Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

The percutaneous technique of electrode insertion in the vicinity of the greater occipital nerves to treat occipital neuralgia was first described in the 1990s by Weiner and Reed. This subsequently stimulated awareness of peripheral nerve stimulation (PNS). The more recent advent emergence of a minimally invasive percutaneous approach by way of using ultrasound has further increased the interest in PNS as a viable alternative to more invasive techniques. PNS has become more popular recently and is increasingly used to treat various pain conditions. Its foundation is fundamentally based on the gate control theory, although the precise mechanism underlying its analgesic effect is still indefinite. Studies have demonstrated the peripheral and central analgesic mechanisms of PNS by modulating the inflammatory pathways, the autonomic nervous system, the endogenous pain inhibition pathways, and the involvement of the cortical and subcortical areas. Peripheral nerve stimulation exhibits its neuromodulatory effect both peripherally and centrally. Further understanding of the modulation of PNS mechanisms can help guide stimulation approaches and parameters to optimize the use of PNS. his chapter aims to review the background and mechanisms of PNS modulation. PNS is becoming one of the most diverse therapies in neuromodulation due to rapid evolution and expansion. It is an attractive option for clinicians due to the simplicity and versatility of procedures that can be combined with other neuromodulation treatments or used alone. It has a distinct role in the modulation of functional conditions.

Loading

Article metrics loading...

/content/journals/cn/10.2174/1570159X21666230803100400
2024-01-01
2024-10-13
Loading full text...

Full text loading...

References

  1. HeinricherM.M. TavaresI. LeithJ.L. LumbB.M. Descending control of nociception: Specificity, recruitment and plasticity.Brain Res. Brain Res. Rev.200960121422510.1016/j.brainresrev.2008.12.00919146877
    [Google Scholar]
  2. WoolfC.J. SalterM.W. Neuronal plasticity: increasing the gain in pain.Science200028854721765176810.1126/science.288.5472.176510846153
    [Google Scholar]
  3. PierceP.A. XieG.X. LevineJ.D. PeroutkaS.J. 5-hydroxy-tryptamine receptor subtype messenger RNAs in rat peripheral sensory and sympathetic ganglia: A polymerase chain reaction study.Neuroscience199670255355910.1016/0306‑4522(95)00329‑08848158
    [Google Scholar]
  4. OdemM.A. BavencoffeA.G. CassidyR.M. LopezE.R. TianJ. DessauerC.W. WaltersE.T. Isolated nociceptors reveal multiple specializations for generating irregular ongoing activity associated with ongoing pain.Pain2018159112347236210.1097/j.pain.000000000000134130015712
    [Google Scholar]
  5. QinH. LuoJ. QiS. XuH. SungJ.J.Y. BianZ. Visceral hypersensitivity induced by activation of transient receptor potential vanilloid type 1 is mediated through the serotonin pathway in rat colon.Eur. J. Pharmacol.20106471-3758310.1016/j.ejphar.2010.08.01920826151
    [Google Scholar]
  6. NakajimaK. ObataH. ItoN. GotoF. SaitoS. The nociceptive mechanism of 5-hydroxytryptamine released into the peripheral tissue in acute inflammatory pain in rats.Eur. J. Pain200913544144710.1016/j.ejpain.2008.06.00718656400
    [Google Scholar]
  7. HansenN. ÜçeylerN. PalmF. ZelenkaM. BikoL. LeschK.P. GerlachM. SommerC. Serotonin transporter deficiency protects mice from mechanical allodynia and heat hyperalgesia in vincristine neuropathy.Neurosci. Lett.20114952939710.1016/j.neulet.2011.03.03521419830
    [Google Scholar]
  8. ErnbergM. Hedenberg-MagnussonB. KuritaH. KoppS. Effects of local serotonin administration on pain and microcirculation in the human masseter muscle.J. Orofac. Pain200620324124816913434
    [Google Scholar]
  9. ErnbergM. LundebergT. KoppS. Effect of propranolol and granisetron on experimentally induced pain and allodynia/hyperalgesia by intramuscular injection of serotonin into the human masseter muscle.Pain200084233934610.1016/S0304‑3959(99)00221‑310666539
    [Google Scholar]
  10. CarltonS.M. HargettG.L. CoggeshallR.E. Localization and activation of glutamate receptors in unmyelinated axons of rat glabrous skin.Neurosci. Lett.19951971252810.1016/0304‑3940(95)11889‑58545047
    [Google Scholar]
  11. McNearneyT. SpeegleD. LawandN. LisseJ. WestlundK.N. Excitatory amino acid profiles of synovial fluid from patients with arthritis.J. Rheumatol.200027373974510743819
    [Google Scholar]
  12. SteinC. ClarkJ.D. OhU. VaskoM.R. WilcoxG.L. OverlandA.C. VanderahT.W. SpencerR.H. Peripheral mechanisms of pain and analgesia.Brain Res. Brain Res. Rev.20096019011310.1016/j.brainresrev.2008.12.01719150465
    [Google Scholar]
  13. SteinC. Targeting pain and inflammation by peripherally acting opioids.Front. Pharmacol.2013412310.3389/fphar.2013.0012324068999
    [Google Scholar]
  14. SteinC. MillanM.J. ShippenbergT.S. PeterK. HerzA. Peripheral opioid receptors mediating antinociception in inflammation. Evidence for involvement of mu, delta and kappa receptors.J. Pharmacol. Exp. Ther.19892483126912752539460
    [Google Scholar]
  15. ZöllnerC. SteinC. Opioids.Handb. Exp. Pharmacol.2007177316317087119
    [Google Scholar]
  16. Sánchez-FernándezC. Montilla-GarcíaÁ. González-CanoR. NietoF.R. RomeroL. Artacho-CordónA. MontesR. Fernández-PastorB. MerlosM. BaeyensJ.M. EntrenaJ.M. CobosE.J. Modulation of peripheral μ-opioid analgesia by σ1 receptors.J. Pharmacol. Exp. Ther.20143481324510.1124/jpet.113.20827224155346
    [Google Scholar]
  17. GuanY. JohanekL.M. HartkeT.V. ShimB. TaoY.X. RingkampM. MeyerR.A. RajaS.N. Peripherally acting mu-opioid receptor agonist attenuates neuropathic pain in rats after L5 spinal nerve injury.Pain2008138231832910.1016/j.pain.2008.01.00418276075
    [Google Scholar]
  18. EisenachJ.C. CarpenterR. CurryR. Analgesia from a peripherally active κ-opioid receptor agonist in patients with chronic pancreatitis.Pain20031011899510.1016/S0304‑3959(02)00259‑212507703
    [Google Scholar]
  19. MangelA.W. BornsteinJ.D. HammL.R. BudaJ. WangJ. IrishW. UrsoD. Clinical trial: asimadoline in the treatment of patients with irritable bowel syndrome.Aliment. Pharmacol. Ther.200828223924910.1111/j.1365‑2036.2008.03730.x18466359
    [Google Scholar]
  20. WallaceM.S. MoulinD. ClarkA.J. WassermanR. NealeA. Morley-ForsterP. CastaigneJ.P. TeichmanS. A Phase II, multicenter, randomized, double-blind, placebo-controlled crossover study of CJC-1008-a long-acting, parenteral opioid analgesic-in the treatment of postherpetic neuralgia.J. Opioid. Manag.20062316717310.5055/jom.2006.002617319450
    [Google Scholar]
  21. TegederI. MeierS. BurianM. SchmidtH. GeisslingerG. LötschJ. Peripheral opioid analgesia in experimental human pain models.Brain200312651092110210.1093/brain/awg11512690049
    [Google Scholar]
  22. HannaM.H. ElliottK.M. FungM. Randomized, double-blind study of the analgesic efficacy of morphine-6-glucuronide versus morphine sulfate for postoperative pain in major surgery.Anesthesiology2005102481582110.1097/00000542‑200504000‑0001815791112
    [Google Scholar]
  23. TorebjörkH.E. HallinR.G. Responses in human A and C fibres to repeated electrical intradermal stimulation.J. Neurol. Neurosurg. Psychiatry197437665366410.1136/jnnp.37.6.6534844133
    [Google Scholar]
  24. DeerT. JainS. HunterC. ChakravarthyK. Neurostimulation for intractable chronic pain.Brain Sci.2019922310.3390/brainsci902002330682776
    [Google Scholar]
  25. DeogaonkarM. Peripheral neuromodulation for chronic pain.Neurol. India202068822410.4103/0028‑3886.30245133318355
    [Google Scholar]
  26. IlfeldB.M. FinneranJ.J.IV Cryoneurolysis and percutaneous peripheral nerve stimulation to treat acute pain.Anesthesiology202013351127114910.1097/ALN.000000000000353232898231
    [Google Scholar]
  27. IlfeldB.M. PlunkettA. VijjeswarapuA.M. HackworthR. DhanjalS. TuranA. CohenS.P. EisenachJ.C. GriffithS. HanlingS. SesslerD.I. MaschaE.J. YangD. BoggsJ.W. WongsarnpigoonA. GelfandH. Percutaneous peripheral nerve stimulation (neuromodulation) for postoperative pain: A randomized, sham-controlled pilot study.Anesthesiology202113519511010.1097/ALN.000000000000377633856424
    [Google Scholar]
  28. IlfeldB.M. GilmoreC.A. ChaeJ. Percutaneous peripheral nerve stimulation for the treatment of postoperative pain following total knee arthroplasty.Neuromodulation2016191056230024078
    [Google Scholar]
  29. IlfeldB.M. GabrielR.A. SaidE.T. MonahanA.M. SztainJ.F. AbramsonW.B. KhatibiB. FinneranJ.J.IV JaegerP.T. SchwartzA.K. AhmedS.S. Ultrasound-guided percutaneous peripheral nerve stimulation: neuromodulation of the sciatic nerve for postoperative analgesia following ambulatory foot surgery, a proof-of-concept study.Reg. Anesth. Pain Med.201843658058910.1097/AAP.000000000000081929905630
    [Google Scholar]
  30. IlfeldB.M. GilmoreC.A. GrantS.A. BolognesiM.P. Del GaizoD.J. WongsarnpigoonA. BoggsJ.W. Ultrasound-guided percutaneous peripheral nerve stimulation for analgesia following total knee arthroplasty: A prospective feasibility study.J. Orthop. Surg. Res.2017121410.1186/s13018‑016‑0506‑728086940
    [Google Scholar]
  31. IlfeldB.M. GrantS.A. GilmoreC.A. ChaeJ. WilsonR.D. WongsarnpigoonA. BoggsJ.W. Neurostimulation for postsurgical analgesia: A novel system enabling ultrasound-guided percutaneous peripheral nerve stimulation.Pain Pract.201717789290110.1111/papr.1253927910257
    [Google Scholar]
  32. WeinerR.L. ReedK.L. Peripheral neurostimulation for control of intractable occipital neuralgia.Neuromodulation19992321722110.1046/j.1525‑1403.1999.00217.x22151211
    [Google Scholar]
  33. DodickD.W. SilbersteinS.D. ReedK.L. DeerT.R. SlavinK.V. HuhB. SharanA.D. NarouzeS. MogilnerA.Y. TrentmanT.L. OrdiaJ. VaismanJ. GoldsteinJ. MekhailN. Safety and efficacy of peripheral nerve stimulation of the occipital nerves for the management of chronic migraine: Long-term results from a randomized, multicenter, double-blinded, controlled study.Cephalalgia201535434435810.1177/033310241454333125078718
    [Google Scholar]
  34. DeerT.R. GilmoreC.A. DesaiM.J. LiS. DePalmaM.J. HopkinsT.J. BurgherA.H. SpinnerD.A. CohenS.P. McGeeM.J. BoggsJ.W. Corrigendum to: Percutaneous PNS of the medial branch nerves for the treatment of chronic axial back pain in patients following radiofrequency ablation.Pain Med.2021228189010.1093/pm/pnab13933956970
    [Google Scholar]
  35. PlazierM. VannesteS. DekelverI. ThimineurM. De RidderD. Peripheral nerve stimulation for fibromyalgia.Prog. Neurol. Surg.20112413314610.1159/00032304621422784
    [Google Scholar]
  36. YangF. ZhangT. TiwariV. ShuB. ZhangC. WangY. Vera-PortocarreroL.P. RajaS.N. GuanY. Effects of combined electrical stimulation of the dorsal column and dorsal roots on wide-dynamic-range neuronal activity in nerve-injured rats.Neuromodulation201518759259810.1111/ner.1234126307526
    [Google Scholar]
  37. JeongY. BaikE.J. NamT.S. PaikK.S. Effects of iontophoretically applied naloxone, picrotoxin and strychnine on dorsal horn neuron activities treated with high frequency conditioning stimulation in cats.Yonsei Med. J.199536433634710.3349/ymj.1995.36.4.3367483677
    [Google Scholar]
  38. FritzA.V. Ferreira-Dos-SantosG. HurdleM.F. ClendenenS. Ultrasound-guided percutaneous peripheral nerve stimulation for the treatment of complex regional pain syndrome type 1 following a crush injury to the fifth digit: A rare case report.Cureus20191112e650610.7759/cureus.650632025427
    [Google Scholar]
  39. GilmoreC. IlfeldB. RosenowJ. LiS. DesaiM. HunterC. RauckR. KapuralL. NaderA. MakJ. CohenS. CrosbyN. BoggsJ. Percutaneous peripheral nerve stimulation for the treatment of chronic neuropathic postamputation pain: a multicenter, randomized, placebo-controlled trial.Reg. Anesth. Pain Med.201944663764510.1136/rapm‑2018‑10010930954936
    [Google Scholar]
  40. FredericoT.N. da Silva FreitasT. Peripheral nerve stimulation of the brachial plexus for chronic refractory CRPS pain of the upper limb: description of a new technique and case series.Pain Med.2020211S18S2610.1093/pm/pnaa20132804227
    [Google Scholar]
  41. ChakravarthyK.V. XingF. BrunoK. KentA.R. RazaA. HurlemannR. KinfeT.M. A review of spinal and peripheral neuromodulation and neuroinflammation: Lessons learned thus far and future prospects of biotype development.Neuromodulation201922323524310.1111/ner.1285930311715
    [Google Scholar]
/content/journals/cn/10.2174/1570159X21666230803100400
Loading
/content/journals/cn/10.2174/1570159X21666230803100400
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test