Skip to content
2000
Volume 22, Issue 14
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

The human central nervous system (CNS) has a limited capacity for regeneration and repair, as many other organs do. Partly as a result, neurological diseases are the leading cause of medical burden globally. Most neurological disorders cannot be cured, and primary treatments focus on managing their symptoms and slowing down their progression. Cell therapy for neurological disorders offers several therapeutic potentials and provides hope for many patients. Here we provide a general overview of cell therapy in neurological disorders such as Parkinson’s disease (PD), Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), Wilson’s disease (WD), stroke and traumatic brain injury (TBI), involving many forms of stem cells, including embryonic stem cells and induced pluripotent stem cells. We also address the current concerns and perspectives for the future. Most studies for cell therapy in neurological diseases are in the pre-clinical stage, and there is still a great need for further research to translate neural replacement and regenerative therapies into clinical settings.

Loading

Article metrics loading...

/content/journals/cn/10.2174/1570159X22666240509092903
2024-12-01
2024-11-26
Loading full text...

Full text loading...

References

  1. FeiginV.L. VosT. NicholsE. OwolabiM.O. CarrollW.M. DichgansM. DeuschlG. ParmarP. BraininM. MurrayC. The global burden of neurological disorders: translating evidence into policy.Lancet Neurol.202019325526510.1016/S1474‑4422(19)30411‑9 31813850
    [Google Scholar]
  2. ZhuJ. LiuQ. JiangY. WuL. XuG. LiuX. Enhanced angiogenesis promoted by human umbilical mesenchymal stem cell transplantation in stroked mouse is Notch1 signaling associated.Neuroscience201529028829910.1016/j.neuroscience.2015.01.038 25637797
    [Google Scholar]
  3. LosurdoM. PedrazzoliM. D’AgostinoC. EliaC.A. MassenzioF. LonatiE. MauriM. RizziL. MolteniL. BrescianiE. DanderE. D’AmicoG. BulbarelliA. TorselloA. MatteoliM. BuffelliM. CocoS. Intranasal delivery of mesenchymal stem cell-derived extracellular vesicles exerts immunomodulatory and neuroprotective effects in a 3xTg model of Alzheimer’s disease.Stem Cells Transl. Med.2020991068108410.1002/sctm.19‑0327 32496649
    [Google Scholar]
  4. GiraldoE. Palmero-CantonD. Martinez-RojasB. Sanchez-MartinM.M. Moreno-ManzanoV. Optogenetic modulation of neural progenitor cells improves neuroregenerative potential.Int. J. Mol. Sci.202022136510.3390/ijms22010365 33396468
    [Google Scholar]
  5. GoldmanS.A. Disease targets and strategies for the therapeutic modulation of endogenous neural stem and progenitor cells.Clin. Pharmacol. Ther.200782445346010.1038/sj.clpt.6100337 17713467
    [Google Scholar]
  6. DongJ. CuiY. LiS. LeW. Current pharmaceutical treatments and alternative therapies of Parkinson’s disease.Curr. Neuropharmacol.201614433935510.2174/1570159X14666151120123025 26585523
    [Google Scholar]
  7. PerlowM.J. FreedW.J. HofferB.J. SeigerA. OlsonL. WyattR.J. Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system.Science1979204439364364710.1126/science.571147 571147
    [Google Scholar]
  8. LindvallO. GustaviiB. ÅstedtB. LindholmT. RehncronaS. BrundinP. WidnerH. BjörklundA. LeendersK.L. FrackowiakR. RothwellJ.C. MarsdenC.D. JohnelsB. StegG. FreedmanR. HopperB.J. SeigerÅ. StrömbergI. OlsonM.B.L. OlsonL. Fetal dopamine-rich mesencephalic grafts in Parkinson’s disease.Lancet19883328626-86271483148410.1016/S0140‑6736(88)90950‑6 2904587
    [Google Scholar]
  9. MadrazoI. LeónV. TorresC. AguileraM.C. VarelaG. AlvarezF. FragaA. Drucker-ColínR. OstroskyF. SkurovichM. Transplantation of fetal substantia nigra and adrenal medulla to the caudate nucleus in two patients with Parkinson’s disease.N. Engl. J. Med.198831815110.1056/NEJM198801073180115 3336384
    [Google Scholar]
  10. FreedC.R. GreeneP.E. BreezeR.E. TsaiW.Y. DuMouchelW. KaoR. DillonS. WinfieldH. CulverS. TrojanowskiJ.Q. EidelbergD. FahnS. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease.N. Engl. J. Med.20013441071071910.1056/NEJM200103083441002 11236774
    [Google Scholar]
  11. MooreS.F. GuzmanN.V. MasonS.L. Williams-GrayC.H. BarkerR.A. Which patients with Parkinson’s disease participate in clinical trials? One centre’s experiences with a new cell based therapy trial (TRANSEURO).J. Parkinsons Dis.20144467167610.3233/JPD‑140432 25170676
    [Google Scholar]
  12. KirkebyA. ParmarM. BarkerR.A. Strategies for bringing stem cell-derived dopamine neurons to the clinic. Prog. Brain Res.,201723016519010.1016/bs.pbr.2016.11.011 28552228
    [Google Scholar]
  13. BarkerR.A. Designing stem-cell-based dopamine cell replacement trials for Parkinson’s disease.Nat. Med.20192571045105310.1038/s41591‑019‑0507‑2 31263283
    [Google Scholar]
  14. XiaoJ.J. YinM. WangZ.J. WangX.P. Transplanted neural stem cells: Playing a neuroprotective role by ceruloplasmin in the substantia nigra of PD model rats?Oxid. Med. Cell. Longev.201520151910.1155/2015/618631 26146528
    [Google Scholar]
  15. ParmarM. Towards stem cell based therapies for Parkinson’s disease.Development20181451dev15611710.1242/dev.156117 29311261
    [Google Scholar]
  16. GaritaonandiaI. GonzalezR. Christiansen-WeberT. AbramihinaT. PoustovoitovM. NoskovA. ShermanG. SemechkinA. SnyderE. KernR. Neural stem cell tumorigenicity and biodistribution assessment for phase I clinical trial in Parkinson’s disease.Sci. Rep.2016613447810.1038/srep34478 27686862
    [Google Scholar]
  17. WangY.K. ZhuW.W. WuM.H. WuY.H. LiuZ.X. LiangL.M. ShengC. HaoJ. WangL. LiW. ZhouQ. HuB.Y. Human clinical-grade parthenogenetic ESC-derived dopaminergic neurons recover locomotive defects of nonhuman primate models of Parkinson’s disease.Stem Cell Reports201811117118210.1016/j.stemcr.2018.05.010 29910127
    [Google Scholar]
  18. PiaoJ. ZabierowskiS. DuboseB.N. HillE.J. NavareM. ClarosN. RosenS. RamnarineK. HornC. FredricksonC. WongK. SaffordB. KriksS. El MaaroufA. RutishauserU. HenchcliffeC. WangY. RiviereI. MannS. BermudezV. IrionS. StuderL. TomishimaM. TabarV. Preclinical efficacy and safety of a human embryonic stem cell-derived midbrain dopamine progenitor product, MSK-DA01.Cell Stem Cell2021282217229.e710.1016/j.stem.2021.01.004 33545080
    [Google Scholar]
  19. LiM. WangZ. ZhengT. HuangT. LiuB. HanD. LiuS. LiuB. LiM. SiW. ZhangY.A. NiuY. ChenZ. Characterization of human-induced neural stem cells and derivatives following transplantation into the central nervous system of a nonhuman primate and rats.Stem Cells Int.2022202211710.1155/2022/1396735 36618021
    [Google Scholar]
  20. LoringJ.F. Autologous induced pluripotent stem cell-derived neurons to treat Parkinson’s disease.Stem Cells Dev.2018271495895910.1089/scd.2018.0107 29790422
    [Google Scholar]
  21. Rivetti di Val CervoP. BesussoD. ConfortiP. CattaneoE. hiPSCs for predictive modelling of neurodegenerative diseases: dreaming the possible.Nat. Rev. Neurol.202117638139210.1038/s41582‑021‑00465‑0 33658662
    [Google Scholar]
  22. SchweitzerJ.S. SongB. HerringtonT.M. ParkT.Y. LeeN. KoS. JeonJ. ChaY. KimK. LiQ. HenchcliffeC. KaplittM. NeffC. RapalinoO. SeoH. LeeI.H. KimJ. KimT. PetskoG.A. RitzJ. CohenB.M. KongS.W. LeblancP. CarterB.S. KimK.S. Personalized iPSC-derived dopamine progenitor cells for Parkinson’s disease.N. Engl. J. Med.2020382201926193210.1056/NEJMoa1915872 32402162
    [Google Scholar]
  23. TakahashiJ. iPS cell-based therapy for Parkinson’s disease: A Kyoto trial.Regen. Ther.202013182210.1016/j.reth.2020.06.002 33490319
    [Google Scholar]
  24. GhoshS. DurgvanshiS. AgarwalS. RaghunathM. SinhaJ.K. Current status of drug targets and emerging therapeutic strategies in the management of Alzheimer’s disease.Curr. Neuropharmacol.202018988390310.2174/1570159X18666200429011823 32348223
    [Google Scholar]
  25. Garcia-ContrerasM. ThakorA.S. Human adipose tissue-derived mesenchymal stem cells and their extracellular vesicles modulate lipopolysaccharide activated human microglia.Cell Death Discov.2021719810.1038/s41420‑021‑00471‑7 33972507
    [Google Scholar]
  26. MoghadamF.H. AlaieH. KarbalaieK. TanhaeiS. Nasr EsfahaniM.H. BaharvandH. Transplantation of primed or unprimed mouse embryonic stem cell-derived neural precursor cells improves cognitive function in Alzheimerian rats.Differentiation2009782-3596810.1016/j.diff.2009.06.005 19616885
    [Google Scholar]
  27. HoveiziE. MohammadiT. MoazediA.A. ZamaniN. EskandaryA. Transplanted neural-like cells improve memory and Alzheimer-like pathology in a rat model.Cytotherapy201820796497310.1016/j.jcyt.2018.03.036 30025963
    [Google Scholar]
  28. WrayS. FoxN.C. Stem cell therapy for Alzheimer’s disease: hope or hype?Lancet Neurol.201615213313510.1016/S1474‑4422(15)00382‑8 26704440
    [Google Scholar]
  29. ZhangT. KeW. ZhouX. QianY. FengS. WangR. CuiG. TaoR. GuoW. DuanY. ZhangX. CaoX. ShuY. YueC. JingN. Human neural stem cells reinforce hippocampal synaptic network and rescue cognitive deficits in a mouse model of Alzheimer’s disease.Stem Cell Reports20191361022103710.1016/j.stemcr.2019.10.012 31761676
    [Google Scholar]
  30. Comella-BollaA. OrlandiJ.G. MiguezA. StracciaM. García-BravoM. BombauG. GalofréM. SandersP. CarrereJ. SegoviaJ.C. BlasiJ. AllenN.D. AlberchJ. SorianoJ. CanalsJ.M. Human pluripotent stem cell-derived neurons are functionally mature in vitro and integrate into the mouse striatum following transplantation.Mol. Neurobiol.20205762766279810.1007/s12035‑020‑01907‑4 32356172
    [Google Scholar]
  31. HayashiY. LinH.T. LeeC.C. TsaiK.J. Effects of neural stem cell transplantation in Alzheimer’s disease models.J. Biomed. Sci.20202712910.1186/s12929‑020‑0622‑x 31987051
    [Google Scholar]
  32. MarshS.E. Blurton-JonesM. Neural stem cell therapy for neurodegenerative disorders: The role of neurotrophic support.Neurochem. Int.20171069410010.1016/j.neuint.2017.02.006 28219641
    [Google Scholar]
  33. ChenY. PanC. XuanA. XuL. BaoG. LiuF. FangJ. LongD. Treatment efficacy of NGF nanoparticles combining neural stem cell transplantation on Alzheimer’s disease model rats.Med. Sci. Monit.2015213608361510.12659/MSM.894567 26590375
    [Google Scholar]
  34. ZhangF. ChenS.Q. TongM.M. WangP.J. TengG.J. 7.0 tesla high resolution MRI study on intracerebral migration of magnet-labeled neural stem cells in a mouse model of Alzheimer’s disease.Magn. Reson. Imaging201854586210.1016/j.mri.2018.08.005 30118826
    [Google Scholar]
  35. ApodacaL.A. BaddourA.A.D. GarciaC.Jr AlikhaniL. GiedzinskiE. RuN. AgrawalA. AcharyaM.M. BaulchJ.E. Human neural stem cell-derived extracellular vesicles mitigate hallmarks of Alzheimer’s disease.Alzheimers Res. Ther.20211315710.1186/s13195‑021‑00791‑x 33676561
    [Google Scholar]
  36. CuiY. MaS. ZhangC. CaoW. LiuM. LiD. LvP. XingQ. QuR. YaoN. YangB. GuanF. Human umbilical cord mesenchymal stem cells transplantation improves cognitive function in Alzheimer’s disease mice by decreasing oxidative stress and promoting hippocampal neurogenesis.Behav. Brain Res.201732029130110.1016/j.bbr.2016.12.021 28007537
    [Google Scholar]
  37. LeeJ. ChangW.S. ShinJ. SeoY. KongC. SongB.W. NaY.C. KimB.S. ChangJ.W. Non-invasively enhanced intracranial transplantation of mesenchymal stem cells using focused ultrasound mediated by overexpression of cell-adhesion molecules.Stem Cell Res. (Amst.)20204310172610.1016/j.scr.2020.101726 32028085
    [Google Scholar]
  38. HourF.Q. MoghadamA.J. Shakeri-ZadehA. BakhtiyariM. ShabaniR. MehdizadehM. Magnetic targeted delivery of the SPIONs-labeled mesenchymal stem cells derived from human Wharton’s jelly in Alzheimer’s rat models.J. Control. Release202032143044110.1016/j.jconrel.2020.02.035 32097673
    [Google Scholar]
  39. JungM. KimH. HwangJ.W. ChoiY. KangM. KimC. HongJ. LeeN.K. MoonS. ChangJ.W. ChoiS. OhS. JangH. NaD.L. KimB.S. Iron oxide nanoparticle-incorporated mesenchymal stem cells for Alzheimer’s disease treatment.Nano Lett.202323247649010.1021/acs.nanolett.2c03682 36638236
    [Google Scholar]
  40. KimH.J. ChoK.R. JangH. LeeN.K. JungY.H. KimJ.P. LeeJ.I. ChangJ.W. ParkS. KimS.T. MoonS.W. SeoS.W. ChoiS.J. NaD.L. Intracerebroventricular injection of human umbilical cord blood mesenchymal stem cells in patients with Alzheimer’s disease dementia: A phase I clinical trial.Alzheimers Res. Ther.202113115410.1186/s13195‑021‑00897‑2 34521461
    [Google Scholar]
  41. OskarssonB. GendronT.F. StaffN.P. Amyotrophic lateral sclerosis: An update for 2018.Mayo Clin. Proc.201893111617162810.1016/j.mayocp.2018.04.007 30401437
    [Google Scholar]
  42. MazziniL. FerrariD. AndjusP.R. BuzanskaL. CantelloR. De MarchiF. GelatiM. GiniatullinR. GloverJ.C. GrilliM. KozlovaE.N. MaioliM. MitrečićD. PivoriunasA. Sanchez-PernauteR. SarnowskaA. VescoviA.L. NeurologyB.C.A.W. Advances in stem cell therapy for amyotrophic lateral sclerosis.Expert Opin. Biol. Ther.201818886588110.1080/14712598.2018.1503248 30025485
    [Google Scholar]
  43. BerryJ.D. CudkowiczM.E. WindebankA.J. StaffN.P. OwegiM. NicholsonK. McKenna-YasekD. LevyY.S. AbramovN. KaspiH. MehraM. ArichaR. GothelfY. BrownR.H. NurOwn, phase 2, randomized, clinical trial in patients with ALS.Neurology20199324e2294e230510.1212/WNL.0000000000008620 31740545
    [Google Scholar]
  44. ForostyakS. ForostyakO. KwokJ.C.F. RomanyukN. RehorovaM. KriskaJ. DayanithiG. Raha-ChowdhuryR. JendelovaP. AnderovaM. FawcettJ.W. SykovaE. Transplantation of neural precursors derived from induced pluripotent cells preserve perineuronal nets and stimulate neural plasticity in ALS rats.Int. J. Mol. Sci.20202124959310.3390/ijms21249593 33339362
    [Google Scholar]
  45. SareenD. GowingG. SahabianA. StaggenborgK. ParadisR. AvalosP. LatterJ. OrnelasL. GarciaL. SvendsenC.N. Human induced pluripotent stem cells are a novel source of neural progenitor cells (iNPCs) that migrate and integrate in the rodent spinal cord.J. Comp. Neurol.2014522122707272810.1002/cne.23578 24610630
    [Google Scholar]
  46. MalikN. RaoM.S. A review of the methods for human iPSC derivation.Methods Mol. Biol.2013997233310.1007/978‑1‑62703‑348‑0_3 23546745
    [Google Scholar]
  47. HamadaA. AkagiE. YamasakiS. NakataoH. ObayashiF. OhtakaM. NishimuraK. NakanishiM. TorataniS. OkamotoT. Induction of integration-free human-induced pluripotent stem cells under serum- and feeder-free conditions.In Vitro Cell. Dev. Biol. Anim.2020561859510.1007/s11626‑019‑00412‑w 31768763
    [Google Scholar]
  48. LunettaC. LizioA. CabonaC. GerardiF. SansoneV.A. CorboM. ScialòC. AngelucciE. GualandiF. MarencoP. GrilloG. CairoliR. CesanaC. SaccardiR. MelazziniM.G. MancardiG. CaponnettoC. A phase I/IIa clinical trial of autologous hematopoietic stem cell transplantation in amyotrophic lateral sclerosis.J. Neurol.2022269105337534610.1007/s00415‑022‑11185‑w 35596795
    [Google Scholar]
  49. SuzukiM. McHughJ. TorkC. ShelleyB. KleinS.M. AebischerP. SvendsenC.N. GDNF secreting human neural progenitor cells protect dying motor neurons, but not their projection to muscle, in a rat model of familial ALS.PLoS One200728e68910.1371/journal.pone.0000689 17668067
    [Google Scholar]
  50. ZalfaC. Rota NodariL. VacchiE. GelatiM. ProficoD. BoidoM. BindaE. De FilippisL. CopettiM. GarlattiV. DanieleP. RosatiJ. De LucaA. PinosF. CajolaL. VisioliA. MazziniL. VercelliA. SveltoM. VescoviA.L. FerrariD. Transplantation of clinical-grade human neural stem cells reduces neuroinflammation, prolongs survival and delays disease progression in the SOD1 rats.Cell Death Dis.201910534510.1038/s41419‑019‑1582‑5 31024007
    [Google Scholar]
  51. NicholsN.L. GowingG. SatriotomoI. NasholdL.J. DaleE.A. SuzukiM. AvalosP. MulcroneP.L. McHughJ. SvendsenC.N. MitchellG.S. Intermittent hypoxia and stem cell implants preserve breathing capacity in a rodent model of amyotrophic lateral sclerosis.Am. J. Respir. Crit. Care Med.2013187553554210.1164/rccm.201206‑1072OC 23220913
    [Google Scholar]
  52. ThomsenG.M. AvalosP. MaA.A. AlkaslasiM. ChoN. WyssL. VitJ.P. GodoyM. SuezakiP. ShelestO. BankiewiczK.S. SvendsenC.N. Transplantation of neural progenitor cells expressing glial cell line-derived neurotrophic factor into the motor cortex as a strategy to treat amyotrophic lateral sclerosis.Stem Cells20183671122113110.1002/stem.2825 29656478
    [Google Scholar]
  53. KhalidM.U. MasroorT. The promise of stem cells in amyotrophic lateral sclerosis: A review of clinical trials.J. Pak. Med. Assoc.2023732s138s14210.47391/JPMA.AKUS‑22 36788405
    [Google Scholar]
  54. GotkineM. CaracoY. LernerY. BlotnickS. WanounouM. SlutskyS.G. ChebathJ. KupersteinG. EstrinE. Ben-HurT. HassonA. MolakandovK. SonnenfeldT. StarkY. RevelA. RevelM. IzraelM. Safety and efficacy of first-in-man intrathecal injection of human astrocytes (AstroRx®) in ALS patients: phase I/IIa clinical trial results.J. Transl. Med.202321112210.1186/s12967‑023‑03903‑3 36788520
    [Google Scholar]
  55. JaberF.L. SharmaY. GuptaS. Demonstrating potential of cell therapy for Wilson’s disease with the long-evans cinnamon rat model.Methods Mol. Biol.2017150616117810.1007/978‑1‑4939‑6506‑9_11 27830552
    [Google Scholar]
  56. ItohT. MiyajimaA. Liver regeneration by stem/progenitor cells.Hepatology20145941617162610.1002/hep.26753 24115180
    [Google Scholar]
  57. CaoY. JiC. LuL. Mesenchymal stem cell therapy for liver fibrosis/cirrhosis.Ann. Transl. Med.20208856210.21037/atm.2020.02.119 32775363
    [Google Scholar]
  58. TsuchiyaA. TakeuchiS. WatanabeT. YoshidaT. NojiriS. OgawaM. TeraiS. Mesenchymal stem cell therapies for liver cirrhosis: MSCs as “conducting cells” for improvement of liver fibrosis and regeneration.Inflamm. Regen.20193911810.1186/s41232‑019‑0107‑z 31516638
    [Google Scholar]
  59. SauerV. SiajR. TodorovT. ZibertA. SchmidtH.H.J. Overexpressed ATP7B protects mesenchymal stem cells from toxic copper.Biochem. Biophys. Res. Commun.2010395330731110.1016/j.bbrc.2010.03.158 20362556
    [Google Scholar]
  60. ZhangD. A clinical study of bone mesenchymal stem cells for the treatment of hepatic fibrosis induced by hepatolenticular degeneration.Genet. Mol. Res.201716110.4238/gmr16019352 28301671
    [Google Scholar]
  61. FujiyoshiJ. YamazaH. SonodaS. YuniarthaR. IharaK. NonakaK. TaguchiT. OhgaS. YamazaT. Therapeutic potential of hepatocyte-like-cells converted from stem cells from human exfoliated deciduous teeth in fulminant Wilson’s disease.Sci. Rep.201991153510.1038/s41598‑018‑38275‑y 30733544
    [Google Scholar]
  62. WangS.H. WangX.P. Generation of an induced pluripotent stem cell (iPSC) line (THSJTUi001-A) from a Wilson’s disease patient harboring a homozygous Arg778Leu mutation in ATP7B gene.Stem Cell Res. (Amst.)20204910205010.1016/j.scr.2020.102050 33096383
    [Google Scholar]
  63. Roy-ChowdhuryJ. SchilskyM.L. Gene therapy of Wilson disease: A “golden” opportunity using rAAV on the 50th anniversary of the discovery of the virus.J. Hepatol.201664226526710.1016/j.jhep.2015.11.017 26639392
    [Google Scholar]
  64. GreigJ.A. NordinJ.M.L. SmithM.K. AshleyS.N. DraperC. ZhuY. BellP. BuzaE.L. WilsonJ.M. a gene therapy approach to improve copper metabolism and prevent liver damage in a mouse model of Wilson disease.Hum. Gene Ther. Clin. Dev.2019301293910.1089/humc.2018.219 30693797
    [Google Scholar]
  65. PöhlerM. GuttmannS. NadzemovaO. LendersM. BrandE. ZibertA. SchmidtH.H. SandfortV. CRISPR/Cas9-mediated correction of mutated copper transporter ATP7B.PLoS One2020159e023941110.1371/journal.pone.0239411 32997714
    [Google Scholar]
  66. CaiH. ChengX. WangX.P. ATP7B gene therapy of autologous reprogrammed hepatocytes alleviates copper accumulation in a mouse model of Wilson’s disease.Hepatology20227641046105710.1002/hep.32484 35340061
    [Google Scholar]
  67. Zolfaghari BaghbadoraniP. Rayati DamavandiA. MoradiS. AhmadiM. BemaniP. AriaH. MottedayyenH. Rayati DamavandiA. EskandariN. FathiF. Current advances in stem cell therapy in the treatment of multiple sclerosis.Rev. Neurosci.202334661363310.1515/revneuro‑2022‑0102 36496351
    [Google Scholar]
  68. SarkarP. RiceC.M. ScoldingN.J. Cell therapy for multiple sclerosis.CNS Drugs201731645346910.1007/s40263‑017‑0429‑9 28397112
    [Google Scholar]
  69. PluchinoS. ZanottiL. RossiB. BrambillaE. OttoboniL. SalaniG. MartinelloM. CattaliniA. BergamiA. FurlanR. ComiG. ConstantinG. MartinoG. Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism.Nature2005436704826627110.1038/nature03889 16015332
    [Google Scholar]
  70. GenchiA. BrambillaE. SangalliF. RadaelliM. BacigaluppiM. FurlanR. AndolfoA. DragoD. MagagnottiC. ScottiG.M. GrecoR. VezzulliP. OttoboniL. BonopaneM. CapilupoD. RuffiniF. BelottiD. CabiatiB. CesanaS. MateraG. LeocaniL. MartinelliV. MoiolaL. VagoL. Panina-BordignonP. FaliniA. CiceriF. UgliettiA. SormaniM.P. ComiG. BattagliaM.A. RoccaM.A. StorelliL. PaganiE. GaipaG. MartinoG. Neural stem cell transplantation in patients with progressive multiple sclerosis: An open-label, phase 1 study.Nat. Med.2023291758510.1038/s41591‑022‑02097‑3 36624312
    [Google Scholar]
  71. ShroffG. Transplantation of human embryonic stem cells in patients with multiple sclerosis and lyme disease.Am. J. Case Rep.20161794494910.12659/AJCR.899745 27956736
    [Google Scholar]
  72. GencB. BozanH.R. GencS. GencK. Stem cell therapy for multiple sclerosis.Adv. Exp. Med. Biol.2018108414517410.1007/5584_2018_247 30039439
    [Google Scholar]
  73. BurtR.K. BalabanovR. BurmanJ. SharrackB. SnowdenJ.A. OliveiraM.C. FagiusJ. RoseJ. NelsonF. BarreiraA.A. CarlsonK. HanX. MoraesD. MorganA. QuigleyK. YaungK. BuckleyR. AlldredgeC. ClendenanA. CalvarioM.A. HenryJ. JovanovicB. HelenowskiI.B. Effect of nonmyeloablative hematopoietic stem cell transplantation vs. continued disease-modifying therapy on disease progression in patients with relapsing-remitting multiple sclerosis.JAMA2019321216517410.1001/jama.2018.18743 30644983
    [Google Scholar]
  74. PetrouP. KassisI. LevinN. PaulF. BacknerY. BenolielT. OertelF.C. ScheelM. HallimiM. YaghmourN. HurT.B. GinzbergA. LevyY. AbramskyO. KarussisD. Beneficial effects of autologous mesenchymal stem cell transplantation in active progressive multiple sclerosis.Brain2020143123574358810.1093/brain/awaa333 33253391
    [Google Scholar]
  75. DhirN. MedhiB. PrakashA. GoyalM.K. ModiM. MohindraS. Pre-clinical to clinical translational failures and current status of clinical trials in stroke therapy: A brief review.Curr. Neuropharmacol.202018759661210.2174/1570159X18666200114160844 31934841
    [Google Scholar]
  76. GrabowskiM. ChristoffersonR.H. BrundinP. JohanssonB.B. Vascularization of fetal neocortical grafts implanted in brain infarcts in spontaneously hypertensive rats.Neuroscience199251367368210.1016/0306‑4522(92)90306‑M 1488117
    [Google Scholar]
  77. GrabowskiM. BrundinP. JohanssonB.B. Fetal neocortical grafts implanted in adult hypertensive rats with cortical infarcts following a middle cerebral artery occlusion: Ingrowth of afferent fibers from the host brain.Exp. Neurol.1992116210512110.1016/0014‑4886(92)90159‑N 1577119
    [Google Scholar]
  78. AiharaN. MizukawaK. KoideK. MabeH. NishinoH. Striatal grafts in infarct striatopallidum increase GABA release, reorganize GABAA receptor and improve water-maze learning in the rat.Brain Res. Bull.199433548348810.1016/0361‑9230(94)90072‑8 8186993
    [Google Scholar]
  79. KondziolkaD. SteinbergG.K. WechslerL. MeltzerC.C. ElderE. GebelJ. DeCesareS. JovinT. ZafonteR. LebowitzJ. FlickingerJ.C. TongD. MarksM.P. JamiesonC. LuuD. Bell-StephensT. TeraokaJ. Neurotransplantation for patients with subcortical motor stroke: a Phase 2 randomized trial.J. Neurosurg.20051031384510.3171/jns.2005.103.1.0038 16121971
    [Google Scholar]
  80. SavitzS.I. DinsmoreJ. WuJ. HendersonG.V. StiegP. CaplanL.R. Neurotransplantation of fetal porcine cells in patients with basal ganglia infarcts: a preliminary safety and feasibility study.Cerebrovasc. Dis.200520210110710.1159/000086518 15976503
    [Google Scholar]
  81. WillisC.M. NicaiseA.M. Peruzzotti-JamettiL. PluchinoS. The neural stem cell secretome and its role in brain repair.Brain Res.2020172914661510.1016/j.brainres.2019.146615 31863730
    [Google Scholar]
  82. HessD.C. WechslerL.R. ClarkW.M. SavitzS.I. FordG.A. ChiuD. YavagalD.R. UchinoK. LiebeskindD.S. AuchusA.P. SenS. SilaC.A. VestJ.D. MaysR.W. Safety and efficacy of multipotent adult progenitor cells in acute ischaemic stroke (MASTERS): a randomised, double-blind, placebo-controlled, phase 2 trial.Lancet Neurol.201716536036810.1016/S1474‑4422(17)30046‑7 28320635
    [Google Scholar]
  83. SavitzS.I. ChoppM. DeansR. CarmichaelS.T. PhinneyD. WechslerL. Stem cell therapy as an emerging paradigm for stroke (STEPS) II.Stroke201142382582910.1161/STROKEAHA.110.601914 21273569
    [Google Scholar]
  84. SavitzS.I. CramerS.C. WechslerL. AronowskiJ. BoltzeJ. BorlonganC. CaseC. ChaseT. ChoppM. CarmichaelS.T. CramerS.C. DuncanP. FinklesteinS. FischkoffS. GuzmanR. HessD.C. HuangD. HinsonJ. KautzS. KondziolkaD. MaysR. MisraV. MitsiasP. ModoM. MuirK. SavitzS.I. SindenJ. SnyderE. SteinbergG. VahidyF. WechslerL. WillingA. WolfS. YankeeE. YavagalD.R. Stem cells as an emerging paradigm in stroke 3: Enhancing the development of clinical trials.Stroke201445263463910.1161/STROKEAHA.113.003379 24368562
    [Google Scholar]
  85. MuirK.W. BultersD. WillmotM. SpriggN. DixitA. WardN. TyrrellP. MajidA. DunnL. BathP. HowellJ. StroemerP. PollockK. SindenJ. Intracerebral implantation of human neural stem cells and motor recovery after stroke: Multicentre prospective single-arm study (PISCES-2).J. Neurol. Neurosurg. Psychiatry202091439640110.1136/jnnp‑2019‑322515 32041820
    [Google Scholar]
  86. SteinbergG.K. KondziolkaD. WechslerL.R. LunsfordL.D. KimA.S. JohnsonJ.N. BatesD. PoggioG. CaseC. McGroganM. YankeeE.W. SchwartzN.E. Two-year safety and clinical outcomes in chronic ischemic stroke patients after implantation of modified bone marrow-derived mesenchymal stem cells (SB623): A phase 1/2a study.J. Neurosurg.2018111 30497166
    [Google Scholar]
  87. ShichinoheH. KawaboriM. IijimaH. TeramotoT. AbumiyaT. NakayamaN. KazumataK. TerasakaS. AratoT. HoukinK. Research on advanced intervention using novel bone marrOW stem cell (RAINBOW): a study protocol for a phase I, open-label, uncontrolled, dose-response trial of autologous bone marrow stromal cell transplantation in patients with acute ischemic stroke.BMC Neurol.201717117910.1186/s12883‑017‑0955‑6 28886699
    [Google Scholar]
  88. WeiL. FraserJ.L. LuZ.Y. HuX. YuS.P. Transplantation of hypoxia preconditioned bone marrow mesenchymal stem cells enhances angiogenesis and neurogenesis after cerebral ischemia in rats.Neurobiol. Dis.201246363564510.1016/j.nbd.2012.03.002 22426403
    [Google Scholar]
  89. SakataH. NiizumaK. WakaiT. NarasimhanP. MaierC.M. ChanP.H. Neural stem cells genetically modified to overexpress cu/zn-superoxide dismutase enhance amelioration of ischemic stroke in mice.Stroke20124392423242910.1161/STROKEAHA.112.656900 22713489
    [Google Scholar]
  90. DoeppnerT.R. EwertT.A.S. TöngesL. HerzJ. ZechariahA. ElAliA. LudwigA.K. GiebelB. NagelF. DietzG.P.H. WeiseJ. HermannD.M. BährM. Transduction of neural precursor cells with TAT-heat shock protein 70 chaperone: therapeutic potential against ischemic stroke after intrastriatal and systemic transplantation.Stem Cells20123061297131010.1002/stem.1098 22593021
    [Google Scholar]
  91. MonicheF. Cabezas-RodriguezJ.A. ValverdeR. Escudero-MartinezI. Lebrato-HernandezL. Pardo-GalianaB. AinzL. Medina-RodriguezM. de la TorreJ. Escamilla-GomezV. Ortega-QuintanillaJ. Zapata-ArriazaE. de Albóniga-ChindurzaA. ManchaF. GameroM.A. PerezS. Espinosa-RossoR. Forero-DiazL. MoyaM. PiñeroP. Calderón-CabreraC. NoguerasS. JimenezR. MartinV. DelgadoF. Ochoa-SepúlvedaJ.J. QuijanoB. MataR. Santos-GonzálezM. Carmona-SanchezG. HerreraC. GonzalezA. MontanerJ. Safety and efficacy of intra-arterial bone marrow mononuclear cell transplantation in patients with acute ischaemic stroke in Spain (IBIS trial): a phase 2, randomised, open-label, standard-of-care controlled, multicentre trial.Lancet Neurol.202322213714610.1016/S1474‑4422(22)00526‑9 36681446
    [Google Scholar]
  92. IaccarinoC. CarrettaA. NicolosiF. MorselliC. Epidemiology of severe traumatic brain injury.J. Neurosurg. Sci.201862553554110.23736/S0390‑5616.18.04532‑0 30182649
    [Google Scholar]
  93. GalganoM. ToshkeziG. QiuX. RussellT. ChinL. ZhaoL.R. Traumatic brain injury.Cell Transplant.20172671118113010.1177/0963689717714102 28933211
    [Google Scholar]
  94. GardnerR.C. YaffeK. Epidemiology of mild traumatic brain injury and neurodegenerative disease. Mol. Cell Neurosci.,201566Pt B758010.1016/j.mcn.2015.03.00125748121
    [Google Scholar]
  95. GlushakovaO.Y. JohnsonD. HayesR.L. Delayed increases in microvascular pathology after experimental traumatic brain injury are associated with prolonged inflammation, blood-brain barrier disruption, and progressive white matter damage.J. Neurotrauma201431131180119310.1089/neu.2013.3080 24564198
    [Google Scholar]
  96. BoltzeJ. ReichD.M. HauS. ReymannK.G. StrassburgerM. LobsienD. WagnerD.C. KampradM. StahlT. Assessment of neuroprotective effects of human umbilical cord blood mononuclear cell subpopulations in vitro and in vivo.Cell Transplant.201221472373710.3727/096368911X586783 21929866
    [Google Scholar]
  97. WestonN.M. SunD. The Potential of stem cells in treatment of traumatic brain injury.Curr. Neurol. Neurosci. Rep.2018181110.1007/s11910‑018‑0812‑z 29372464
    [Google Scholar]
  98. Dela PeñaI. SanbergP.R. AcostaS. TajiriN. LinS.Z. BorlonganC.V. Stem cells and G-CSF for treating neuroinflammation in traumatic brain injury: aging as a comorbidity factor.J. Neurosurg. Sci.2014583145149 24844175
    [Google Scholar]
  99. NguyenH. AumD. MashkouriS. RaoG. Vega Gonzales-PortilloJ.D. ReyesS. BorlonganC.V. Growth factor therapy sequesters inflammation in affording neuroprotection in cerebrovascular diseases.Expert Rev. Neurother.201616891592610.1080/14737175.2016.1184086 27152762
    [Google Scholar]
  100. KimH.J. LeeJ.H. KimS.H. Therapeutic effects of human mesenchymal stem cells on traumatic brain injury in rats: secretion of neurotrophic factors and inhibition of apoptosis.J. Neurotrauma201027113113810.1089/neu.2008.0818 19508155
    [Google Scholar]
  101. LanfranconiS. LocatelliF. CortiS. CandeliseL. ComiG.P. BaronP.L. StrazzerS. BresolinN. BersanoA. Growth factors in ischemic stroke.J. Cell. Mol. Med.20091581645168710.1111/j.1582‑4934.2009.00987.x 20015202
    [Google Scholar]
  102. KawaboriM. WeintraubA.H. ImaiH. ZinkevychI. McAllisterP. SteinbergG.K. FrishbergB.M. YasuharaT. ChenJ.W. CramerS.C. AchrolA.S. SchwartzN.E. SuenagaJ. LuD.C. SemenivI. NakamuraH. KondziolkaD. ChidaD. KanekoT. KarasawaY. PaadreS. NejadnikB. BatesD. StonehouseA.H. RichardsonR.M. OkonkwoD.O. Cell Therapy for Chronic TBI.Neurology2021968e1202e121410.1212/WNL.0000000000011450 33397772
    [Google Scholar]
  103. MersonT.D. BourneJ.A. Endogenous neurogenesis following ischaemic brain injury: Insights for therapeutic strategies.Int. J. Biochem. Cell Biol.20145641910.1016/j.biocel.2014.08.003 25128862
    [Google Scholar]
  104. LiskaM.G. CrowleyM.G. NguyenH. BorlonganC.V. Biobridge concept in stem cell therapy for ischemic stroke.J. Neurosurg. Sci.2017612173179 27406955
    [Google Scholar]
  105. BadnerA. CummingsB. The endogenous progenitor response following traumatic brain injury: a target for cell therapy paradigms.Neural Regen. Res.202217112351235410.4103/1673‑5374.335833 35535870
    [Google Scholar]
  106. TajiriN. KanekoY. ShinozukaK. IshikawaH. YankeeE. McGroganM. CaseC. BorlonganC.V. Stem cell recruitment of newly formed host cells via a successful seduction? Filling the gap between neurogenic niche and injured brain site.PLoS One201389e7485710.1371/journal.pone.0074857 24023965
    [Google Scholar]
  107. LuarteA. BátizL.F. WynekenU. LafourcadeC. Potential therapies by stem cell-derived exosomes in CNS diseases: Focusing on the neurogenic niche.Stem Cells Int.2016201611610.1155/2016/5736059 27195011
    [Google Scholar]
  108. ZhangY. ChoppM. ZhangZ.G. KatakowskiM. XinH. QuC. AliM. MahmoodA. XiongY. Systemic administration of cell-free exosomes generated by human bone marrow derived mesenchymal stem cells cultured under 2D and 3D conditions improves functional recovery in rats after traumatic brain injury.Neurochem. Int.2017111698110.1016/j.neuint.2016.08.003 27539657
    [Google Scholar]
  109. ChangC.P. ChioC.C. CheongC.U. ChaoC.M. ChengB.C. LinM.T. Hypoxic preconditioning enhances the therapeutic potential of the secretome from cultured human mesenchymal stem cells in experimental traumatic brain injury. Clin. Sci. (Lond.)2013124316517610.1042/CS20120226 22876972
    [Google Scholar]
  110. LiuX.Y. WeiM.G. LiangJ. XuH.H. WangJ.J. WangJ. YangX.P. LvF.F. WangK.Q. DuanJ.H. TuY. ZhangS. ChenC. LiX.H. Injury‐preconditioning secretome of umbilical cord mesenchymal stem cells amplified the neurogenesis and cognitive recovery after severe traumatic brain injury in rats.J. Neurochem.2020153223025110.1111/jnc.14859 31465551
    [Google Scholar]
  111. BadnerA. ReinhardtE.K. NguyenT.V. MidaniN. MarshallA.T. LepeC.A. EcheverriaK. LepeJ.J. TorrecampoV. BertanS.H. TranS.H. AndersonA.J. CummingsB.J. Freshly thawed cryobanked human neural stem cells engraft within endogenous neurogenic niches and restore cognitive function after chronic traumatic brain injury.J. Neurotrauma202138192731274610.1089/neu.2021.0045 34130484
    [Google Scholar]
  112. KawaboriM. ChidaD. NejadnikB. StonehouseA.H. OkonkwoD.O. Cell therapies for acute and chronic traumatic brain injury.Curr. Med. Res. Opin.202238122183218910.1080/03007995.2022.2141482 36314422
    [Google Scholar]
  113. SharmaA.K. SaneH.M. KulkarniP.P. GokulchandranN. BijuH. BadheP.B. Autologous bone marrow mononuclear cell transplantation in patients with chronic traumatic brain injury- a clinical study.Cell Regen. 202091310.1186/s13619‑020‑00043‑7 32588151
    [Google Scholar]
/content/journals/cn/10.2174/1570159X22666240509092903
Loading
/content/journals/cn/10.2174/1570159X22666240509092903
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test