Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

A majority of older patients suffer from neuropathic pain (NP) that significantly alters their daily activities and imposes a significant burden on health care. Multiple comorbidities and the risk of polypharmacy in the elderly make it challenging to determine the appropriate drug, dosage, and maintenance of therapy. Age-dependent processes play a contributing role in neuropathy given that diabetic neuropathy (DN) is the most common form of neuropathy. This narrative review is mainly focused on the drug treatment approach for neuropathy-associated pain in aged people including both drugs and dietary supplements, considering the latter as add-on mechanism-based treatments to increase the effectiveness of usual treatments by implementing their activity or activating other analgesic pathways. On one hand, the limited clinical studies assessing the effectiveness and the adverse effects of existing pain management options in this age segment of the population (> 65), on the other hand, the expanding global demographics of the elderly contribute to building up an unresolved pain management problem that needs the attention of healthcare providers, researchers, and health authorities as well as the expansion of the current therapeutic options.

Loading

Article metrics loading...

/content/journals/cn/10.2174/1570159X21666230807103642
2024-01-01
2025-01-11
Loading full text...

Full text loading...

References

  1. FinnerupN.B. AttalN. HaroutounianS. McNicolE. BaronR. DworkinR.H. GilronI. HaanpääM. HanssonP. JensenT.S. KamermanP.R. LundK. MooreA. RajaS.N. RiceA.S.C. RowbothamM. SenaE. SiddallP. SmithB.H. WallaceM. Pharmacotherapy for neuropathic pain in adults: A systematic review and meta-analysis.Lancet Neurol.201514216217310.1016/S1474‑4422(14)70251‑025575710
    [Google Scholar]
  2. AllegriN. MennuniS. RulliE. VanacoreN. CorliO. FlorianiI. Systematic review and meta-analysis on neuropsychological effects of long-term use of opioids in patients with chronic noncancer pain.Pain Pract.201819332834310.1111/papr.12741
    [Google Scholar]
  3. TsaiY.I. BrowneG. InderK.J. Nurses’ perspectives of pain assessment and management in dementia care in hospital.Australas. J. Ageing202342238239110.1111/ajag.13146
    [Google Scholar]
  4. TsaiY.I.P. BrowneG. InderK.J. The effectiveness of interventions to improve pain assessment and management in people living with dementia: A systematic review and meta‐analyses.J. Adv. Nurs.20217731127114010.1111/jan.1466033222273
    [Google Scholar]
  5. CollocaL. LudmanT. BouhassiraD. BaronR. DickensonA.H. YarnitskyD. FreemanR. TruiniA. AttalN. FinnerupN.B. EcclestonC. KalsoE. BennettD.L. DworkinR.H. RajaS.N. Neuropathic pain.Nat. Rev. Dis. Primers2017311700210.1038/nrdp.2017.228205574
    [Google Scholar]
  6. KandilA. PerretD. Classification of Neuropathic Pain.Neuropathic Pain.Oxford, UKOxford University Press2018111610.1093/med/9780190298357.003.0002
    [Google Scholar]
  7. GiovanniniS. CoraciD. BrauF. GalluzzoV. LoretiC. CaliandroP. PaduaL. MaccauroG. BiscottiL. BernabeiR. Neuropathic pain in the elderly.Diagnostics202111461310.3390/diagnostics1104061333808121
    [Google Scholar]
  8. SalmanR.R. DelbariA. Asadi-LariM. RashediV. LökkJ. Neuropathic pain prevalence of older adults in an urban area of Iran: A population-based study.Pain Res. Treat.201920191810.1155/2019/901569530719350
    [Google Scholar]
  9. StompórM. GrodzickiT. StompórT. WordliczekJ. DubielM. KurowskaI. Prevalence of chronic pain, particularly with neuropathic component, and its effect on overall functioning of elderly patients.Med. Sci. Monit.2019252695270110.12659/MSM.91126031018630
    [Google Scholar]
  10. van HeckeO. AustinS.K. KhanR.A. SmithB.H. TorranceN. Neuropathic pain in the general population: A systematic review of epidemiological studies.Pain2014155465466210.1016/j.pain.2013.11.01324291734
    [Google Scholar]
  11. LoeserJ.D. TreedeR.D. The kyoto protocol of IASP basic pain terminology.Pain2008137347347710.1016/j.pain.2008.04.02518583048
    [Google Scholar]
  12. WoodM. Understanding pain in herpes zoster: An essential for optimizing treatment.J. Infect. Dis.2002186S1S78S8210.1086/34295812353191
    [Google Scholar]
  13. KieseierB.C. MatheyE.K. SommerC. HartungH.P. Immune-mediated neuropathies.Nat. Rev. Dis. Primers2018413110.1038/s41572‑018‑0027‑230310069
    [Google Scholar]
  14. BelminJ. ValensiP. Diabetic neuropathy in elderly patients. What can be done?Drugs Aging19968641642910.2165/00002512‑199608060‑000038736625
    [Google Scholar]
  15. VinikA.I. StrotmeyerE.S. NakaveA.A. PatelC.V. Diabetic neuropathy in older adults.Clin. Geriatr. Med.2008243407435v.10.1016/j.cger.2008.03.01118672180
    [Google Scholar]
  16. Pop-BusuiR. BoultonA.J.M. FeldmanE.L. BrilV. FreemanR. MalikR.A. SosenkoJ.M. ZieglerD. Diabetic neuropathy: A position statement by the american diabetes association.Diabetes Care201740113615410.2337/dc16‑204227999003
    [Google Scholar]
  17. PfannkucheA. AlhajjarA. MingA. WalterI. PiehlerC. MertensP.R. Prevalence and risk factors of diabetic peripheral neuropathy in a diabetics cohort: Register initiative diabetes and nerves.End. Metabol. Sci.202011-210005310.1016/j.endmts.2020.100053
    [Google Scholar]
  18. DaviesM. BrophyS. WilliamsR. TaylorA. The prevalence, severity, and impact of painful diabetic peripheral neuropathy in type 2 diabetes.Diabetes Care20062971518152210.2337/dc05‑222816801572
    [Google Scholar]
  19. DyckP.J. KratzK.M. KarnesJ.L. LitchyW.J. KleinR. PachJ.M. WilsonD.M. O’BrienP.C. MeltonL.J.III ServiceF.J. The prevalence by staged severity of various types of diabetic neuropathy, retinopathy, and nephropathy in a population-based cohort: The Rochester Diabetic Neuropathy Study.Neurology199343481782410.1212/WNL.43.4.8178469345
    [Google Scholar]
  20. SimoN. Kuate-TegueuC. Ngankou-TchankeuS. DoumbeJ. MaigaY. CesariM. DartiguesJ.F. KengneA.P. Tabue-TeguoM. Correlates of diabetic polyneuropathy of the elderly in Sub-Saharan Africa.PLoS One20201510e024060210.1371/journal.pone.024060233119646
    [Google Scholar]
  21. BadercaF. TimarB. PopescuS. SimuM. DiaconuL. VeleaI. TimarR. Age as an independent factor for the development of neuropathy in diabetic patients.Clin. Interv. Aging20161131310.2147/CIA.S97295
    [Google Scholar]
  22. PoliakovI. TothC. The impact of pain in patients with polyneuropathy.Eur. J. Pain201115101015102210.1016/j.ejpain.2011.04.01321600817
    [Google Scholar]
  23. TracyB. Sean MorrisonR. Pain management in older adults.Clin. Ther.201335111659166810.1016/j.clinthera.2013.09.02624148553
    [Google Scholar]
  24. DefrinR. AmanzioM. de TommasoM. DimovaV. FilipovicS. FinnD.P. Gimenez-LlortL. InvittoS. Jensen-DahmC. LautenbacherS. OostermanJ.M. PetriniL. PickC.G. PickeringG. VaseL. KunzM. Experimental pain processing in individuals with cognitive impairment.Pain201515681396140810.1097/j.pain.000000000000019526181216
    [Google Scholar]
  25. HicksC.W. SelvinE. Epidemiology of peripheral neuropathy and lower extremity disease in diabetes.Curr. Diab. Rep.201919108610.1007/s11892‑019‑1212‑831456118
    [Google Scholar]
  26. GiovanniniS. OnderG. LeeuwenburghC. CarterC. MarzettiE. RussoA. CapoluongoE. PahorM. BernabeiR. LandiF. Myeloperoxidase levels and mortality in frail community-living elderly individuals.J. Gerontol. A Biol. Sci. Med. Sci.201065A436937610.1093/gerona/glp18320064836
    [Google Scholar]
  27. EdwardsJ.L. VincentA.M. ChengH.T. FeldmanE.L. Diabetic neuropathy: Mechanisms to management.Pharmacol. Ther.2008120113410.1016/j.pharmthera.2008.05.00518616962
    [Google Scholar]
  28. Pop-BusuiR. SimaA. StevensM. Diabetic neuropathy and oxidative stress.Diabetes Metab. Res. Rev.200622425727310.1002/dmrr.62516506271
    [Google Scholar]
  29. BruunsgaardH. PedersenM. PedersenB.K. Aging and proinflammatory cytokines.Curr. Opin. Hematol.20018313113610.1097/00062752‑200105000‑0000111303144
    [Google Scholar]
  30. TakeshitaY. SatoR. KandaT. Blood-Nerve Barrier (BNB) pathology in diabetic peripheral neuropathy and in vitro human BNB model.Int. J. Mol. Sci.20202216210.3390/ijms2201006233374622
    [Google Scholar]
  31. XuX. WangB. RenC. HuJ. GreenbergD.A. ChenT. XieL. JinK. Age-related impairment of vascular structure and functions.Aging Dis.20178559061010.14336/AD.2017.043028966804
    [Google Scholar]
  32. JaruchartT. SuwanwelaN.C. TanakaH. SuksomD. Arterial stiffness is associated with age-related differences in cerebrovascular conductance.Exp. Gerontol.201673596410.1016/j.exger.2015.11.00626571202
    [Google Scholar]
  33. PeruccaE. BerlowitzD. BirnbaumA. CloydJ.C. GarrardJ. HanlonJ.T. LevyR.H. PughM.J. Pharmacological and clinical aspects of antiepileptic drug use in the elderly.Epilepsy Res.200668Suppl. 1496310.1016/j.eplepsyres.2005.07.01716207524
    [Google Scholar]
  34. CusackB.J. Pharmacokinetics in older persons.Am. J. Geriatr. Pharmacother.20042427430210.1016/j.amjopharm.2004.12.00515903286
    [Google Scholar]
  35. BurrisJ.E. Pharmacologic approaches to geriatric pain management11No commercial party having a direct financial interest in the results of the research supporting this article has or will confer a benefit upon the authors(s) or upon any organization with which the author(s) is/are associated.Arch. Phys. Med. Rehabil.2004857Suppl. 3454910.1016/j.apmr.2004.03.01115221725
    [Google Scholar]
  36. Pharmacodynamics in Older Adults - Geriatrics. MSD Manual Professional Edition. Available from: https://www.msdmanuals.com/professional/geriatrics/drug-therapy-in-older-adults/pharmacodynamics-in-older-adults
  37. BatesD. SchultheisB.C. HanesM.C. JollyS.M. ChakravarthyK.V. DeerT.R. LevyR.M. HunterC.W. A Comprehensive algorithm for management of neuropathic pain.Pain Med.201920Suppl. 1S2S1210.1093/pm/pnz07531152178
    [Google Scholar]
  38. SemelD. MurphyT.K. ZlatevaG. CheungR. EmirB. Evaluation of the safety and efficacy of pregabalin in older patients with neuropathic pain: results from a pooled analysis of 11 clinical studies.BMC Fam. Pract.20101118510.1186/1471‑2296‑11‑8521054853
    [Google Scholar]
  39. DallocchioC. BuffaC. MazzarelloP. ChiroliS. Gabapentin vs. amitriptyline in painful diabetic neuropathy: An open-label pilot study.J. Pain Symptom Manage.200020428028510.1016/S0885‑3924(00)00181‑011027910
    [Google Scholar]
  40. BoyleJ. ErikssonM.E.V. GribbleL. GouniR. JohnsenS. CoppiniD.V. KerrD. Randomized, placebo-controlled comparison of amitriptyline, duloxetine, and pregabalin in patients with chronic diabetic peripheral neuropathic pain: Impact on pain, polysomnographic sleep, daytime functioning, and quality of life.Diabetes Care201235122451245810.2337/dc12‑065622991449
    [Google Scholar]
  41. WatsonP.C.N. MoulinD. Watt-WatsonJ. GordonA. EisenhofferJ. Controlled-release oxycodone relieves neuropathic pain: a randomized controlled trial in painful diabetic neuropathy.Pain20031051717810.1016/S0304‑3959(03)00160‑X14499422
    [Google Scholar]
  42. WasanA. OssannaM. RaskinJ. WernickeJ. RobinsonM. HallJ. EdwardsS. LipsiusS. MeyersA. McCarbergB. Safety and efficacy of duloxetine in the treatment of diabetic peripheral neuropathic pain in older patients.Curr. Drug Saf.200941222910.2174/15748860978735440419149522
    [Google Scholar]
  43. CruccuG. TruiniA. A review of neuropathic pain: from guidelines to clinical practice.Pain Ther.20176Suppl. 1354210.1007/s40122‑017‑0087‑029178033
    [Google Scholar]
  44. FerrellB.A. Pain Management.Hazzard’s Geriatric Medicine and Gerontology7th ed; Halter, J.B.; Ouslander, J.G.; Studenski, S.; High, K.P.; Asthana, S.; Supiano, M.A., Eds.; McGraw-Hill Education: New York2017
    [Google Scholar]
  45. NicholsonB. VermaS. Comorbidities in chronic neuropathic pain.Pain Med.20045Suppl. 1S9S2710.1111/j.1526‑4637.2004.04019.x14996227
    [Google Scholar]
  46. GallagherR. ApostleN. Peripheral edema with pregabalin.CMAJ201318510E506E50610.1503/cmaj.12123223128284
    [Google Scholar]
  47. AzmiS. ElHaddK.T. NelsonA. ChapmanA. BowlingF.L. PerumbalathA. LimJ. MarshallA. MalikR.A. AlamU. Pregabalin in the management of painful diabetic neuropathy: a narrative review.Diabetes Ther.2019101355610.1007/s13300‑018‑0550‑x30565054
    [Google Scholar]
  48. UsmaniH. AmirS.H. NasreenF. SiddiqiS. HasanM. TauheedN. Pregabalin versus oxcarbazepine in painful diabetic neuropathy in elderly population: Efficacy and safety in terms of pain relief, cognitive function, and overall quality of life.Indian J. Pain20183214010.4103/ijpn.ijpn_76_17
    [Google Scholar]
  49. NasreddineW. BeydounA. Oxcarbazepine in neuropathic pain.Expert Opin. Investig. Drugs200716101615162510.1517/13543784.16.10.161517922625
    [Google Scholar]
  50. GilronI. BaileyJ.M. TuD. HoldenR.R. JacksonA.C. HouldenR.L. Nortriptyline and gabapentin, alone and in combination for neuropathic pain: a double-blind, randomised controlled crossover trial.Lancet200937496971252126110.1016/S0140‑6736(09)61081‑319796802
    [Google Scholar]
  51. RowbothamM.C. GoliV. KunzN.R. LeiD. Venlafaxine extended release in the treatment of painful diabetic neuropathy: a double-blind, placebo-controlled study.Pain2004110369770610.1016/j.pain.2004.05.01015288411
    [Google Scholar]
  52. AiyerR. BarkinR.L. BhatiaA. Treatment of neuropathic pain with venlafaxine: A systematic review.Pain Med.201718101999201210.1093/pm/pnw26127837032
    [Google Scholar]
  53. ChengC.W.H. WongC.S.M. HuiG.K.M. ChungE.K.N. WongS.H.S. Fibromyalgia: is it a neuropathic pain?Pain Manag. (Lond.)20188537738810.2217/pmt‑2018‑002430212264
    [Google Scholar]
  54. Datta GuptaA. EdwardsS. SmithJ. SnowJ. VisvanathanR. TuckerG. WilsonD. A Systematic review and meta-analysis of efficacy of botulinum toxin a for neuropathic Pain.Toxins20221413610.3390/toxins1401003635051013
    [Google Scholar]
  55. EgeoG. FofiL. BarbantiP. Botulinum neurotoxin for the treatment of neuropathic pain.Front. Neurol.20201171610.3389/fneur.2020.0071632849195
    [Google Scholar]
  56. DidangelosT. KarlaftiE. KotzakioulafiE. MargaritiE. GiannoulakiP. BatanisG. TesfayeS. KantartzisK. Vitamin B12 supplementation in diabetic neuropathy: A 1-year, randomized, double-blind, placebo-controlled trial.Nutrients202113239510.3390/nu1302039533513879
    [Google Scholar]
  57. MillerJ.W. Proton pump inhibitors, H2-receptor antagonists, metformin, and vitamin B12 deficiency: clinical implications.Adv. Nutr.201894511S518S10.1093/advances/nmy02330032223
    [Google Scholar]
  58. AlvarezM. SierraO.R. SaavedraG. MorenoS. Vitamin B12 deficiency and diabetic neuropathy in patients taking metformin: A cross-sectional study.Endocr. Connect.20198101324132910.1530/EC‑19‑038231518991
    [Google Scholar]
  59. PutzZ. TordaiD. HajdúN. VágiO.E. KemplerM. BékeffyM. KöreiA.E. IstenesI. HorváthV. StoianA.P. RizzoM. PapanasN. KemplerP. Vitamin D in the prevention and treatment of diabetic neuropathy.Clin. Ther.202244581382310.1016/j.clinthera.2022.03.01235428527
    [Google Scholar]
  60. PutzZ. MartosT. NémethN. KöreiA.E. VágiO.E. KemplerM.S. KemplerP. Is there an association between diabetic neuropathy and low vitamin D levels?Curr. Diab. Rep.2014141053710.1007/s11892‑014‑0537‑625142719
    [Google Scholar]
  61. GarcionE. Wion-BarbotN. Montero-MeneiC.N. BergerF. WionD. New clues about vitamin D functions in the nervous system.Trends Endocrinol. Metab.200213310010510.1016/S1043‑2760(01)00547‑111893522
    [Google Scholar]
  62. ZhangY. GongS. HeL. ZhouM. GuoJ. HokeA. ZhuC. Nerve growth factor for neuropathic pain.Cochrane Libr.2017201711CDD1280010.1002/14651858.CD012800
    [Google Scholar]
  63. KhanN. SmithM. Neurotrophins and neuropathic pain: role in pathobiology.Molecules2015206106571068810.3390/molecules20061065726065639
    [Google Scholar]
  64. McArthurJ.C. YiannoutsosC. SimpsonD.M. AdornatoB.T. SingerE.J. HollanderH. MarraC. RubinM. CohenB.A. TuckerT. NaviaB.A. SchifittoG. KatzensteinD. RaskC. ZaborskiL. SmithM.E. ShriverS. MillarL. CliffordD.B. KaralnikI.J. A phase II trial of nerve growth factor for sensory neuropathy associated with HIV infection.Neurology20005451080108810.1212/WNL.54.5.108010720278
    [Google Scholar]
  65. RiazS. MalcangioM. MillerM. TomlinsonD.R. A vitamin D 3 derivative (CB1093) induces nerve growth factor and prevents neurotrophic deficits in streptozotocin-diabetic rats.Diabetologia199942111308131310.1007/s00125005144310550414
    [Google Scholar]
  66. LlewellynD.J. LangI.A. LangaK.M. Muniz-TerreraG. PhillipsC.L. CherubiniA. FerrucciL. MelzerD. Vitamin D and risk of cognitive decline in elderly persons.Arch. Intern. Med.2010170131135114110.1001/archinternmed.2010.17320625021
    [Google Scholar]
  67. WionD. MacgroganD. NeveuI. JehanF. HoulgatteR. BrachetP. 1,25-Dihydroxyvitamin D3 is a potent inducer of nerve growth factor synthesis.J. Neurosci. Res.199128111011410.1002/jnr.4902801111904101
    [Google Scholar]
  68. CornetA. BaudetC. NeveuI. Baron-Van EvercoorenA. BrachetP. NaveilhanP. 1,25‐dihydroxyvitamin D3 regulates the expression of VDR and NGF gene in Schwann cells in vitro.J. Neurosci. Res.199853674274610.1002/(SICI)1097‑4547(19980915)53:6<742:AID‑JNR11>3.0.CO;2‑#9753201
    [Google Scholar]
  69. SaporitoM.S. BrownE.R. HartpenceK.C. WilcoxH.M. VaughtJ.L. CarswellS. Chronic 1,25-dihydroxyvitamin D3-mediated induction of nerve growth factor mRNA and protein in L929 fibroblasts and in adult rat brain.Brain Res.19946331-218919610.1016/0006‑8993(94)91539‑38137156
    [Google Scholar]
  70. NaveilhanP. NeveuI. WionD. BrachetP. 1,25-Dihydroxyvitamin D3, an inducer of glial cell line-derived neurotrophic factor.Neuroreport19967132171217510.1097/00001756‑199609020‑000238930983
    [Google Scholar]
  71. NeveuI. NaveilhanP. BaudetC. BrachetP. MetsisM. 1,25-Dihydroxyvitamin D3 regulates NT-3, NT-4 but not BDNF mRNA in astrocytes.Neuroreport19946112412610.1097/00001756‑199412300‑000327703399
    [Google Scholar]
  72. WangJ.Y. WuJ.N. CherngT.L. HofferB.J. ChenH.H. BorlonganC.V. WangY. Vitamin D3 attenuates 6-hydroxydopamine-induced neurotoxicity in rats.Brain Res.20019041677510.1016/S0006‑8993(01)02450‑711516412
    [Google Scholar]
  73. El SouryM. FornasariB.E. CartaG. ZenF. Haastert-TaliniK. RonchiG. The role of dietary nutrients in peripheral nerve regeneration.Int. J. Mol. Sci.20212214741710.3390/ijms2214741734299037
    [Google Scholar]
  74. GaoZ. FengY. JuH. The different dynamic changes of nerve growth factor in the dorsal horn and dorsal root ganglion leads to hyperalgesia and allodynia in diabetic neuropathic pain.Pain Physician2017204E551E56128535564
    [Google Scholar]
  75. LeeP. ChenR. Vitamin D as an analgesic for patients with type 2 diabetes and neuropathic pain.Arch. Intern. Med.2008168777177210.1001/archinte.168.7.77118413561
    [Google Scholar]
  76. AlamU. NajamO. Al-HimdaniS. BenolielS. JinadevP. BerryJ.L. KewM. AsgharO. PetropoulosI.N. MalikR.A. Marked vitamin D deficiency in patients with diabetes in the UK: ethnic and seasonal differences and an association with dyslipidaemia.Diabet. Med.201229101343134510.1111/j.1464‑5491.2012.03692.x22507464
    [Google Scholar]
  77. Ghadiri-AnariA. MozafariZ. GholamiS. KhodaeiS.A. Aboutorabi-zarchiM. SepehriF. NadjarzadeA. RahmanianM. NamiranianN. Dose vitamin D supplementations improve peripheral diabetic neuropathy? A before-after clinical trial.Diabetes Metab. Syndr.201913189089310.1016/j.dsx.2018.12.01430641826
    [Google Scholar]
  78. XiaohuaG. DongdongL. XiaotingN. ShuopingC. FeixiaS. HuajunY. QiZ. ZimiaoC. Severe vitamin D deficiency is associated with increased expression of inflammatory cytokines in painful diabetic peripheral neuropathy.Front. Nutr.2021861206810.3389/fnut.2021.61206833777989
    [Google Scholar]
  79. KwederH. EidiH. Vitamin D deficiency in elderly: Risk factors and drugs impact on vitamin D status.Avicenna J. Med.20188413914610.4103/ajm.AJM_20_1830319955
    [Google Scholar]
  80. YammineK. WehbeR. AssiC. A systematic review on the efficacy of vitamin D supplementation on diabetic peripheral neuropathy.Clin. Nutr.202039102970297410.1016/j.clnu.2020.01.02232089370
    [Google Scholar]
  81. MarchesiN. GovoniS. AllegriM. Non‐drug pain relievers active on non‐opioid pain mechanisms.Pain Pract.202222225527510.1111/papr.1307334498362
    [Google Scholar]
  82. HakimizadR. SoltaniR. KhorvashF. MarjaniM. DastanF. The effect of acetyl-L-carnitine, alpha-lipoic acid, and coenzyme Q10 combination in preventing anti-tuberculosis drug-induced hepatotoxicity: a randomized, double-blind, placebo-controlled clinical trial.Iran. J. Pharm. Res.202120343144010.22037/ijpr.2021.114618.1495334903999
    [Google Scholar]
  83. ColucciW.J. GandourR.D. Carnitine acetyltransferase: A review of its biology, enzymology, and bioorganic chemistry.Bioorg. Chem.198816330733410.1016/0045‑2068(88)90018‑1
    [Google Scholar]
  84. VirmaniM.A. BiselliR. SpadoniA. RossiS. CorsicoN. CalvaniM. FattorossiA. De SimoneC. Arrigoni-MartelliE. Protective actions of l-carnitine and acetyl-l-carnitine on the neurotoxicity evoked by mitochondrial uncoupling or inhibitors.Pharmacol. Res.199532638338910.1016/S1043‑6618(05)80044‑18736490
    [Google Scholar]
  85. SimaA.A. RisticH. MerryA. KamijoM. LattimerS.A. StevensM.J. GreeneD.A. Primary preventive and secondary interventionary effects of acetyl-L-carnitine on diabetic neuropathy in the bio-breeding Worcester rat.J. Clin. Invest.19969781900190710.1172/JCI1186218621774
    [Google Scholar]
  86. HartA.M. WibergM. YouleM. TerenghiG. Systemic acetyl-l-carnitine eliminates sensory neuronal loss after peripheral axotomy: a new clinical approach in the management of peripheral nerve trauma.Exp. Brain Res.2002145218218910.1007/s00221‑002‑1100‑212110958
    [Google Scholar]
  87. Di Cesare MannelliL. GhelardiniC. CalvaniM. NicolaiR. MosconiL. VivoliE. PaciniA. BartoliniA. Protective effect of acetyl-l-carnitine on the apoptotic pathway of peripheral neuropathy.Eur. J. Neurosci.200726482082710.1111/j.1460‑9568.2007.05722.x17714181
    [Google Scholar]
  88. De GrandisD. MinardiC. Acetyl-L-carnitine (levacecarnine) in the treatment of diabetic neuropathy. A long-term, randomised, double-blind, placebo-controlled study.Drugs R D.20023422323110.2165/00126839‑200203040‑0000112455197
    [Google Scholar]
  89. SimaA.A.F. CalvaniM. MehraM. AmatoA. Acetyl-L-carnitine improves pain, nerve regeneration, and vibratory perception in patients with chronic diabetic neuropathy.Diabetes Care2005281899410.2337/diacare.28.1.8915616239
    [Google Scholar]
  90. LiS. ChenX. LiQ. DuJ. LiuZ. PengY. XuM. LiQ. LeiM. WangC. ZhengS. ZhangX. YuH. ShiJ. TaoS. FengP. TianH. Effects of acetyl‐L‐carnitine and methylcobalamin for diabetic peripheral neuropathy: A multicenter, randomized, double‐blind, controlled trial.J. Diabetes Investig.20167577778510.1111/jdi.1249327180954
    [Google Scholar]
  91. RolimL.C.S.P. da SilvaE.M.K. FlumignanR.L.G. AbreuM.M. DibS.A. Acetyl-L-carnitine for the treatment of diabetic peripheral neuropathy.Cochrane Libr.201920196CD01126510.1002/14651858.CD011265.pub231201734
    [Google Scholar]
  92. CataniaV.E. MalaguarneraG. BertinoG. ChisariL.M. CastorinaM. BonfiglioC. CauliO. MalaguarneraM. Acetyl-L-carnitine can slow the progression from prefrailty to frailty in older subjects. A randomized interventional clinical trial.Curr. Pharm. Des.202228383158316610.2174/138161282866622083009281536043711
    [Google Scholar]
  93. ZieglerD. Thioctic acid for patients with symptomatic diabetic polyneuropathy: a critical review.Treat. Endocrinol.20043317318910.2165/00024677‑200403030‑0000516026113
    [Google Scholar]
  94. MijnhoutG.S. KollenB.J. AlkhalafA. KleefstraN. BiloH.J.G. Alpha lipoic Acid for symptomatic peripheral neuropathy in patients with diabetes: a meta-analysis of randomized controlled trials.Int. J. Endocrinol.201220121810.1155/2012/45627922331979
    [Google Scholar]
  95. HanT. BaiJ. LiuW. HuY. Therapy of endocrine disease: A systematic review and meta-analysis of α-lipoic acid in the treatment of diabetic peripheral neuropathy.Eur. J. Endocrinol.2012167446547110.1530/EJE‑12‑055522837391
    [Google Scholar]
  96. ElbadawyA.M. Abd ElmoniemR.O. ElsayedA.M. Alpha lipoic acid and diabetes mellitus: potential effects on peripheral neuropathy and different metabolic parameters.Alex. J. Med.202157111312010.1080/20905068.2021.1907961
    [Google Scholar]
  97. AgathosE. TentolourisA. EleftheriadouI. KatsaouniP. NemtzasI. PetrouA. PapanikolaouC. TentolourisN. Effect of α-lipoic acid on symptoms and quality of life in patients with painful diabetic neuropathy.J. Int. Med. Res.20184651779179010.1177/030006051875654029517942
    [Google Scholar]
  98. FattoriV. HohmannM. RossaneisA. Pinho-RibeiroF. VerriW. Capsaicin: current understanding of its mechanisms and therapy of pain and other pre-clinical and clinical uses.Molecules201621784410.3390/molecules2107084427367653
    [Google Scholar]
  99. ChungM.K. CampbellJ. Use of capsaicin to treat pain: mechanistic and therapeutic considerations.Pharmaceuticals (Basel)2016946610.3390/ph904006627809268
    [Google Scholar]
  100. BaranidharanG. DasS. BhaskarA. A review of the high-concentration capsaicin patch and experience in its use in the management of neuropathic pain.Ther. Adv. Neurol. Disord.20136528729710.1177/175628561349686223997814
    [Google Scholar]
  101. EpsteinJ.B. MarcoeJ.H. Topical application of capsaicin for treatment of oral neuropathic pain and trigeminal neuralgia.Oral Surg. Oral Med. Oral Pathol.199477213514010.1016/0030‑4220(94)90275‑58139830
    [Google Scholar]
  102. CampbellC.M. KipnesM.S. StouchB.C. BradyK.L. KellyM. SchmidtW.K. PetersenK.L. RowbothamM.C. CampbellJ.N. Randomized control trial of topical clonidine for treatment of painful diabetic neuropathy.Pain201215391815182310.1016/j.pain.2012.04.01422683276
    [Google Scholar]
  103. MankowskiC. PooleC.D. ErnaultE. ThomasR. BerniE. CurrieC.J. TreadwellC. CalvoJ.I. PlastiraC. ZafeiropoulouE. OdeyemiI. Effectiveness of the capsaicin 8% patch in the management of peripheral neuropathic pain in European clinical practice: the ASCEND study.BMC Neurol.20171718010.1186/s12883‑017‑0836‑z28431564
    [Google Scholar]
  104. VinikA.I. PerrotS. VinikE.J. PazderaL. JacobsH. StokerM. LongS.K. SnijderR.J. van der StoepM. OrtegaE. KatzN. Capsaicin 8% patch repeat treatment plus standard of care (SOC) versus SOC alone in painful diabetic peripheral neuropathy: a randomised, 52-week, open-label, safety study.BMC Neurol.201616125110.1186/s12883‑016‑0752‑727919222
    [Google Scholar]
  105. MusharrafM.U. AhmadZ. YaqubZ. Comparison of topical capsaicin and topical turpentine Oil for treatment of painful diabetic neuropathy.J. Ayub Med. Coll. Abbottabad201729338438729076666
    [Google Scholar]
  106. GálvezR. NavezM.L. MoyleG. MaihöfnerC. StokerM. ErnaultE. NurmikkoT.J. AttalN. Capsaicin 8% patch repeat treatment in nondiabetic peripheral neuropathic pain.Clin. J. Pain2017331092193110.1097/AJP.000000000000047328872473
    [Google Scholar]
  107. DerryS. LloydR. MooreR.A. McQuayH.J. Topical capsaicin for chronic neuropathic pain in adults.Cochrane Database Syst. Rev.2009CD0073934CD00739310.1002/14651858.CD007393.pub219821411
    [Google Scholar]
  108. DludlaP.V. NkambuleB.B. CirilliI. MarcheggianiF. MabhidaS.E. ZiqubuK. NtamoY. JackB. NyambuyaT.M. HanserS. Mazibuko-MbejeS.E. Capsaicin, its clinical significance in patients with painful diabetic neuropathy.Biomed. Pharmacother.202215311343910.1016/j.biopha.2022.11343936076554
    [Google Scholar]
  109. YuanL.J. QinY. WangL. ZengY. ChangH. WangJ. WangB. WanJ. ChenS.H. ZhangQ.Y. ZhuJ.D. ZhouY. MiM.T. Capsaicin-containing chili improved postprandial hyperglycemia, hyperinsulinemia, and fasting lipid disorders in women with gestational diabetes mellitus and lowered the incidence of large-for-gestational-age newborns.Clin. Nutr.201635238839310.1016/j.clnu.2015.02.01125771490
    [Google Scholar]
  110. CaterinaM.J. SchumacherM.A. TominagaM. RosenT.A. LevineJ.D. JuliusD. The capsaicin receptor: a heat-activated ion channel in the pain pathway.Nature1997389665381682410.1038/398079349813
    [Google Scholar]
  111. CaterinaM.J. LefflerA. MalmbergA.B. MartinW.J. TraftonJ. Petersen-ZeitzK.R. KoltzenburgM. BasbaumA.I. JuliusD. Impaired nociception and pain sensation in mice lacking the capsaicin receptor.Science2000288546430631310.1126/science.288.5464.30610764638
    [Google Scholar]
  112. WangS. JosephJ. DiatchenkoL. RoJ.Y. ChungM.K. Agonist-dependence of functional properties for common nonsynonymous variants of human transient receptor potential vanilloid 1.Pain201615771515152410.1097/j.pain.000000000000055626967694
    [Google Scholar]
  113. PeppinJ.F. PappagalloM. Capsaicinoids in the treatment of neuropathic pain: a review.Ther. Adv. Neurol. Disord.201471223210.1177/175628561350157624409200
    [Google Scholar]
  114. YongY.L. TanL.T.H. MingL.C. ChanK.G. LeeL.H. GohB.H. KhanT.M. The effectiveness and safety of topical capsaicin in postherpetic neuralgia: a systematic review and meta-analysis.Front. Pharmacol.2017753810.3389/fphar.2016.0053828119613
    [Google Scholar]
  115. SkaperS.D. FacciL. FuscoM. della ValleM.F. ZussoM. CostaB. GiustiP. Palmitoylethanolamide, a naturally occurring disease-modifying agent in neuropathic pain.Inflammopharmacology2014222799410.1007/s10787‑013‑0191‑724178954
    [Google Scholar]
  116. HansenH.S. Palmitoylethanolamide and other anandamide congeners. Proposed role in the diseased brain.Exp. Neurol.20102241485510.1016/j.expneurol.2010.03.02220353771
    [Google Scholar]
  117. BorrelliF. RomanoB. PetrosinoS. PaganoE. CapassoR. CoppolaD. BattistaG. OrlandoP. Di MarzoV. IzzoA.A. Palmitoylethanolamide, a naturally occurring lipid, is an orally effective intestinal anti-inflammatory agent.Br. J. Pharmacol.2015172114215810.1111/bph.1290725205418
    [Google Scholar]
  118. RomeroT.R.L. DuarteI.D.G. N-palmitoyl-ethanolamine (PEA) induces peripheral antinociceptive effect by ATP-sensitive K+-channel activation.J. Pharmacol. Sci.2012118215616010.1254/jphs.11150FP22343363
    [Google Scholar]
  119. RomeroT.R.L. GaldinoG.S. SilvaG.C. ResendeL.C. PerezA.C. CortesS.F. DuarteI.D.G. Involvement of the L-arginine/nitric oxide/cyclic guanosine monophosphate pathway in peripheral antinociception induced by N-palmitoyl-ethanolamine in rats.J. Neurosci. Res.20129071474147910.1002/jnr.2279722411529
    [Google Scholar]
  120. CostaB. ComelliF. BettoniI. ColleoniM. GiagnoniG. The endogenous fatty acid amide, palmitoylethanolamide, has anti-allodynic and anti-hyperalgesic effects in a murine model of neuropathic pain: involvement of CB1, TRPV1 and PPARγ receptors and neurotrophic factors.Pain2008139354155010.1016/j.pain.2008.06.00318602217
    [Google Scholar]
  121. GattiA. LazzariM. GianfeliceV. Di PaoloA. SabatoE. SabatoA.F. Palmitoylethanolamide in the treatment of chronic pain caused by different etiopathogenesis.Pain Med.20121391121113010.1111/j.1526‑4637.2012.01432.x22845893
    [Google Scholar]
  122. MariniI. BartolucciM.L. BortolottiF. GattoM.R. BonettiG.A. Palmitoylethanolamide versus a nonsteroidal anti-inflammatory drug in the treatment of temporomandibular joint inflammatory pain.J. Orofac. Pain20122629910422558609
    [Google Scholar]
  123. SchifillitiC. CucinottaL. FedeleV. IngegnosiC. LucaS. LeottaC. Micronized palmitoylethanolamide reduces the symptoms of neuropathic pain in diabetic patients.Pain Res. Treat.201420141510.1155/2014/84962324804094
    [Google Scholar]
  124. D’AmicoR. ImpellizzeriD. CuzzocreaS. Di PaolaR. Aliamides update: Palmitoylethanolamide and its formulations on management of peripheral neuropathic pain.Int. J. Mol. Sci.20202115533010.3390/ijms2115533032727084
    [Google Scholar]
/content/journals/cn/10.2174/1570159X21666230807103642
Loading
/content/journals/cn/10.2174/1570159X21666230807103642
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test