Skip to content
2000
Volume 22, Issue 14
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Traumatic brain injury (TBI) is a significant global health problem, leading to high rates of mortality and disability. It occurs when an external force damages the brain, causing immediate harm and triggering further pathological processes that exacerbate the condition. Despite its widespread impact, the underlying mechanisms of TBI remain poorly understood, and there are no specific pharmacological treatments available. This creates an urgent need for new, effective neuroprotective drugs and strategies tailored to the diverse needs of TBI patients. In the realm of gene expression regulation, chromatin acetylation plays a pivotal role. This process is controlled by two classes of enzymes: histone acetyltransferase (HAT) and histone deacetylase (HDAC). These enzymes modify lysine residues on histone proteins, thereby determining the acetylation status of chromatin. HDACs, in particular, are involved in the epigenetic regulation of gene expression in TBI. Recent research has highlighted the potential of HDAC inhibitors (HDACIs) as promising neuroprotective agents. These compounds have shown encouraging results in animal models of various neurodegenerative diseases. HDACIs offer multiple avenues for TBI management: they mitigate the neuroinflammatory response, alleviate oxidative stress, inhibit neuronal apoptosis, and promote neurogenesis and axonal regeneration. Additionally, they reduce glial activation, which is associated with TBI-induced neuroinflammation. This review aims to provide a comprehensive overview of the roles and mechanisms of HDACs in TBI and to evaluate the therapeutic potential of HDACIs. By summarizing current knowledge and emphasizing the neuroregenerative capabilities of HDACIs, this review seeks to advance TBI management and contribute to the development of targeted treatments.

Loading

Article metrics loading...

/content/journals/cn/10.2174/1570159X22666240128002056
2024-12-01
2024-11-26
Loading full text...

Full text loading...

References

  1. DewanM.C. RattaniA. GuptaS. BaticulonR.E. HungY.C. PunchakM. AgrawalA. AdeleyeA.O. ShrimeM.G. RubianoA.M. RosenfeldJ.V. ParkK.B. Estimating the global incidence of traumatic brain injury.J. Neurosurg.201913041080109710.3171/2017.10.JNS17352 29701556
    [Google Scholar]
  2. BadhiwalaJ.H. WilsonJ.R. FehlingsM.G. Global burden of traumatic brain and spinal cord injury.Lancet Neurol.2019181242510.1016/S1474‑4422(18)30444‑7 30497967
    [Google Scholar]
  3. SchneiderA.L.C. SelvinE. LatourL. TurtzoL.C. CoreshJ. MosleyT. LingG. GottesmanR.F. Head injury and 25‐year risk of dementia.Alzheimers Dement.20211791432144110.1002/alz.12315 33687142
    [Google Scholar]
  4. KaurP. SharmaS. Recent advances in pathophysiology of traumatic brain injury.Curr. Neuropharmacol.20181681224123810.2174/1570159X15666170613083606 28606040
    [Google Scholar]
  5. McGuireJ.L. NgwenyaL.B. McCullumsmithR.E. Neurotransmitter changes after traumatic brain injury: An update for new treatment strategies.Mol. Psychiatry2019247995101210.1038/s41380‑018‑0239‑6 30214042
    [Google Scholar]
  6. AkamatsuY. HanafyK.A. Cell death and recovery in traumatic brain injury.Neurotherapeutics202017244645610.1007/s13311‑020‑00840‑7 32056100
    [Google Scholar]
  7. KalraS. MalikR. SinghG. BhatiaS. Al-HarrasiA. MohanS. AlbrattyM. AlbarratiA. TambuwalaM.M. Pathogenesis and management of traumatic brain injury (TBI): Role of neuroinflammation and anti-inflammatory drugs.Inflammopharmacology20223041153116610.1007/s10787‑022‑01017‑8 35802283
    [Google Scholar]
  8. ParkS.Y. KimJ.S. A short guide to histone deacetylases including recent progress on class II enzymes.Exp. Mol. Med.202052220421210.1038/s12276‑020‑0382‑4 32071378
    [Google Scholar]
  9. DemyanenkoS. SharifulinaS. The role of post-translational acetylation and deacetylation of signaling proteins and transcription factors after cerebral ischemia: facts and hypotheses.Int. J. Mol. Sci.20212215794710.3390/ijms22157947 34360712
    [Google Scholar]
  10. IrfanJ. FebriantoM.R. SharmaA. RoseT. MahmudzadeY. Di GiovanniS. NagyI. Torres-PerezJ.V. DNA Methylation and Non-Coding RNAs during tissue-injury associated pain.Int. J. Mol. Sci.202223275210.3390/ijms23020752 35054943
    [Google Scholar]
  11. DolinarA. Ravnik-GlavačM. GlavačD. Epigenetic mechanisms in amyotrophic lateral sclerosis: A short review.Mech. Ageing Dev.201817410311010.1016/j.mad.2018.03.005 29545202
    [Google Scholar]
  12. KabirF. AtkinsonR. CookA.L. PhippsA.J. KingA.E. The role of altered protein acetylation in neurodegenerative disease.Front. Aging Neurosci.202314102547310.3389/fnagi.2022.1025473 36688174
    [Google Scholar]
  13. ChatterjeeS. CasselR. Schneider-AnthonyA. MerienneK. CosquerB. TzeplaeffL. Halder SinhaS. KumarM. ChaturbedyP. EswaramoorthyM. Le GrasS. KeimeC. BousigesO. DutarP. PetsophonsakulP. RamponC. CasselJ.C. BuéeL. BlumD. KunduT.K. BoutillierA.L. Reinstating plasticity and memory in a tauopathy mouse model with an acetyltransferase activator.EMBO Mol. Med.20181011e858710.15252/emmm.201708587 30275019
    [Google Scholar]
  14. RodriguesD.A. PinheiroP.S.M. SagrilloF.S. BolognesiM.L. FragaC.A.M. Histone deacetylases as targets for the treatment of neurodegenerative disorders: Challenges and future opportunities.Med. Res. Rev.20204062177221110.1002/med.21701 32588916
    [Google Scholar]
  15. Ziemka-NaleczM. JaworskaJ. SypeckaJ. ZalewskaT. Histone deacetylase inhibitors: A therapeutic key in neurological disorders?J. Neuropathol. Exp. Neurol.2018771085587010.1093/jnen/nly073 30165682
    [Google Scholar]
  16. MathesonR. ChidaK. LuH. ClendanielV. FisherM. ThomasA. LoE.H. SelimM. ShehadahA. Neuroprotective effects of selective inhibition of histone deacetylase 3 in experimental stroke.Transl. Stroke Res.20201151052106310.1007/s12975‑020‑00783‑3 32016769
    [Google Scholar]
  17. SunL. TellesE. KarlM. ChengF. LuettekeN. SotomayorE.M. MillerR.H. SetoE. Loss of HDAC11 ameliorates clinical symptoms in a multiple sclerosis mouse model.Life Sci. Alliance201815e20180003910.26508/lsa.201800039 30456376
    [Google Scholar]
  18. NakatsukaD. IzumiT. TsukamotoT. OyamaM. NishitomiK. DeguchiY. NiidomeK. YamakawaH. ItoH. OgawaK. Histone Deacetylase 2 knockdown ameliorates morphological abnormalities of dendritic branches and spines to improve synaptic plasticity in an APP/PS1 Transgenic Mouse Model.Front. Mol. Neurosci.20211478237510.3389/fnmol.2021.782375 34899185
    [Google Scholar]
  19. MacabuagN. EsmieuW. BrecciaP. JarvisR. BlackabyW. LazariO. UrbonasL. EznarriagaM. WilliamsR. StrijboschA. Van de BospoortR. MatthewsK. ClissoldC. LadduwahettyT. VaterH. HeaphyP. StaffordD.G. WangH.J. MangetteJ.E. McAllisterG. BeaumontV. VogtT.F. WilkinsonH.A. DohertyE.M. DominguezC. Developing HDAC4-Selective protein degraders to investigate the role of hdac4 in huntington’s disease pathology.J. Med. Chem.20226518124451245910.1021/acs.jmedchem.2c01149 36098485
    [Google Scholar]
  20. LuJ. FrerichJ.M. TurtzoL.C. LiS. ChiangJ. YangC. WangX. ZhangC. WuC. SunZ. NiuG. ZhuangZ. BradyR.O. ChenX. Histone deacetylase inhibitors are neuroprotective and preserve NGF-mediated cell survival following traumatic brain injury.Proc. Natl. Acad. Sci. USA201311026107471075210.1073/pnas.1308950110 23754423
    [Google Scholar]
  21. LiangD.Y. SahbaieP. SunY. IrvineK.A. ShiX. MeidahlA. LiuP. GuoT.Z. YeomansD.C. ClarkJ.D. TBI-induced nociceptive sensitization is regulated by histone acetylation.IBRO Rep.20172142310.1016/j.ibror.2016.12.001 30135929
    [Google Scholar]
  22. LuJ. FrerichJ.M. TurtzoL.C. LiS. ChiangJ. YangC. WangX. ZhangC. WuC. SunZ. NiuG. ZhuangZ. BradyR.O. ChenX. Histone deacetylase inhibitors are neuroprotective and preserve NGF-mediated cell survival following traumatic brain injury.Proc. Natl. Acad. Sci. 201311026107471075210.1073/pnas.1308950110 23754423
    [Google Scholar]
  23. Sorby-AdamsA. MarcoionniA. DempseyE. WoenigJ. TurnerR. The role of neurogenic inflammation in blood-brain barrier disruption and development of cerebral oedema following acute central nervous system (CNS) injury.Int. J. Mol. Sci.2017188178810.3390/ijms18081788 28817088
    [Google Scholar]
  24. HanscomM. LoaneD.J. Shea-DonohueT. Brain-gut axis dysfunction in the pathogenesis of traumatic brain injury.J. Clin. Invest.202113112e14377710.1172/JCI143777 34128471
    [Google Scholar]
  25. SalehiA. ZhangJ.H. ObenausA. Response of the cerebral vasculature following traumatic brain injury.J. Cereb. Blood Flow Metab.20173772320233910.1177/0271678X17701460 28378621
    [Google Scholar]
  26. NikolianV.C. DekkerS.E. BambakidisT. HigginsG.A. DennahyI.S. GeorgoffP.E. WilliamsA.M. AndjelkovicA.V. AlamH.B. Improvement of blood-brain barrier integrity in traumatic brain injury and hemorrhagic shock following treatment with valproic acid and fresh frozen plasma.Crit. Care Med.2018461e59e6610.1097/CCM.0000000000002800 29095204
    [Google Scholar]
  27. WinklerE.A. MinterD. YueJ.K. ManleyG.T. Cerebral edema in traumatic brain injury.Neurosurg. Clin. N. Am.201627447348810.1016/j.nec.2016.05.008 27637397
    [Google Scholar]
  28. VellaM.A. CrandallM.L. PatelM.B. Acute management of traumatic brain injury.Surg. Clin. North Am.20179751015103010.1016/j.suc.2017.06.003 28958355
    [Google Scholar]
  29. ShiM. ChenF. ChenZ. YangW. YueS. ZhangJ. ChenX. Sigma-1 Receptor: A potential therapeutic target for traumatic brain injury.Front. Cell. Neurosci.20211568520110.3389/fncel.2021.685201 34658788
    [Google Scholar]
  30. SandeA. WestC. Traumatic brain injury: A review of pathophysiology and management.J. Vet. Emerg. Crit. Care (San Antonio)201020217719010.1111/j.1476‑4431.2010.00527.x 20487246
    [Google Scholar]
  31. DesaiM. JainA. Neuroprotection in traumatic brain injury.J. Neurosurg. Sci.201862556357310.23736/S0390‑5616.18.04476‑4 29790724
    [Google Scholar]
  32. SahaP. GuptaR. SenT. SenN. Histone deacetylase 4 downregulation elicits post-traumatic psychiatric disorders through impairment of neurogenesis.J. Neurotrauma201936233284329610.1089/neu.2019.6373 31169064
    [Google Scholar]
  33. BiesterveldB.E. PumigliaL. IancuA. ShamshadA.A. RemmerH.A. SiddiquiA.Z. O’ConnellR.L. WakamG.K. KempM.T. WilliamsA.M. PaiM.P. AlamH.B. Valproic acid treatment rescues injured tissues after traumatic brain injury.J. Trauma Acute Care Surg.20208961156116510.1097/TA.0000000000002918 32890344
    [Google Scholar]
  34. SadaN. FujitaY. MizutaN. UenoM. FurukawaT. YamashitaT. Inhibition of HDAC increases BDNF expression and promotes neuronal rewiring and functional recovery after brain injury.Cell Death Dis.202011865510.1038/s41419‑020‑02897‑w 32811822
    [Google Scholar]
  35. PumigliaL. WilliamsA.M. KempM.T. WakamG.K. AlamH.B. BiesterveldB.E. Brain proteomic changes by histone deacetylase inhibition after traumatic brain injury.Trauma Surg. Acute Care Open202161e00068210.1136/tsaco‑2021‑000682 33880414
    [Google Scholar]
  36. KimH.J. RoweM. RenM. HongJ.S. ChenP.S. ChuangD.M. Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke: multiple mechanisms of action.J. Pharmacol. Exp. Ther.2007321389290110.1124/jpet.107.120188 17371805
    [Google Scholar]
  37. ZhaoY. MuH. HuangY. LiS. WangY. StetlerR.A. BennettM.V.L. DixonC.E. ChenJ. ShiY. Microglia-specific deletion of histone deacetylase 3 promotes inflammation resolution, white matter integrity, and functional recovery in a mouse model of traumatic brain injury.J. Neuroinflammation202219120110.1186/s12974‑022‑02563‑2 35933343
    [Google Scholar]
  38. ChenX. WangH. ZhouM. LiX. FangZ. GaoH. LiY. HuW. Valproic acid attenuates traumatic brain injury-induced inflammation in vivo: Involvement of autophagy and the Nrf2/ARE Signaling Pathway.Front. Mol. Neurosci.20181111710.3389/fnmol.2018.00117 29719500
    [Google Scholar]
  39. BowmanG.D. PoirierM.G. Post-translational modifications of histones that influence nucleosome dynamics.Chem. Rev.201511562274229510.1021/cr500350x 25424540
    [Google Scholar]
  40. BannisterA.J. KouzaridesT. Regulation of chromatin by histone modifications.Cell Res.201121338139510.1038/cr.2011.22 21321607
    [Google Scholar]
  41. LugerK. DechassaM.L. TremethickD.J. New insights into nucleosome and chromatin structure: an ordered state or a disordered affair?Nat. Rev. Mol. Cell Biol.201213743644710.1038/nrm3382 22722606
    [Google Scholar]
  42. FyodorovD.V. ZhouB.R. SkoultchiA.I. BaiY. Emerging roles of linker histones in regulating chromatin structure and function.Nat. Rev. Mol. Cell Biol.201819319220610.1038/nrm.2017.94 29018282
    [Google Scholar]
  43. Nunez-VazquezR. DesvoyesB. GutierrezC. Histone variants and modifications during abiotic stress response.Front. Plant Sci.20221398470210.3389/fpls.2022.984702 36589114
    [Google Scholar]
  44. ZovkicI.B. PaulukaitisB.S. DayJ.J. EtikalaD.M. SweattJ.D. Histone H2A.Z subunit exchange controls consolidation of recent and remote memory.Nature2014515752858258610.1038/nature13707 25219850
    [Google Scholar]
  45. AllisC.D. JenuweinT. The molecular hallmarks of epigenetic control.Nat. Rev. Genet.201617848750010.1038/nrg.2016.59 27346641
    [Google Scholar]
  46. ShenY. WeiW. ZhouD.X. Histone acetylation enzymes coordinate metabolism and gene expression.Trends Plant Sci.2015201061462110.1016/j.tplants.2015.07.005 26440431
    [Google Scholar]
  47. DangF. WeiW. Targeting the acetylation signaling pathway in cancer therapy.Semin. Cancer Biol.20228520921810.1016/j.semcancer.2021.03.001 33705871
    [Google Scholar]
  48. RamaiahM.J. TanguturA.D. ManyamR.R. Epigenetic modulation and understanding of HDAC inhibitors in cancer therapy.Life Sci.202127711950410.1016/j.lfs.2021.119504 33872660
    [Google Scholar]
  49. ChenR. ZhangM. ZhouY. GuoW. YiM. ZhangZ. DingY. WangY. The application of histone deacetylases inhibitors in glioblastoma.J. Exp. Clin. Cancer Res.202039113810.1186/s13046‑020‑01643‑6 32682428
    [Google Scholar]
  50. DingP. MaZ. LiuD. PanM. LiH. FengY. ZhangY. ShaoC. JiangM. LuD. HanJ. WangJ. YanX. Lysine Acetylation/Deacetylation modification of immune-related molecules in cancer immunotherapy.Front. Immunol.20221386597510.3389/fimmu.2022.865975 35585975
    [Google Scholar]
  51. FilippakopoulosP. KnappS. Targeting bromodomains: Epigenetic readers of lysine acetylation.Nat. Rev. Drug Discov.201413533735610.1038/nrd4286 24751816
    [Google Scholar]
  52. XueJ. WuG. EjazU. AkhtarF. WanX. ZhuY. GengA. ChenY. HeS. A novel histone deacetylase inhibitor LT-548-133-1 induces apoptosis by inhibiting HDAC and interfering with microtubule assembly in MCF-7 cells.Invest. New Drugs20213951222123110.1007/s10637‑021‑01102‑9 33788074
    [Google Scholar]
  53. WangP. WangZ. LiuJ. Correction to: Role of HDACs in normal and malignant hematopoiesis.Mol. Cancer20201915510.1186/s12943‑020‑01182‑w 32164749
    [Google Scholar]
  54. BahlS. SetoE. Regulation of histone deacetylase activities and functions by phosphorylation and its physiological relevance.Cell. Mol. Life Sci.202178242744510.1007/s00018‑020‑03599‑4 32683534
    [Google Scholar]
  55. DewanjeeS. VallamkonduJ. KalraR.S. ChakrabortyP. GangopadhyayM. SahuR. MedalaV. JohnA. ReddyP.H. De FeoV. KandimallaR. The Emerging Role of HDACs: Pathology and therapeutic targets in diabetes mellitus.Cells2021106134010.3390/cells10061340 34071497
    [Google Scholar]
  56. KellyR.D.W. CowleyS.M. The physiological roles of histone deacetylase (HDAC) 1 and 2: Complex co-stars with multiple leading parts.Biochem. Soc. Trans.201341374174910.1042/BST20130010 23697933
    [Google Scholar]
  57. FergusonB.S. McKinseyT.A. Non-sirtuin histone deacetylases in the control of cardiac aging.J. Mol. Cell. Cardiol.201583142010.1016/j.yjmcc.2015.03.010 25791169
    [Google Scholar]
  58. WangY. AbrolR. MakJ.Y.W. Das GuptaK. RamnathD. KarunakaranD. FairlieD.P. SweetM.J. Histone deacetylase 7: A signalling hub controlling development, inflammation, metabolism and disease.FEBS J.202210.1111/febs.16437 35303381
    [Google Scholar]
  59. JiaoF. GongZ. The beneficial roles of SIRT1 in neuroinflammation-related diseases.Oxid. Med. Cell. Longev.2020202011910.1155/2020/6782872 33014276
    [Google Scholar]
  60. KeeH.J. KimI. JeongM.H. Zinc-dependent histone deacetylases: Potential therapeutic targets for arterial hypertension.Biochem. Pharmacol.202220211511110.1016/j.bcp.2022.115111 35640713
    [Google Scholar]
  61. NayakR. RoshI. KustanovichI. SternS. Mood stabilizers in psychiatric disorders and mechanisms learnt from in vitro model systems.Int. J. Mol. Sci.20212217931510.3390/ijms22179315 34502224
    [Google Scholar]
  62. TasneemS. AlamM.M. AmirM. AkhterM. ParvezS. VermaG. NainwalL.M. EqubalA. AnwerT. ShaquiquzzamanM. Heterocyclic Moieties as HDAC Inhibitors: Role in cancer therapeutics.Mini Rev. Med. Chem.202222121648170610.2174/1389557519666211221144013 34939540
    [Google Scholar]
  63. SinghA. BishayeeA. PandeyA. Targeting histone deacetylases with natural and synthetic agents: An emerging anticancer strategy.Nutrients201810673110.3390/nu10060731 29882797
    [Google Scholar]
  64. EckschlagerT. PlchJ. StiborovaM. HrabetaJ. Histone deacetylase inhibitors as anticancer drugs.Int. J. Mol. Sci.2017187141410.3390/ijms18071414 28671573
    [Google Scholar]
  65. HeJ. ChuY. LiJ. MengQ. LiuY. JinJ. WangY. WangJ. HuangB. ShiL. ShiX. TianJ. ZhufengY. FengR. XiaoW. GanY. GuoJ. ShaoC. SuY. HuF. SunX. YuJ. KangY. LiZ. Intestinal butyrate-metabolizing species contribute to autoantibody production and bone erosion in rheumatoid arthritis.. Sci. Adv., 202286eabm151110.1126/sciadv.abm1511
    [Google Scholar]
  66. MazzocchiM. GouldingS.R. Morales-PrietoN. FoleyT. CollinsL.M. SullivanA.M. O’KeeffeG.W. Peripheral administration of the Class-IIa HDAC inhibitor MC1568 partially protects against nigrostriatal neurodegeneration in the striatal 6-OHDA rat model of Parkinson’s disease.Brain Behav. Immun.202210215116010.1016/j.bbi.2022.02.025 35217173
    [Google Scholar]
  67. BrookesR.L. CrichtonS. WolfeC.D.A. YiQ. LiL. HankeyG.J. RothwellP.M. MarkusH.S. Sodium valproate, a histone deacetylase inhibitor, Is associated with reduced stroke risk after previous ischemic stroke or transient ischemic attack.Stroke2018491546110.1161/STROKEAHA.117.016674 29247141
    [Google Scholar]
  68. GuptaR. AmbastaR.K. KumarP. Histone deacetylase in neuropathology.Adv. Clin. Chem.202110415123110.1016/bs.acc.2020.09.004 34462055
    [Google Scholar]
  69. KumarS. AttrishD. SrivastavaA. BanerjeeJ. TripathiM. ChandraP.S. DixitA.B. Non-histone substrates of histone deacetylases as potential therapeutic targets in epilepsy.Expert Opin. Ther. Targets2021251758510.1080/14728222.2021.1860016 33275850
    [Google Scholar]
  70. WangG. JiangX. PuH. ZhangW. AnC. HuX. LiouA.K.F. LeakR.K. GaoY. ChenJ. Scriptaid, a novel histone deacetylase inhibitor, protects against traumatic brain injury via modulation of PTEN and AKT pathway: scriptaid protects against TBI via AKT.Neurotherapeutics201310112414210.1007/s13311‑012‑0157‑2 23132328
    [Google Scholar]
  71. WangG. ShiY. JiangX. LeakR.K. HuX. WuY. PuH. LiW.W. TangB. WangY. GaoY. ZhengP. BennettM.V.L. ChenJ. HDAC inhibition prevents white matter injury by modulating microglia/macrophage polarization through the GSK3β/PTEN/Akt axis.Proc. Natl. Acad. Sci. USA201511292853285810.1073/pnas.1501441112 25691750
    [Google Scholar]
  72. MengQ. YangG. YangY. DingF. HuF. Protective effects of histone deacetylase inhibition by Scriptaid on brain injury in neonatal rat models of cerebral ischemia and hypoxia.Int. J. Clin. Exp. Pathol.2020132179191 32211098
    [Google Scholar]
  73. ChangP. WilliamsA.M. BhattiU.F. BiesterveldB.E. LiuB. NikolianV.C. DennahyI.S. LeeJ. LiY. AlamH.B. Valproic acid and neural apoptosis, inflammation, and degeneration 30 days after traumatic brain injury, hemorrhagic shock, and polytrauma in a swine model.J. Am. Coll. Surg.2019228326527510.1016/j.jamcollsurg.2018.12.026 30639301
    [Google Scholar]
  74. BambakidisT. DekkerS.E. SillesenM. LiuB. JohnsonC.N. JinG. de VriesH.E. LiY. AlamH.B. Resuscitation with valproic acid alters inflammatory genes in a porcine model of combined traumatic brain injury and hemorrhagic shock.J. Neurotrauma201633161514152110.1089/neu.2015.4163 26905959
    [Google Scholar]
  75. WakamG.K. BiesterveldB.E. PaiM.P. KempM.T. O’ConnellR.L. WilliamsA.M. SrinivasanA. ChtraklinK. SiddiquiA.Z. BhattiU.F. VercruysseC.A. AlamH.B. Administration of valproic acid in clinically approved dose improves neurologic recovery and decreases brain lesion size in swine subjected to hemorrhagic shock and traumatic brain injury.J. Trauma Acute Care Surg.202190234635210.1097/TA.0000000000003036 33230090
    [Google Scholar]
  76. DashP.K. OrsiS.A. ZhangM. GrillR.J. PatiS. ZhaoJ. MooreA.N. Valproate administered after traumatic brain injury provides neuroprotection and improves cognitive function in rats.PLoS One201056e1138310.1371/journal.pone.0011383 20614021
    [Google Scholar]
  77. BhattiU.F. KarnovskyA. DennahyI.S. KachmanM. WilliamsA.M. NikolianV.C. BiesterveldB.E. SiddiquiA. O’ConnellR.L. LiuB. LiY. AlamH.B. Pharmacologic modulation of brain metabolism by valproic acid can induce a neuroprotective environment.J. Trauma Acute Care Surg.202190350751410.1097/TA.0000000000003026 33196629
    [Google Scholar]
  78. JepsenC.H. deMoyaM.A. PernerA. SillesenM. OstrowskiS.R. AlamH.B. JohanssonP.I. Effect of valproic acid and injury on lesion size and endothelial glycocalyx shedding in a rodent model of isolated traumatic brain injury.J. Trauma Acute Care Surg.201477229229710.1097/TA.0000000000000333 25058256
    [Google Scholar]
  79. DekkerS.E. BambakidisT. SillesenM. LiuB. JohnsonC.N. JinG. LiY. AlamH.B. Effect of pharmacologic resuscitation on the brain gene expression profiles in a swine model of traumatic brain injury and hemorrhage.J. Trauma Acute Care Surg.201477690691210.1097/TA.0000000000000345 25051383
    [Google Scholar]
  80. DekkerS.E. BiesterveldB.E. BambakidisT. WilliamsA.M. TagettR. JohnsonC.N. SillesenM. LiuB. LiY. AlamH.B. modulation of brain transcriptome by combined histone deacetylase inhibition and plasma treatment following traumatic brain injury and hemorrhagic shock.Shock202155111012010.1097/SHK.0000000000001605 32925172
    [Google Scholar]
  81. WeykampM. NikolianV.C. DennahyI.S. HigginsG.A. GeorgoffP.E. RemmerH. GhandourM.H. AlamH.B. Rapid valproic acid-induced modulation of the traumatic proteome in a porcine model of traumatic brain injury and hemorrhagic shock.J. Surg. Res.2018228849210.1016/j.jss.2018.02.046 29907235
    [Google Scholar]
  82. SheinN.A. GrigoriadisN. AlexandrovichA.G. SimeonidouC. LourbopoulosA. PolyzoidouE. TrembovlerV. MascagniP. DinarelloC.A. ShohamiE. Histone deacetylase inhibitor ITF2357 is neuroprotective, improves functional recovery, and induces glial apoptosis following experimental traumatic brain injury.FASEB J.200923124266427510.1096/fj.09‑134700 19723705
    [Google Scholar]
  83. SagarkarS. BalasubramanianN. MishraS. ChoudharyA.G. KokareD.M. SakharkarA.J. Repeated mild traumatic brain injury causes persistent changes in histone deacetylase function in hippocampus: Implications in learning and memory deficits in rats.Brain Res.2019171118319210.1016/j.brainres.2019.01.022 30664848
    [Google Scholar]
  84. LiT. ZhangY. HanD. HuaR. GuoB. HuS. YanX. XuT. Involvement of IL-17 in secondary brain injury after a traumatic brain injury in rats.Neuromol. Med.201719454155410.1007/s12017‑017‑8468‑4 28916896
    [Google Scholar]
  85. XuJ. ShiJ. ZhangJ. ZhangY. Vorinostat: a histone deacetylases (HDAC) inhibitor ameliorates traumatic brain injury by inducing iNOS/Nrf2/ARE pathway.Folia Neuropathol.201856317918610.5114/fn.2018.78697 30509039
    [Google Scholar]
  86. BalasubramanianN. SagarkarS. JadhavM. ShahiN. SirmaurR. SakharkarA.J. Role for histone deacetylation in traumatic brain injury-induced deficits in neuropeptide y in arcuate nucleus: Possible implications in feeding behavior.Neuroendocrinology2021111121187120010.1159/000513638 33291119
    [Google Scholar]
  87. DashP.K. OrsiS.A. MooreA.N. Histone deactylase inhibition combined with behavioral therapy enhances learning and memory following traumatic brain injury.Neuroscience200916311810.1016/j.neuroscience.2009.06.028 19531374
    [Google Scholar]
  88. NikolianV.C. DennahyI.S. WeykampM. WilliamsA.M. BhattiU.F. EidyH. GhandourM.H. ChtraklinK. LiY. AlamH.B. Isoform 6–selective histone deacetylase inhibition reduces lesion size and brain swelling following traumatic brain injury and hemorrhagic shock.J. Trauma Acute Care Surg.201986223223910.1097/TA.0000000000002119 30399139
    [Google Scholar]
  89. ZhangB. WestE.J. VanK.C. GurkoffG.G. ZhouJ. ZhangX.M. KozikowskiA.P. LyethB.G. HDAC inhibitor increases histone H3 acetylation and reduces microglia inflammatory response following traumatic brain injury in rats.Brain Res.2008122618119110.1016/j.brainres.2008.05.085 18582446
    [Google Scholar]
  90. DekkerS.E. SillesenM. BambakidisT. AndjelkovicA.V. JinG. LiuB. BoerC. JohanssonP.I. LinzelD. HalaweishI. AlamH.B. Treatment with a histone deacetylase inhibitor, valproic acid, is associated with increased platelet activation in a large animal model of traumatic brain injury and hemorrhagic shock.J. Surg. Res.2014190131231810.1016/j.jss.2014.02.049 24694719
    [Google Scholar]
  91. YuF. WangZ. TanakaM. ChiuC.T. LeedsP. ZhangY. ChuangD.M. Posttrauma cotreatment with lithium and valproate: reduction of lesion volume, attenuation of blood-brain barrier disruption, and improvement in motor coordination in mice with traumatic brain injury.J. Neurosurg.2013119376677310.3171/2013.6.JNS13135 23848820
    [Google Scholar]
  92. WangW. TanT. CaoQ. ZhangF. ReinB. DuanW.M. YanZ. Histone deacetylase inhibition restores behavioral and synaptic function in a mouse model of 16p11.2 Deletion.Int. J. Neuropsychopharmacol.2022251087788910.1093/ijnp/pyac048 35907244
    [Google Scholar]
  93. KusaczukM. KrętowskiR. StypułkowskaA. Cechowska-PaskoM. Molecular and cellular effects of a novel hydroxamate-based HDAC inhibitor – belinostat – in glioblastoma cell lines: a preliminary report.Invest. New Drugs201634555256410.1007/s10637‑016‑0372‑5 27468826
    [Google Scholar]
  94. Rodríguez-GómezJ.A. KavanaghE. Engskog-VlachosP. EngskogM.K.R. HerreraA.J. Espinosa-OlivaA.M. JosephB. HajjiN. VeneroJ.L. BurguillosM.A. Microglia: Agents of the CNS Pro-inflammatory response.Cells202097171710.3390/cells9071717 32709045
    [Google Scholar]
  95. YadavA. HuangT.C. ChenS.H. RamasamyT.S. HsuehY.Y. LinS.P. LuF.I. LiuY.H. WuC.C. Sodium phenylbutyrate inhibits Schwann cell inflammation via HDAC and NFκB to promote axonal regeneration and remyelination.J. Neuroinflammation202118123810.1186/s12974‑021‑02273‑1 34656124
    [Google Scholar]
  96. ChoW. HongS.H. ChoeJ. IL-4 and HDAC Inhibitors Suppress Cyclooxygenase-2 expression in human follicular dendritic cells.Immune Netw.2013132757910.4110/in.2013.13.2.75 23700398
    [Google Scholar]
  97. YangH. NiW. WeiP. LiS. GaoX. SuJ. JiangH. LeiY. ZhouL. GuY. HDAC inhibition reduces white matter injury after intracerebral hemorrhage.J. Cereb. Blood Flow Metab.202141595897410.1177/0271678X20942613 32703113
    [Google Scholar]
  98. PatnalaR. ArumugamT.V. GuptaN. DheenS.T. HDAC inhibitor sodium butyrate-mediated epigenetic regulation enhances neuroprotective function of microglia during ischemic stroke.Mol. Neurobiol.20175486391641110.1007/s12035‑016‑0149‑z 27722928
    [Google Scholar]
  99. CzapskiG.A. StrosznajderJ.B. Glutamate and GABA in microglia-neuron cross-talk in alzheimer’s disease.Int. J. Mol. Sci.202122211167710.3390/ijms222111677 34769106
    [Google Scholar]
  100. NathalieM. PolineniS.P. ChinC.N. FawcettD. ClerviusH. MariaQ.S.L. LegnayF. RegoL. MahavadiA.K. JermakowiczW.J. Sw-TL. YokoboriS. GajavelliS. Targeting microglial polarization to improve TBI outcomes.CNS Neurol. Disord. Drug Targets202120321622710.2174/1871527319666200918145903 32951588
    [Google Scholar]
  101. SheinN.A. ShohamiE. Histone deacetylase inhibitors as therapeutic agents for acute central nervous system injuries.Mol. Med.2011175-644845610.2119/molmed.2011.00038 21274503
    [Google Scholar]
  102. GlaubenR. SiegmundB. Inhibition of histone deacetylases in inflammatory bowel diseases.Mol. Med.2011175-642643310.2119/molmed.2011.00069 21365125
    [Google Scholar]
  103. DietzK.C. CasacciaP. HDAC inhibitors and neurodegeneration: At the edge between protection and damage.Pharmacol. Res.2010621111710.1016/j.phrs.2010.01.011 20123018
    [Google Scholar]
  104. GuptaR. AmbastaR.K. KumarP. Pharmacological intervention of histone deacetylase enzymes in the neurodegenerative disorders.Life Sci.202024311727810.1016/j.lfs.2020.117278 31926248
    [Google Scholar]
  105. ChenJ. ZhangJ. ShaikN.F. YiB. WeiX. YangX.F. NaikU.P. SummerR. YanG. XuX. SunJ. The histone deacetylase inhibitor tubacin mitigates endothelial dysfunction by up-regulating the expression of endothelial nitric oxide synthase.J. Biol. Chem.201929451195651957610.1074/jbc.RA119.011317 31719145
    [Google Scholar]
  106. ShenY. YangR. ZhaoJ. ChenM. ChenS. JiB. ChenH. LiuD. LiL. DuG. The histone deacetylase inhibitor belinostat ameliorates experimental autoimmune encephalomyelitis in mice by inhibiting TLR2/MyD88 and HDAC3/NF-κB p65-mediated neuroinflammation.Pharmacol. Res.202217610596910.1016/j.phrs.2021.105969 34758400
    [Google Scholar]
  107. RoyceS.G. DangW. YuanG. TranJ. El-OstaA. KaragiannisT.C. TangM.L.K. Effects of the histone deacetylase inhibitor, trichostatin A, in a chronic allergic airways disease model in mice.Arch. Immunol. Ther. Exp. (Warsz.)201260429530610.1007/s00005‑012‑0180‑3 22684086
    [Google Scholar]
  108. DinarelloC.A. Anti-inflammatory agents: Present and future.Cell2010140693595010.1016/j.cell.2010.02.043 20303881
    [Google Scholar]
  109. KhatriN. ThakurM. PareekV. KumarS. SharmaS. DatusaliaA.K. Oxidative stress: Major threat in traumatic brain injury.CNS Neurol. Disord. Drug Targets201817968969510.2174/1871527317666180627120501 29952272
    [Google Scholar]
  110. CalabreseV. CorneliusC. Dinkova-KostovaA.T. CalabreseE.J. MattsonM.P. Cellular stress responses, the hormesis paradigm, and vitagenes: Novel targets for therapeutic intervention in neurodegenerative disorders.Antioxid. Redox Signal.201013111763181110.1089/ars.2009.3074 20446769
    [Google Scholar]
  111. CalabreseV. CorneliusC. Dinkova-KostovaA.T. CalabreseE.J. Vitagenes, cellular stress response, and acetylcarnitine: Relevance to hormesis.Biofactors200935214616010.1002/biof.22 19449442
    [Google Scholar]
  112. CalabreseV. MancusoC. CalvaniM. RizzarelliE. ButterfieldD.A. Giuffrida StellaA.M. Nitric oxide in the central nervous system: Neuroprotection versus neurotoxicity.Nat. Rev. Neurosci.200781076677510.1038/nrn2214 17882254
    [Google Scholar]
  113. RenisM. CalabreseV. RussoA. CalderoneA. BarcellonaM.L. RizzaV. Nuclear DNA strand breaks during ethanol-induced oxidative stress in rat brain.FEBS Lett.1996390215315610.1016/0014‑5793(96)00647‑3 8706848
    [Google Scholar]
  114. MisztakP. Sowa-KućmaM. SzewczykB. NowakG. Vorinostat (SAHA) may exert its antidepressant-like effects through the modulation of oxidative stress pathways.Neurotox. Res.202139217018110.1007/s12640‑020‑00317‑7 33400178
    [Google Scholar]
  115. ValvassoriS.S. Dal-PontG.C. SteckertA.V. VarelaR.B. Lopes-BorgesJ. MariotE. ResendeW.R. ArentC.O. CarvalhoA.F. QuevedoJ. Sodium butyrate has an antimanic effect and protects the brain against oxidative stress in an animal model of mania induced by ouabain.Psychiatry Res.201623515415910.1016/j.psychres.2015.11.017 26654753
    [Google Scholar]
  116. VarogluA.O. YildirimA. AygulR. GundogduO.L. SahinY.N. Effects of valproate, carbamazepine, and levetiracetam on the antioxidant and oxidant systems in epileptic patients and their clinical importance.Clin. Neuropharmacol.201033315515710.1097/WNF.0b013e3181d1e133 20502135
    [Google Scholar]
  117. FuJ. ShaoC.J. ChenF.R. NgH.K. ChenZ.P. Autophagy induced by valproic acid is associated with oxidative stress in glioma cell lines.Neuro-oncol.201012432834010.1093/neuonc/nop005 20308311
    [Google Scholar]
  118. FourcadeS. RuizM. GuileraC. HahnenE. BrichtaL. NaudiA. Portero-OtínM. DacremontG. CartierN. WandersR. KempS. MandelJ.L. WirthB. PamplonaR. AubourgP. PujolA. Valproic acid induces antioxidant effects in X-linked adrenoleukodystrophy.Hum. Mol. Genet.201019102005201410.1093/hmg/ddq082 20179078
    [Google Scholar]
  119. IranpakF. SaberzadehJ. VessalM. TakhshidM.A. Sodium valproate ameliorates aluminum-induced oxidative stress and apoptosis of PC12 cells.Iran. J. Basic Med. Sci.201922111353135810.22038/ijbms.2019.36930.8804 32128102
    [Google Scholar]
  120. SunX. SunY. LinS. XuY. ZhaoD. Histone deacetylase inhibitor valproic acid attenuates high glucose induced endoplasmic reticulum stress and apoptosis in NRK 52E cells.Mol. Med. Rep.20202254041404710.3892/mmr.2020.11496 32901855
    [Google Scholar]
  121. WuM.S. LiX.J. LiuC.Y. XuQ. HuangJ.Q. GuS. ChenJ.X. Effects of histone modification in major depressive disorder.Curr. Neuropharmacol.20222071261127710.2174/1570159X19666210922150043 34551699
    [Google Scholar]
  122. FaracoG. PancaniT. FormentiniL. MascagniP. FossatiG. LeoniF. MoroniF. ChiarugiA. Pharmacological inhibition of histone deacetylases by suberoylanilide hydroxamic acid specifically alters gene expression and reduces ischemic injury in the mouse brain.Mol. Pharmacol.20067061876188410.1124/mol.106.027912 16946032
    [Google Scholar]
  123. LeeH.A. LeeE. DoG.Y. MoonE.K. QuanF.S. KimI. Histone deacetylase inhibitor MGCD0103 protects the pancreas from streptozotocin-induced oxidative stress and β-cell death.Biomed. Pharmacother.201910992192910.1016/j.biopha.2018.10.163 30551546
    [Google Scholar]
  124. LangleyB. GensertJ. BealM. RatanR. Remodeling chromatin and stress resistance in the central nervous system: histone deacetylase inhibitors as novel and broadly effective neuroprotective agents.Curr. Drug Targets CNS Neurol. Disord.200541415010.2174/1568007053005091 15723612
    [Google Scholar]
  125. FerranteR.J. KubilusJ.K. LeeJ. RyuH. BeesenA. ZuckerB. SmithK. KowallN.W. RatanR.R. Luthi-CarterR. HerschS.M. Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington’s disease mice.J. Neurosci.200323289418942710.1523/JNEUROSCI.23‑28‑09418.2003 14561870
    [Google Scholar]
  126. GrahamN.S.N. SharpD.J. Understanding neurodegeneration after traumatic brain injury: From mechanisms to clinical trials in dementia.J. Neurol. Neurosurg. Psychiatry201990111221123310.1136/jnnp‑2017‑317557 31542723
    [Google Scholar]
  127. ToshkeziG. KyleM. LongoS.L. ChinL.S. ZhaoL.R. Brain repair by hematopoietic growth factors in the subacute phase of traumatic brain injury.J. Neurosurg.201812951286129410.3171/2017.7.JNS17878 29372883
    [Google Scholar]
  128. KitaharaM. InoueT. ManiH. TakamatsuY. IkegamiR. TohyamaH. MaejimaH. Exercise and pharmacological inhibition of histone deacetylase improves cognitive function accompanied by an increase of gene expressions crucial for neuronal plasticity in the hippocampus.Neurosci. Lett.202174913574910.1016/j.neulet.2021.135749 33610667
    [Google Scholar]
  129. PawelecP. SypeckaJ. ZalewskaT. Ziemka-NaleczM. Analysis of Givinostat/ITF2357 treatment in a rat model of neonatal hypoxic-ischemic brain damage.Int. J. Mol. Sci.20222315828710.3390/ijms23158287 35955430
    [Google Scholar]
  130. FrancelleL. OuteiroT.F. RappoldG.A. Inhibition of HDAC6 activity protects dopaminergic neurons from alpha-synuclein toxicity.Sci. Rep.2020101606410.1038/s41598‑020‑62678‑5 32269243
    [Google Scholar]
  131. GaoW.M. ChadhaM.S. KlineA.E. ClarkR.S.B. KochanekP.M. DixonC.E. JenkinsL.W. Immunohistochemical analysis of histone H3 acetylation and methylation—Evidence for altered epigenetic signaling following traumatic brain injury in immature rats.Brain Res.200610701313410.1016/j.brainres.2005.11.038 16406269
    [Google Scholar]
  132. GuanJ.S. HaggartyS.J. GiacomettiE. DannenbergJ.H. JosephN. GaoJ. NielandT.J.F. ZhouY. WangX. MazitschekR. BradnerJ.E. DePinhoR.A. JaenischR. TsaiL.H. HDAC2 negatively regulates memory formation and synaptic plasticity.Nature20094597243556010.1038/nature07925 19424149
    [Google Scholar]
  133. PriorR. Van HelleputteL. KlinglY.E. Van Den BoschL. HDAC6 as a potential therapeutic target for peripheral nerve disorders.Expert Opin. Ther. Targets20182212993100710.1080/14728222.2018.1541235 30360671
    [Google Scholar]
  134. CalliariA. BobbaN. EscandeC. ChiniE.N. Resveratrol delays Wallerian degeneration in a NAD+ and DBC1 dependent manner.Exp. Neurol.20142519110010.1016/j.expneurol.2013.11.013 24252177
    [Google Scholar]
  135. ZhanX. CoxC. AnderB.P. LiuD. StamovaB. JinL.W. JicklingG.C. SharpF.R. Inflammation combined with ischemia produces myelin injury and plaque-like aggregates of myelin, amyloid-β and AβPP in adult rat brain.J. Alzheimers Dis.201546250752310.3233/JAD‑143072 25790832
    [Google Scholar]
  136. XuZ. LvX.A. DaiQ. GeY.Q. XuJ. Acute upregulation of neuronal mitochondrial type-1 cannabinoid receptor and it’s role in metabolic defects and neuronal apoptosis after TBI.Mol. Brain2016917510.1186/s13041‑016‑0257‑8 27485212
    [Google Scholar]
  137. BuyandelgerB. BarE.E. HungK.S. ChenR.M. ChiangY.H. LiouJ.P. HuangH.M. WangJ.Y. Histone deacetylase inhibitor MPT0B291 suppresses glioma growth in vitro and in vivo partially through acetylation of p53.Int. J. Biol. Sci.202016163184319910.7150/ijbs.45505 33162824
    [Google Scholar]
  138. UoT. VeenstraT.D. MorrisonR.S. Histone deacetylase inhibitors prevent p53-dependent and p53-independent Bax-mediated neuronal apoptosis through two distinct mechanisms.J. Neurosci.20092992824283210.1523/JNEUROSCI.6186‑08.2009 19261878
    [Google Scholar]
  139. CopeE.C. GouldE. Adult neurogenesis, glia, and the extracellular matrix.Cell Stem Cell201924569070510.1016/j.stem.2019.03.023 31051133
    [Google Scholar]
  140. Nieto-EstevezV. ChangarathilG. AdeyeyeA.O. CoppinM.O. KassimR.S. ZhuJ. HsiehJ. HDAC1 regulates neuronal differentiation.Front. Mol. Neurosci.20221481580810.3389/fnmol.2021.815808 35095417
    [Google Scholar]
  141. YooD.Y. KimD.W. KimM.J. ChoiJ.H. JungH.Y. NamS.M. KimJ.W. YoonY.S. ChoiS.Y. HwangI.K. Sodium butyrate, a histone deacetylase Inhibitor, ameliorates SIRT2-induced memory impairment, reduction of cell proliferation, and neuroblast differentiation in the dentate gyrus.Neurol. Res.2015371697610.1179/1743132814Y.0000000416 24963697
    [Google Scholar]
  142. UittenbogaardM. BrantnerC.A. ChiaramelloA. Epigenetic modifiers promote mitochondrial biogenesis and oxidative metabolism leading to enhanced differentiation of neuroprogenitor cells.Cell Death Dis.20189336010.1038/s41419‑018‑0396‑1 29500414
    [Google Scholar]
  143. MoonB.S. LuW. ParkH.J. Valproic acid promotes the neuronal differentiation of spiral ganglion neural stem cells with robust axonal growth.Biochem. Biophys. Res. Commun.201850342728273510.1016/j.bbrc.2018.08.032 30119886
    [Google Scholar]
  144. WuC.H. TsaiY.C. TsaiT.H. KuoK.L. SuY.F. ChangC.H. LinC.L. Valproic acid reduces vasospasm through modulation of Akt phosphorylation and attenuates neuronal apoptosis in subarachnoid hemorrhage rats.Int. J. Mol. Sci.20212211597510.3390/ijms22115975 34205883
    [Google Scholar]
  145. YuI.T. ParkJ.Y. KimS.H. LeeJ. KimY.S. SonH. Valproic acid promotes neuronal differentiation by induction of proneural factors in association with H4 acetylation.Neuropharmacology200956247348010.1016/j.neuropharm.2008.09.019 19007798
    [Google Scholar]
  146. RaoT. WuF. XingD. PengZ. RenD. FengW. ChenY. ZhaoZ. WangH. WangJ. KanW. ZhangQ. Effects of valproic Acid on axonal regeneration and recovery of motor function after peripheral nerve injury in the rat.Arch. Bone Jt. Surg.2014211724 25207308
    [Google Scholar]
  147. RozenbaumM. RajmanM. RishalI. KoppelI. KoleyS. MedzihradszkyK.F. Oses-PrietoJ.A. KawaguchiR. AmieuxP.S. BurlingameA.L. CoppolaG. FainzilberM. Translatome regulation in neuronal injury and axon regrowth. eNeuro, 201852ENEURO.027617.201810.1523/ENEURO.0276‑17.2018 29756027
    [Google Scholar]
  148. PetrovaV. EvaR. The virtuous cycle of axon growth: Axonal transport of growth-promoting machinery as an intrinsic determinant of axon regeneration.Dev. Neurobiol.2018781089892510.1002/dneu.22608 29989351
    [Google Scholar]
  149. MahgoubM. MonteggiaL.M. A role for histone deacetylases in the cellular and behavioral mechanisms underlying learning and memory.Learn. Mem.2014211056456810.1101/lm.036012.114 25227251
    [Google Scholar]
  150. FischerA. SananbenesiF. WangX. DobbinM. TsaiL.H. Recovery of learning and memory is associated with chromatin remodelling.Nature2007447714117818210.1038/nature05772 17468743
    [Google Scholar]
  151. GaubP. TedeschiA. PuttaguntaR. NguyenT. SchmandkeA. Di GiovanniS. HDAC inhibition promotes neuronal outgrowth and counteracts growth cone collapse through CBP/p300 and P/CAF-dependent p53 acetylation.Cell Death Differ.20101791392140810.1038/cdd.2009.216 20094059
    [Google Scholar]
  152. JohnsonE.C.B. DammerE.B. DuongD.M. PingL. ZhouM. YinL. HigginbothamL.A. GuajardoA. WhiteB. TroncosoJ.C. ThambisettyM. MontineT.J. LeeE.B. TrojanowskiJ.Q. BeachT.G. ReimanE.M. HaroutunianV. WangM. SchadtE. ZhangB. DicksonD.W. Ertekin-TanerN. GoldeT.E. PetyukV.A. De JagerP.L. BennettD.A. WingoT.S. RangarajuS. HajjarI. ShulmanJ.M. LahJ.J. LeveyA.I. SeyfriedN.T. Large-scale proteomic analysis of Alzheimer’s disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation.Nat. Med.202026576978010.1038/s41591‑020‑0815‑6 32284590
    [Google Scholar]
  153. Shanaki-BavarsadM. AlmoldaB. GonzálezB. CastellanoB. Astrocyte-targeted overproduction of IL-10 reduces neurodegeneration after TBI.Exp. Neurobiol.202231317319510.5607/en21035 35786640
    [Google Scholar]
  154. LiuZ. ChoppM. Astrocytes, therapeutic targets for neuroprotection and neurorestoration in ischemic stroke.Prog. Neurobiol.201614410312010.1016/j.pneurobio.2015.09.008 26455456
    [Google Scholar]
  155. WangJ. HouY. ZhangL. LiuM. ZhaoJ. ZhangZ. MaY. HouW. Estrogen attenuates traumatic brain injury by inhibiting the activation of microglia and astrocyte-mediated neuroinflammatory responses.Mol. Neurobiol.20215831052106110.1007/s12035‑020‑02171‑2 33085047
    [Google Scholar]
  156. BorgonettiV. MeacciE. PierucciF. RomanelliM.N. GaleottiN. Dual HDAC/BRD4 inhibitors relieves neuropathic pain by attenuating inflammatory response in microglia after spared nerve injury.Neurotherapeutics20221951634164810.1007/s13311‑022‑01243‑6 35501470
    [Google Scholar]
  157. ProzorovskiT. Schulze-TopphoffU. GlummR. BaumgartJ. SchröterF. NinnemannO. SiegertE. BendixI. BrüstleO. NitschR. ZippF. AktasO. Sirt1 contributes critically to the redox-dependent fate of neural progenitors.Nat. Cell Biol.200810438539410.1038/ncb1700 18344989
    [Google Scholar]
  158. ZhangY. DuZ. ZhuangZ. WangY. WangF. LiuS. WangH. FengH. LiH. WangL. ZhangX. HaoA. E804 induces growth arrest, differentiation and apoptosis of glioblastoma cells by blocking Stat3 signaling.J. Neurooncol.2015125226527510.1007/s11060‑015‑1917‑8 26386687
    [Google Scholar]
  159. MichinagaS. KoyamaY. Pathophysiological responses and roles of astrocytes in traumatic brain injury.Int. J. Mol. Sci.20212212641810.3390/ijms22126418 34203960
    [Google Scholar]
  160. LiX. SuX. LiuR. PanY. FangJ. CaoL. FengC. ShangQ. ChenY. ShaoC. ShiY. HDAC inhibition potentiates anti-tumor activity of macrophages and enhances anti-PD-L1-mediated tumor suppression.Oncogene202140101836185010.1038/s41388‑020‑01636‑x 33564072
    [Google Scholar]
  161. DongZ. YangY. LiuS. LuJ. HuangB. ZhangY. HDAC inhibitor PAC-320 induces G2/M cell cycle arrest and apoptosis in human prostate cancer.Oncotarget20189151252310.18632/oncotarget.23070 29416632
    [Google Scholar]
  162. DashwoodR. HoE. Dietary histone deacetylase inhibitors: From cells to mice to man.Semin. Cancer Biol.200717536336910.1016/j.semcancer.2007.04.001 17555985
    [Google Scholar]
  163. JaworskaJ. ZalewskaT. SypeckaJ. Ziemka-NaleczM. Effect of the HDAC inhibitor, sodium butyrate, on neurogenesis in a rat model of neonatal hypoxia–ischemia: Potential mechanism of action.Mol. Neurobiol.20195696341637010.1007/s12035‑019‑1518‑1 30767185
    [Google Scholar]
  164. TungB. MaD. WangS. OyinladeO. LaterraJ. YingM. LvS.Q. WeiS. XiaS. Krüppel-like factor 9 and histone deacetylase inhibitors synergistically induce cell death in glioblastoma stem-like cells.BMC Cancer2018181102510.1186/s12885‑018‑4874‑8 30348136
    [Google Scholar]
/content/journals/cn/10.2174/1570159X22666240128002056
Loading
/content/journals/cn/10.2174/1570159X22666240128002056
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test