GallelliL. De SarroG. Use of antiepileptic drugs for hyperkinetic movement disorders.Curr. Neuropharmacol.20108435936610.2174/157015910793358187
    [Google Scholar]
  97. BialerM. WhiteH.S. Key factors in the discovery and development of new antiepileptic drugs.Nat. Rev. Drug Discov.201091688210.1038/nrd2997
    [Google Scholar]
  98. YuL. YanJ. WenF. WangF. LiuJ. CuiY. LiY. Revisiting the efficacy and tolerability of topiramate for tic disorders: A meta-analysis.J. Child Adolesc. Psychopharmacol.202030531632510.1089/cap.2019.0161
    [Google Scholar]
  99. WaliaK.S. KhanE.A. KoD.H. RazaS.S. KhanY.N. Side effects of antiepileptics: A review.Pain Pract.20044319420310.1111/j.1533‑2500.2004.04304.x
    [Google Scholar]
  100. MutananaN. TsvereM. ChiwesheM.K. General side effects and challenges associated with anti-epilepsy medication: A review of related literature.Afr. J. Prim. Health Care Fam. Med.2020121e1e510.4102/phcfm.v12i1.2162
    [Google Scholar]
  101. ArnonS.S. SchechterR. InglesbyT.V. HendersonD.A. BartlettJ.G. AscherM.S. Botulinum toxin as a biological weapon medical and public health management.JAMA2001285810591070
    [Google Scholar]
  102. DresslerD. Adib SaberiF. Botulinum toxin: Mechanisms of action.Eur. Neurol.20055313910.1159/000083259
    [Google Scholar]
  103. MarshW.A. MonroeD.M. BrinM.F. GallagherC.J. Systematic review and meta-analysis of the duration of clinical effect of onabotulinumtoxinA in cervical dystonia.BMC Neurol.20141419110.1186/1471‑2377‑14‑91
    [Google Scholar]
  104. AnandanC. JankovicJ. Botulinum toxin in movement disorders: An update.Toxins 20211314210.3390/toxins13010042
    [Google Scholar]
  105. KassirM. GuptaM. GaladariH. KroumpouzosG. KatsambasA. LottiT. Complications of botulinum toxin and fillers: A narrative review.J. Cosmet. Dermatol.202019357057310.1111/jocd.13266
    [Google Scholar]
  106. KroumpouzosG. KassirM. GuptaM. PatilA. GoldustM. Complications of Botulinum toxin A: An update review.J. Cosmet. Dermatol.202120158515920
    [Google Scholar]
  107. WitmanowskiH. BłochowiakK. The whole truth about botulinum toxin: A review. Postepy Dermatologii i Alergologii.Termedia Publishing House Ltd202137853861
    [Google Scholar]
  108. JinnahH.A. Medical and surgical treatments for dystonia.Neurol. Clin.202038232534810.1016/j.ncl.2020.01.003
    [Google Scholar]
  109. GeorgeE. ShneyderN. Reduction in post-botulinum toxin flu-like symptoms after injection with incobotulinum toxin.Neurology201420140882
    [Google Scholar]
  110. Baizabal-CarvalloJ.F. JankovicJ. PappertE. Flu-like symptoms following botulinum toxin therapy.Toxicon20115811710.1016/j.toxicon.2011.04.019
    [Google Scholar]
  111. AlbrechtP. JansenA. LeeJ.I. MollM. RingelsteinM. RosenthalD. BigalkeH. AktasO. HartungH-P. HefterH. High prevalence of neutralizing antibodies after long-term botulinum neurotoxin therapy.Neurology2019921e48e5410.1212/WNL.0000000000006688
    [Google Scholar]
  112. HoW.W.S. AlbrechtP. CalderonP.E. CorduffN. LohD. MartinM.U. ParkJ-Y. SusenoL.S. TsengF-W. VachiramonV. WanitphakdeedechaR. WonC-H. YuJ.N.T. DingleyM. Emerging trends in botulinum neurotoxin a resistance: An international multidisciplinary review and consensus.Plast. Reconstr. Surg. Glob. Open2022106e440710.1097/GOX.0000000000004407
    [Google Scholar]
  113. FarrS.T. Resistance to botulinum toxins in aesthetics. Botulinum Toxins and Botulism.Nova Science Publishers, Inc.2015115
    [Google Scholar]
  114. AshkanK. RogersP. BergmanH. UghratdarI. Insights into the mechanisms of deep brain stimulation.Nat. Rev. Neurol. Nature Publishing Group201713548554
    [Google Scholar]
  115. ChanD.T.M. ZhuX.L. YeungJ.H.M. MokV.C.T. WongE. LauC. Complications of deep brain stimulation: A collective review. Asian J. Surgery. Elsevier.Pte Ltd: Singapore200932258263
    [Google Scholar]
  116. PatelD.M. WalkerH.C. BrooksR. OmarN. DittyB. GuthrieB.L. Adverse events associated with deep brain stimulation for movement disorders: Analysis of 510 consecutive cases.Oper. Neurosurg. 201511119019910.1227/NEU.0000000000000659
    [Google Scholar]
  117. JungI.H. ChangK.W. ParkS.H. ChangW.S. JungH.H. ChangJ.W. Complications after deep brain stimulation: A 21-year experience in 426 patients.Front. Aging Neurosci.20221481973010.3389/fnagi.2022.819730
    [Google Scholar]
  118. ZarzyckiM.Z. DomitrzI. Stimulation-induced side effects after deep brain stimulation: A systematic review. Acta Neuropsychiatrica; Cambridge University Press,2020325764
    [Google Scholar]
  119. StrotzerQ.D. KohlZ. AnthoferJ.M. FaltermeierR. SchmidtN.O. TorkaE. GreenleeM.W. FellnerC. SchlaierJ.R. BeerA.L. Structural connectivity patterns of side effects induced by subthalamic deep brain stimulation for Parkinson’s disease.Brain Connect.202212437438410.1089/brain.2021.0051
    [Google Scholar]
  120. ReeseR. VolkmannJ. Deep brain stimulation for the dystonias: Evidence, knowledge gaps, and practical considerations. Movement Disorders Clinical Practice; Wiley-Blackwell,20174486494
    [Google Scholar]
  121. ZarzyckiM.Z. DomitrzI. Stimulation-induced side effects after deep brain stimulation: A systematic review. . Acta Neuropsychiatrica; Cambridge University Press, 2020325764
    [Google Scholar]
  122. AuK.L.K. WongJ.K. TsuboiT. EisingerR.S. MooreK. Lemos Melo Lobo Jofili LopesJ. HollandM.T. HolandaV.M. Peng-ChenZ. PattersonA. FooteK.D. Ramirez-ZamoraA. OkunM.S. AlmeidaL. Globus pallidus internus (GPi) deep brain stimulation for Parkinson’s disease: Expert review and commentary.Neurol. Ther.202110173010.1007/s40120‑020‑00220‑5
    [Google Scholar]
  123. BuhmannC. HuckhagelT. EngelK. GulbertiA. HiddingU. Poetter-NergerM. GoerendtI. LudewigP. BraassH. ChoeC. KrajewskiK. OehlweinC. MittmannK. EngelA.K. GerloffC. WestphalM. KöppenJ.A. MollC.K.E. HamelW. Adverse events in deep brain stimulation: A retrospective long-term analysis of neurological, psychiatric and other occurrences.PLoS One2017127e017898410.1371/journal.pone.0178984
    [Google Scholar]
  124. An Open-label Study to Define the Safety, Tolerability and Clinical Activity of Deutetrabenazine (AUstedo) in Adult Study Subjects With DYsTonia (AUDYT). 2019Available from: https://clinicaltrials.gov/ct2/show/NCT04173260 (Cited: 21st December 2022).
  125. BledsoeI.O. ViserA.C. San LucianoM. Treatment of dystonia: Medications, neurotoxins, neuromodulation, and rehabilitation.Neurotherapeutics20201741622164410.1007/s13311‑020‑00944‑0
    [Google Scholar]
  126. SolishN. CarruthersJ. KaufmanJ. RubioR.G. GrossT.M. GallagherC.J. Overview of daxibotulinumtoxina for injection: A novel formulation of botulinum toxin type A.Drugs202181182091210110.1007/s40265‑021‑01631‑w
    [Google Scholar]
  127. BerweckS. FeldkampA. FranckeA. NehlesJ. SchwerinA. HeinenF. Sonography-guided injection of botulinum toxin a in children with cerebral palsy.Neuropediatrics200233422122310.1055/s‑2002‑34500
    [Google Scholar]
  128. ChenHWW. Ultrasound-guided botulinum toxin injections and EMG biofeedback therapy the lower limb muscle spasm after cerebral infarction.Eur. Rev. Med. Pharmacol. Sci.201519916961699
    [Google Scholar]
  129. SungD.H. ChoiJ.Y. KimD.H. KimE.S. SonY.I. ChoY.S. LeeS.J. LeeK-H. KimB-T. Localization of dystonic muscles with 18F-FDG PET/CT in idiopathic cervical dystonia.J. Nucl. Med.200748111790179510.2967/jnumed.107.044024
    [Google Scholar]
  130. KraussJ.K. LipsmanN. AzizT. BoutetA. BrownP. ChangJ.W. Technology of deep brain stimulation: Current status and future directions.Nat. Rev. Neurol.2021177587
    [Google Scholar]
  131. HorisawaS. YamaguchiT. AbeK. HoriH. SumiM. KonishiY. TairaT. A single case of MRI-guided focused ultrasound ventro-oral thalamotomy for musician’s dystonia.J. Neurosurg.2019131238438610.3171/2018.5.JNS173125
    [Google Scholar]
  132. FasanoA. LlinasM. MunhozR.P. HlasnyE. Walter KucharczykM. Lozano, AM MRI-guided focused ultrasound thalamotomy in non-ET tremor syndromes.Neurology201789877177510.1212/WNL.0000000000004268
    [Google Scholar]
/content/journals/cn/10.2174/1570159X22666240517161444
Loading
/content/journals/cn/10.2174/1570159X22666240517161444
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test