Skip to content
2000
Volume 23, Issue 4
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Background

Administration of olanzapine (OLA) is closely associated with obesity and glycolipid abnormalities in patients with schizophrenia (SCZ), although the exact molecular mechanisms remain elusive.

Objective

We conducted comprehensive animal and molecular experiments to elucidate the mechanisms underlying OLA-induced weight gain.

Methods

We investigated the mechanisms of OLA-induced adipogenesis and lipid storage by employing a real-time ATP production rate assay, glucose uptake test, and reactive oxygen species (ROS) detection in 3T3-L1 cells and AMSCs. Rodent models were treated with OLA using various intervention durations, dietary patterns (normal diets/western diets), and drug doses. We assessed body weight, epididymal and liver fat levels, and metabolic markers in both male and female mice.

Results

OLA accelerates adipogenesis by directly activating glycolysis and its downstream PI3K signaling pathway in differentiated adipocytes. OLA promotes glucose uptake in differentiated 3T3-L1 preadipocytes. In mouse models with normal glycolipid metabolism, OLA administration failed to increase food intake and weight gain despite elevated GAPDH expression, a marker related to glycolysis and PI3K-AKT. This supports the notion that glycolysis plays a significant role in OLA-induced metabolic dysfunction.

Conclusion

OLA induces glycolysis and activates the downstream PI3K-AKT signaling pathway, thereby promoting adipogenesis.

Loading

Article metrics loading...

/content/journals/cn/10.2174/1570159X22666240815120547
2024-08-15
2025-03-30
Loading full text...

Full text loading...

References

  1. LeuchtS. CiprianiA. SpineliL. MavridisD. ÖreyD. RichterF. SamaraM. BarbuiC. EngelR.R. GeddesJ.R. KisslingW. StapfM.P. LässigB. SalantiG. DavisJ.M. Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: A multiple-treatments meta-analysis.Lancet2013382989695196210.1016/S0140‑6736(13)60733‑3 23810019
    [Google Scholar]
  2. MaherA.R. MaglioneM. BagleyS. SuttorpM. HuJ.H. EwingB. WangZ. TimmerM. SultzerD. ShekelleP.G. Efficacy and comparative effectiveness of atypical antipsychotic medications for off-label uses in adults: A systematic review and meta-analysis.JAMA2011306121359136910.1001/jama.2011.1360 21954480
    [Google Scholar]
  3. LeuchtS. CorvesC. ArbterD. EngelR.R. LiC. DavisJ.M. Second-generation versus first-generation antipsychotic drugs for schizophrenia: A meta-analysis.Lancet20093739657314110.1016/S0140‑6736(08)61764‑X 19058842
    [Google Scholar]
  4. ZhangJ.P. GallegoJ.A. RobinsonD.G. MalhotraA.K. KaneJ.M. CorrellC.U. Efficacy and safety of individual second-generation vs. first-generation antipsychotics in first-episode psychosis: A systematic review and meta-analysis.Int. J. Neuropsychopharmacol.20131661205121810.1017/S1461145712001277 23199972
    [Google Scholar]
  5. PillingerT. McCutcheonR.A. VanoL. MizunoY. ArumuhamA. HindleyG. BeckK. NatesanS. EfthimiouO. CiprianiA. HowesO.D. Comparative effects of 18 antipsychotics on metabolic function in patients with schizophrenia, predictors of metabolic dysregulation, and association with psychopathology: A systematic review and network meta-analysis.Lancet Psychiatry202071647710.1016/S2215‑0366(19)30416‑X 31860457
    [Google Scholar]
  6. PillingerT. BeckK. GobjilaC. DonocikJ.G. JauharS. HowesO.D. Impaired glucose homeostasis in first-episode Schizophrenia.JAMA Psychiatry201774326126910.1001/jamapsychiatry.2016.3803 28097367
    [Google Scholar]
  7. PerryB.I. McIntoshG. WeichS. SinghS. ReesK. The association between first-episode psychosis and abnormal glycaemic control: Systematic review and meta-analysis.Lancet Psychiatry20163111049105810.1016/S2215‑0366(16)30262‑0 27720402
    [Google Scholar]
  8. VancampfortD. StubbsB. MitchellA.J. De HertM. WampersM. WardP.B. RosenbaumS. CorrellC.U. Risk of metabolic syndrome and its components in people with schizophrenia and related psychotic disorders, bipolar disorder and major depressive disorder: A systematic review and meta-analysis.World Psychiatry201514333934710.1002/wps.20252 26407790
    [Google Scholar]
  9. RojoL.E. GasparP.A. SilvaH. RiscoL. ArenaP. Cubillos-RoblesK. JaraB. Metabolic syndrome and obesity among users of second generation antipsychotics: A global challenge for modern psychopharmacology.Pharmacol. Res.2015101748510.1016/j.phrs.2015.07.022 26218604
    [Google Scholar]
  10. ÖsbyU. CorreiaN. BrandtL. EkbomA. SparénP. Mortality and causes of death in schizophrenia in Stockholm County, Sweden.Schizophr. Res.2000451-2212810.1016/S0920‑9964(99)00191‑7 10978869
    [Google Scholar]
  11. RoerigJ.L. SteffenK.J. MitchellJ.E. Atypical antipsychotic-induced weight gain: Insights into mechanisms of action.CNS Drugs201125121035105910.2165/11596300‑000000000‑00000 22133326
    [Google Scholar]
  12. KimS.F. HuangA.S. SnowmanA.M. TeuscherC. SnyderS.H. Antipsychotic drug-induced weight gain mediated by histamine H 1 receptor-linked activation of hypothalamic AMP-kinase.Proc. Natl. Acad. Sci. USA200710493456345910.1073/pnas.0611417104 17360666
    [Google Scholar]
  13. FerreiraV. GrajalesD. ValverdeÁ.M. Adipose tissue as a target for second-generation (atypical) antipsychotics: A molecular view.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20201865215853410.1016/j.bbalip.2019.158534 31672575
    [Google Scholar]
  14. DengY. SchererP.E. Adipokines as novel biomarkers and regulators of the metabolic syndrome.Ann. N. Y. Acad. Sci.201012121E1E1910.1111/j.1749‑6632.2010.05875.x 21276002
    [Google Scholar]
  15. ChenC.Y.A. GohK.K. ChenC.H. LuM.L. The role of adiponectin in the pathogenesis of metabolic disturbances in patients with Schizophrenia.Front. Psychiatry20211160512410.3389/fpsyt.2020.605124 33551872
    [Google Scholar]
  16. KimJ.H. KimJ.H. ParkP.W. MachannJ. RodenM. LeeS.W. HwangJ.H. Body and liver fat content and adipokines in schizophrenia: A magnetic resonance imaging and spectroscopy study.Psychopharmacology (Berl.)2017234121923193210.1007/s00213‑017‑4598‑5 28315932
    [Google Scholar]
  17. LiS. XuC. TianY. WangX. JiangR. ZhangM. WangL. YangG. GaoY. SongC. HeY. ZhangY. LiJ. LiW.D. TOX and ADIPOQ gene polymorphisms are associated with antipsychotic-induced weight gain in han Chinese.Sci. Rep.2017714520310.1038/srep45203 28327672
    [Google Scholar]
  18. LiS. GaoY. LvH. ZhangM. WangL. JiangR. XuC. WangX. GaoM. HeY. LiJ. LiW.D. T4 and waist: Hip ratio as biomarkers of antipsychotic-induced weight gain in Han Chinese inpatients with schizophrenia.Psychoneuroendocrinology201888546010.1016/j.psyneuen.2017.11.010 29175720
    [Google Scholar]
  19. LiS. ChenD. XiuM. LiJ. ZhangX.Y. Diabetes mellitus, cognitive deficits and serum BDNF levels in chronic patients with schizophrenia: A case-control study.J. Psychiatr. Res.2021134394710.1016/j.jpsychires.2020.12.035 33360223
    [Google Scholar]
  20. ShamshoumH. MedakK.D. WrightD.C. Peripheral mechanisms of acute olanzapine induced metabolic dysfunction: A review of in vivo models and treatment approaches.Behav. Brain Res.202140011304910.1016/j.bbr.2020.113049 33290757
    [Google Scholar]
  21. CuiD. PengY. ZhangC. LiZ. SuY. QiY. XingM. LiJ. KimG.E. SuK.N. XuJ. WangM. DingW. PiecychnaM. LengL. HirasawaM. JiangK. YoungL. XuY. QiD. BucalaR. Macrophage migration inhibitory factor mediates metabolic dysfunction induced by atypical antipsychotic therapy.J. Clin. Invest.2018128114997500710.1172/JCI93090 30295645
    [Google Scholar]
  22. SertiéA.L. SuzukiA.M. SertiéR.A.L. AndreottiS. LimaF.B. Passos-BuenoM.R. GattazW.F. Effects of antipsychotics with different weight gain liabilities on human in vitro models of adipose tissue differentiation and metabolism.Prog. Neuropsychopharmacol. Biol. Psychiatry20113581884189010.1016/j.pnpbp.2011.07.017 21840366
    [Google Scholar]
  23. WangY. LinH.Q. LawW.K. LiangW.C. ZhangJ.F. HuJ.S. IpT.M. WayeM.M.Y. WanD.C.C. Pimozide, a novel fatty acid binding protein 4 inhibitor, promotes adipogenesis of 3T3-L1 cells by activating PPARγ.ACS Chem. Neurosci.20156221121810.1021/cn5002107 25437245
    [Google Scholar]
  24. LiuY. WangJ. LiuS. KuangM. JingY. ZhaoY. WangZ. LiG. A novel transgenic murine model with persistently brittle bones simulating osteogenesis imperfecta type I.Bone201912764665510.1016/j.bone.2019.07.021 31369917
    [Google Scholar]
  25. FuY. YangK. HuangY. ZhangY. LiS. LiW.D. Deciphering Risperidone-Induced Lipogenesis by Network Pharmacology and Molecular Validation.Front. Psychiatry20221387074210.3389/fpsyt.2022.870742 35509887
    [Google Scholar]
  26. HasegawaK. TakenakaN. TanidaK. ChanM.P. SakataM. AibaA. SatohT. Atrophy of white adipose tissue accompanied with decreased insulin-stimulated glucose uptake in mice lacking the small GTPase Rac1 specifically in adipocytes.Int. J. Mol. Sci.202122191075310.3390/ijms221910753 34639094
    [Google Scholar]
  27. UeyamaT. SakumaM. NakatsujiM. UebiT. HamadaT. AibaA. SaitoN. Rac-dependent signaling from keratinocytes promotes differentiation of intradermal white adipocytes.J. Invest. Dermatol.202014017584.e610.1016/j.jid.2019.06.140 31351086
    [Google Scholar]
  28. KawaiM. RosenC.J. PPARγ: A circadian transcription factor in adipogenesis and osteogenesis.Nat. Rev. Endocrinol.201061162963610.1038/nrendo.2010.155 20820194
    [Google Scholar]
  29. YunJ. MullarkyE. LuC. BoschK.N. KavalierA. RiveraK. RoperJ. ChioI.I.C. GiannopoulouE.G. RagoC. MuleyA. AsaraJ.M. PaikJ. ElementoO. ChenZ. PappinD.J. DowL.E. PapadopoulosN. GrossS.S. CantleyL.C. Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH.Science201535062661391139610.1126/science.aaa5004 26541605
    [Google Scholar]
  30. BallonJ.S. PajvaniU. FreybergZ. LeibelR.L. LiebermanJ.A. Molecular pathophysiology of metabolic effects of antipsychotic medications.Trends Endocrinol. Metab.2014251159360010.1016/j.tem.2014.07.004 25190097
    [Google Scholar]
  31. VestriH.S. MaianuL. MoelleringD.R. GarveyW.T. Atypical antipsychotic drugs directly impair insulin action in adipocytes: Effects on glucose transport, lipogenesis, and antilipolysis.Neuropsychopharmacology200732476577210.1038/sj.npp.1301142 16823387
    [Google Scholar]
  32. GonçalvesP. AraújoJ.R. MartelF. Antipsychotics-induced metabolic alterations: Focus on adipose tissue and molecular mechanisms.Eur. Neuropsychopharmacol.201525111610.1016/j.euroneuro.2014.11.008 25523882
    [Google Scholar]
  33. ChenC.C. HsuL.W. HuangK.T. GotoS. ChenC.L. NakanoT. Overexpression of Insig-2 inhibits atypical antipsychotic-induced adipogenic differentiation and lipid biosynthesis in adipose-derived stem cells.Sci. Rep.2017711090110.1038/s41598‑017‑11323‑9 28883496
    [Google Scholar]
  34. NimuraS. YamaguchiT. UedaK. KadokuraK. AiuchiT. KatoR. ObamaT. ItabeH. Olanzapine promotes the accumulation of lipid droplets and the expression of multiple perilipins in human adipocytes.Biochem. Biophys. Res. Commun.2015467490691210.1016/j.bbrc.2015.10.045 26471304
    [Google Scholar]
  35. BeckerS.K. SponderG. SandhuM.A. TrappeS. KolisekM. AschenbachJ.R. The combined influence of magnesium and insulin on central metabolic functions and expression of genes involved in magnesium homeostasis of cultured bovine adipocytes.Int. J. Mol. Sci.20212211589710.3390/ijms22115897 34072724
    [Google Scholar]
  36. RubertoA.A. LoganS.M. StoreyK.B. Temperature and serine phosphorylation regulate glycerol-3-phosphate dehydrogenase in skeletal muscle of hibernating Richardson’s ground squirrels.Biochem. Cell Biol.201997214815710.1139/bcb‑2018‑0198 30253108
    [Google Scholar]
  37. MaD. ChanM.K. LockstoneH.E. PietschS.R. JonesD.N.C. CiliaJ. HillM.D. RobbinsM.J. BenzelI.M. UmraniaY. GuestP.C. LevinY. MaycoxP.R. BahnS. Antipsychotic treatment alters protein expression associated with presynaptic function and nervous system development in rat frontal cortex.J. Proteome Res.2009873284329710.1021/pr800983p 19400588
    [Google Scholar]
  38. HunterS.J. GarveyW.T. Insulin action and insulin resistance: Diseases involving defects in insulin receptors, signal transduction, and the glucose transport effector system 11In collaboration with The American Physiological Society, Thomas E. Andreoli, MD, Editor.Am. J. Med.1998105433134510.1016/S0002‑9343(98)00300‑3 9809695
    [Google Scholar]
  39. XuK. YinN. PengM. StamatiadesE.G. ChhangawalaS. ShyuA. LiP. ZhangX. DoM.H. CapistranoK.J. ChouC. LeslieC.S. LiM.O. Glycolytic ATP fuels phosphoinositide 3-kinase signaling to support effector T helper 17 cell responses.Immunity2021545976987.e710.1016/j.immuni.2021.04.008 33979589
    [Google Scholar]
  40. XuK. YinN. PengM. StamatiadesE.G. ShyuA. LiP. ZhangX. DoM.H. WangZ. CapistranoK.J. ChouC. LevineA.G. RudenskyA.Y. LiM.O. Glycolysis fuels phosphoinositide 3-kinase signaling to bolster T cell immunity.Science2021371652740541010.1126/science.abb2683 33479154
    [Google Scholar]
  41. WillsonJ.A. ArientiS. SadikuP. ReyesL. CoelhoP. MorrisonT. RinaldiG. DockrellD.H. WhyteM.K.B. WalmsleyS.R. Neutrophil HIF-1alpha stabilisation is augmented by mitochondrial ROS produced via the glycerol 3-phosphate shuttle.Blood2021
    [Google Scholar]
  42. ZhangT. ZhuX. WuH. JiangK. ZhaoG. ShaukatA. DengG. QiuC. Targeting the ROS/PI3K/AKT/HIF-1α/HK2 axis of breast cancer cells: Combined administration of Polydatin and 2-Deoxy-d-glucose.J. Cell. Mol. Med.20192353711372310.1111/jcmm.14276 30920152
    [Google Scholar]
  43. ManningB.D. CantleyL.C. AKT/PKB signaling: Navigating downstream.Cell200712971261127410.1016/j.cell.2007.06.009 17604717
    [Google Scholar]
  44. KrycerJ.R. SharpeL.J. LuuW. BrownA.J. The Akt–SREBP nexus: Cell signaling meets lipid metabolism.Trends Endocrinol. Metab.201021526827610.1016/j.tem.2010.01.001 20117946
    [Google Scholar]
  45. Tello-FloresV.A. Beltrán-AnayaF.O. Ramírez-VargasM.A. Esteban-CasalesB.E. Navarro-TitoN. Alarcón-RomeroL.C. Luciano-VillaC.A. RamírezM. del Moral-HernándezÓ. Flores-AlfaroE. Role of long non-coding RNAs and the molecular mechanisms involved in insulin resistance.Int. J. Mol. Sci.20212214725610.3390/ijms22147256 34298896
    [Google Scholar]
  46. SuY. LiuX. LianJ. DengC. Epigenetic histone modulations of PPARγ and related pathways contribute to olanzapine-induced metabolic disorders.Pharmacol. Res.202015510470310.1016/j.phrs.2020.104703 32068120
    [Google Scholar]
  47. YangL.H. ChenT.M. YuS.T. ChenY.H. Olanzapine induces SREBP-1-related adipogenesis in 3T3-L1 cells.Pharmacol. Res.200756320220810.1016/j.phrs.2007.05.007 17651982
    [Google Scholar]
  48. LaranceM. RammG. JamesD.E. The GLUT4 Code.Mol. Endocrinol.200822222623310.1210/me.2007‑0282 17717074
    [Google Scholar]
  49. LordC.C. WylerS.C. WanR. CastorenaC.M. AhmedN. MathewD. LeeS. LiuC. ElmquistJ.K. The atypical antipsychotic olanzapine causes weight gain by targeting serotonin receptor 2C.J. Clin. Invest.201712793402340610.1172/JCI93362 28805659
    [Google Scholar]
  50. ZapataR.C. OsbornO. Susceptibility of male wild type mouse strains to antipsychotic-induced weight gain.Physiol. Behav.202022011285910.1016/j.physbeh.2020.112859 32156556
    [Google Scholar]
  51. MorganA.P. CrowleyJ.J. NonnemanR.J. QuackenbushC.R. MillerC.N. RyanA.K. BogueM.A. ParedesS.H. YourstoneS. CarrollI.M. KawulaT.H. BowerM.A. SartorR.B. SullivanP.F. The antipsychotic olanzapine interacts with the gut microbiome to cause weight gain in mouse.PLoS One2014912e11522510.1371/journal.pone.0115225 25506936
    [Google Scholar]
  52. WongA.H.C. JosselynS.A. Caution when diagnosing your mouse with schizophrenia: The use and misuse of model animals for understanding psychiatric disorders.Biol. Psychiatry2016791323810.1016/j.biopsych.2015.04.023 26058706
    [Google Scholar]
  53. ChenY. LiS. ZhangT. YangF. LuB. Corticosterone antagonist or TrkB agonist attenuates schizophrenia-like behavior in a mouse model combining Bdnf-e6 deficiency and developmental stress.iScience202225710460910.1016/j.isci.2022.104609 35789832
    [Google Scholar]
  54. GreenhalghA.M. Gonzalez-BlancoL. Garcia-RizoC. Fernandez-EgeaE. MillerB. ArroyoM.B. KirkpatrickB. Meta-analysis of glucose tolerance, insulin, and insulin resistance in antipsychotic-naïve patients with nonaffective psychosis.Schizophr. Res.2017179576310.1016/j.schres.2016.09.026 27743650
    [Google Scholar]
  55. LiS. ChenD. XiuM. LiJ. ZhangX.Y. Prevalence and clinical correlates of impaired glucose tolerance in first-episode versus chronic patients with schizophrenia.Early Interv. Psychiatry2021 34743408
    [Google Scholar]
  56. TownsendL.K. PepplerW.T. BushN.D. WrightD.C. Obesity exacerbates the acute metabolic side effects of olanzapine.Psychoneuroendocrinology20188812112810.1016/j.psyneuen.2017.12.004 29241148
    [Google Scholar]
  57. KowalchukC. CastellaniL.N. ChintohA. RemingtonG. GiaccaA. HahnM.K. Antipsychotics and glucose metabolism: How brain and body collide.Am. J. Physiol. Endocrinol. Metab.20193161E1E1510.1152/ajpendo.00164.2018 29969315
    [Google Scholar]
  58. ChintohA.F. MannS.W. LamL. LamC. CohnT.A. FletcherP.J. NobregaJ.N. GiaccaA. RemingtonG. Insulin resistance and decreased glucose-stimulated insulin secretion after acute olanzapine administration.J. Clin. Psychopharmacol.200828549449910.1097/JCP.0b013e318184b4c5 18794643
    [Google Scholar]
  59. ChintohA.F. MannS.W. LamL. GiaccaA. FletcherP. NobregaJ. RemingtonG. Insulin resistance and secretion in vivo: Effects of different antipsychotics in an animal model.Schizophr. Res.20091081-312713310.1016/j.schres.2008.12.012 19157785
    [Google Scholar]
/content/journals/cn/10.2174/1570159X22666240815120547
Loading
/content/journals/cn/10.2174/1570159X22666240815120547
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): adipocyte; glycolysis; insulin resistance; lipolysis; Olanzapine; PI3K/AKT
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test