Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Musculoskeletal pain is a condition that affects bones, muscles, and tendons and is present in various diseases and/or clinical conditions. This type of pain represents a growing problem with enormous socioeconomic impacts, highlighting the importance of developing treatments tailored to the patient's needs. TRP is a large family of non-selective cation channels involved in pain perception. Vanilloid (TRPV1 and TRPV4), ankyrin (TRPA1), and melastatin (TRPM8) are involved in physiological functions, including nociception, mediation of neuropeptide release, heat/cold sensing, and mechanical sensation.

In this context, we provide an updated view of the most studied preclinical models of muscle hyperalgesia and the role of transient receptor potential (TRP) in these models.

This review describes preclinical models of muscle hyperalgesia induced by intramuscular administration of algogenic substances and/or induction of muscle damage by physical exercise in the masseter, gastrocnemius, and tibial muscles.

The participation of TRPV1, TRPA1, and TRPV4 in different models of musculoskeletal pain was evaluated using pharmacological and genetic tools. All the studies detected the antinociceptive effect of respective antagonists or reduced nociception in knockout mice.

Hence, TRPV1, TRPV4, and TRPA1 blockers could potentially be utilized in the future for inducing analgesia in muscle hypersensitivity pathologies.

Loading

Article metrics loading...

/content/journals/cn/10.2174/1570159X21666230908094159
2024-01-01
2024-10-13
Loading full text...

Full text loading...

References

  1. El-TallawyS.N. NalamasuR. SalemG.I. LeQuangJ.A.K. PergolizziJ.V. ChristoP.J. Management of musculoskeletal pain: An update with emphasis on chronic musculoskeletal pain.Pain Ther.202110118120910.1007/s40122‑021‑00235‑233575952
    [Google Scholar]
  2. QuemeL.F. JankowskiM.P. Sex differences and mechanisms of muscle pain.Curr. Opin. Physiol.2019111610.1016/j.cophys.2019.03.00631245656
    [Google Scholar]
  3. QuemeL.F. DoursonA. HofmannM.C. ButterfieldA. PaladiniR.D. JankowskiMP. Disruption of hyaluronic acid in skeletal muscle induces decreased voluntary activity via chemosensitive muscle afferent sensitization in male mice.eNeuro202292ENEURO.0522-21.202210.1523/ENEURO.0522‑21.202235387844
    [Google Scholar]
  4. PerrotS. CohenM. BarkeA. KorwisiB. RiefW. TreedeR.D. The IASP classification of chronic pain for ICD-11: Chronic secondary musculoskeletal pain.Pain20191601778210.1097/j.pain.000000000000138930586074
    [Google Scholar]
  5. TreedeR.D. RiefW. BarkeA. AzizQ. BennettM.I. BenolielR. CohenM. EversS. FinnerupN.B. FirstM.B. GiamberardinoM.A. KaasaS. KorwisiB. KosekE. Lavand’hommeP. NicholasM. PerrotS. ScholzJ. SchugS. SmithB.H. SvenssonP. VlaeyenJ.W.S. WangS.J. Chronic pain as a symptom or a disease: The IASP classification of chronic pain for the international classification of diseases (ICD-11).Pain20191601192710.1097/j.pain.000000000000138430586067
    [Google Scholar]
  6. SantAnnaJ.P.C. PedrinelliA. HernandezA.J. FernandesT.L. Muscle injury: Pathophysiology, diagnosis, and treatment.Rev. Bras. Ortop.202257111310.1055/s‑0041‑1731417
    [Google Scholar]
  7. SinghD.P. BaraniL.Z. WoodruffM.A. ParkerT.J. SteckR. PeakeJ.M. Effects of topical icing on inflammation, angiogenesis, revascularization, and myofiber regeneration in skeletal muscle following contusion injury.Front. Physiol.201789310.3389/fphys.2017.0009328326040
    [Google Scholar]
  8. FernandesT.L. PedrinelliA. HernandezA.J. Lesão muscular: Fsiopatologia, diagnóstico, tratamento e apresentação clínica.Rev. Bras. Ortop.201146324725510.1590/S0102‑3616201100030000327047816
    [Google Scholar]
  9. RosaC.G.S. SchemittE.G. HartmannR.M. JosieliR.C. JayneT.S. SilviaB.A. MoreiraJ. CristianA.O. JaquelineN.P. DanielP.C. AlexandreS.D. NormaA.P.M. Effect of therapeutic ultrasound on the quadriceps muscle injury in rats: Evaluation of oxidative stress and inflammatory process.Am. J. Transl. Res.201911106660667131737216
    [Google Scholar]
  10. KudsiS.Q. AntoniazzimC.T.D. CamponogaraC. EvelyneS.B. IndiaraB. DiulleS.P. Susana, Paula, M.F.; Diéssica, P.D.; Carolina Dos Santos, S.; Rubya, P.Z.; Paulo, Cesar, L.S.; Rafael, N.M.; Sara, M.O.; Gabriela, T. Characterisation of nociception and inflammation observed in a traumatic muscle injury model in rats.Eur. J. Pharmacol.2020883173284410.1016/j.ejphar.2020.17328432679186
    [Google Scholar]
  11. HuardJ. LuA. MuX. GuoP. LiY. Muscle injuries and repair: What’s new on the horizon!Cells Tissues Organs20162023-422723610.1159/00044392627825155
    [Google Scholar]
  12. HowardE.E. PasiakosS.M. BlessoC.N. FussellM.A. RodriguezN.R. Divergent roles of inflammation in skeletal muscle recovery from injury.Front. Physiol.2020118710.3389/fphys.2020.0008732116792
    [Google Scholar]
  13. PariharA. PariharM.S. MilnerS. BhatS. Oxidative stress and anti-oxidative mobilization in burn injury.Burns200834161710.1016/j.burns.2007.04.00917905515
    [Google Scholar]
  14. Pinho-RibeiroF.A. VerriW.A.Jr ChiuI.M. Nociceptor sensory neuron-immune interactions in pain and inflammation.Trends Immunol.201738151910.1016/j.it.2016.10.00127793571
    [Google Scholar]
  15. RiemannA. SchneiderB. IhlingA. MartinN. ChristophS. OliverT. MichaelG. Acidic environment leads to ROS-induced MAPK signaling in cancer cells.PLoS One201167e22445e510.1371/journal.pone.002244521818325
    [Google Scholar]
  16. De LoguF. Simone, Li Puma.; Landini, L.; Francesca, P.; Alessandro Innocenti, Daniel, S. M. de A.; Malvin, N. J.; Riccardo, P.; Nigel, W. B.; Pierangelo, G.; Romina, N. Schwann cells expressing nociceptive channel TRPA1 orchestrate ethanol-evoked neuropathic pain in mice.J. Clin. Invest.2019129125424544110.1172/JCI12802231487269
    [Google Scholar]
  17. LeeK.I. LeeH.T. LinH.C. Huey-JenT. Feng-ChuanT. Song-KS. Tzong-ShyuanL. Role of transient receptor potential ankyrin 1 channels in Alzheimer’s disease.J. Neuroinflammation201613192210.1186/s12974‑016‑0557‑z27121378
    [Google Scholar]
  18. CamponogaraC. OliveiraS.M. Are TRPA1 and TRPV1 channel-mediated signalling cascades involved in UVB radiation-induced sunburn?Environ. Toxicol. Pharmacol.202292103836610.1016/j.etap.2022.10383635248760
    [Google Scholar]
  19. TaylorD.F. BishopD.J. Transcription factor movement and exercise-induced mitochondrial biogenesis in human skeletal muscle: Current knowledge and future perspectives.Int. J. Mol. Sci.20222331517710.3390/ijms2303151735163441
    [Google Scholar]
  20. LoeserJ.D. TreedeR.D. The kyoto protocol of IASP basic pain terminology.Pain2008137347347710.1016/j.pain.2008.04.02518583048
    [Google Scholar]
  21. MuleyM.M. KrustevE. McDougallJ.J. Preclinical assessment of inflammatory pain.CNS Neurosci. Ther.20162228810110.1111/cns.1248626663896
    [Google Scholar]
  22. LotteauS. DucreuxS. RomestaingC. LegrandC. Van CoppenolleF. Characterization of functional TRPV1 channels in the sarcoplasmic reticulum of mouse skeletal muscle.PLoS One201383e58673e310.1371/journal.pone.005867323536811
    [Google Scholar]
  23. LafouxA. LotteauS. HuchetC. DucreuxS. The contractile phenotype of skeletal muscle in TRPV1 knockout mice is gender-specific and exercise-dependent.Life20201010233310.3390/life1010023333036239
    [Google Scholar]
  24. KudsiS.Q. PiccoliB.C. Ardisson-AraújoD. TrevisanG. Transcriptional landscape of TRPV1, TRPA1, TRPV4, and TRPM8 channels throughout human tissues.Life Sci.2022308120977710.1016/j.lfs.2022.12097736126722
    [Google Scholar]
  25. GregoryN.S. WhitleyP.E. SlukaK.A. Effect of intramuscular protons, lactate, and ATP on muscle hyperalgesia in rats.PLoS One2015109e013857610.1371/journal.pone.013857626378796
    [Google Scholar]
  26. ChangC.T. FongS.W. LeeC.H. ChuangY.C. LinS.H. ChenC.C. Involvement of acid-sensing ion channel 1b in the development of acid-induced chronic muscle pain.Front. Neurosci.201913124710.3389/fnins.2019.0124731824248
    [Google Scholar]
  27. JorgeC.O. de AzambujaG. GomesB.B. RodriguesH.L. LuchessiA.D. de Oliveira-FusaroM.C.G. P2X3 receptors contribute to transition from acute to chronic muscle pain.Purinergic Signal.202016340341410.1007/s11302‑020‑09718‑x32766958
    [Google Scholar]
  28. BarcelosR.P. BrescianiG. CuevasM.J. Martínez-FlórezS. SoaresF.A.A. González-GallegoJ. Diclofenac pretreatment modulates exercise-induced inflammation in skeletal muscle of rats through the TLR4/NF-κB pathway.Appl. Physiol. Nutr. Metab.201742775776410.1139/apnm‑2016‑059328235185
    [Google Scholar]
  29. SilveiraP.C.L. VictorE.G. ScheferD. LucianoA.S. EmilioL.S. MarcosM.P. RicardoA.P. Effects of therapeutic pulsed ultrasound and dimethylsulfoxide (DMSO) phonophoresis on parameters of oxidative stress in traumatized muscle.Ultrasound Med. Biol.2010361445010.1016/j.ultrasmedbio.2009.09.00119900747
    [Google Scholar]
  30. de AlmeidaP. Lopes-MartinsR.Á.B. TomazoniS.S. GiannaM. Albuquerque-Pontes.; Larissa, A.S.; Adriane, A.V.; Lucio, F.; Rodolfo, P. V.; Regiane, A.; Paulo de T. Camillo de Carvalho, Ernesto, C. P. Leal-Junior. Low-level laser therapy and sodium diclofenac in acute inflammatory response induced by skeletal muscle trauma: effects in muscle morphology and mRNA gene expression of inflammatory markers.Photochem. Photobiol.201389250150710.1111/j.1751‑1097.2012.01232.x22937980
    [Google Scholar]
  31. SilveiraP.C.L. SchefferD.L. GlaserV. AlineP.R. Ricardo, Aurino, P.; Aderbal, S.; Aguiar, J.; Alexandra, L. Low-level laser therapy attenuates the acute inflammatory response induced by muscle traumatic injury.Free Radic. Res.201650550351310.3109/10715762.2016.114764926983894
    [Google Scholar]
  32. MalangaG.A. YanN. StarkJ. Mechanisms and efficacy of heat and cold therapies for musculoskeletal injury.Postgrad. Med.20151271576510.1080/00325481.2015.99271925526231
    [Google Scholar]
  33. MenseS. GerwinR. Muscle Pain: Understanding the Mechanisms.Berlin, HeidelbergSpringer201010.1007/978‑3‑540‑85021‑2
    [Google Scholar]
  34. StartekJ. BoonenB. TalaveraK. MeseguerV. TRP channels as sensors of chemically-induced changes in cell membrane mechanical properties.Int. J. Mol. Sci.2019202371110.3390/ijms2002037130654572
    [Google Scholar]
  35. KoivistoA.P. BelvisiM.G. GaudetR. SzallasiA. Advances in TRP channel drug discovery: From target validation to clinical studies.Nat. Rev. Drug Discov.2022211415910.1038/s41573‑021‑00268‑434526696
    [Google Scholar]
  36. LiuC. MontellC. Forcing open TRP channels: Mechanical gating as a unifying activation mechanism.Biochem. Biophys. Res. Commun.20154601222510.1016/j.bbrc.2015.02.06725998730
    [Google Scholar]
  37. JuliusD. TRP channels and pain.Annu. Rev. Cell Dev. Biol.201329135538410.1146/annurev‑cellbio‑101011‑15583324099085
    [Google Scholar]
  38. NiliusB. VoetsT. PetersJ. TRP channels in disease.Sci. STKE20052005295re810.1126/stke.2952005re816077087
    [Google Scholar]
  39. FroghiS. GrantC.R. TandonR. QuagliaA. DavidsonB. FullerB. New insights on the role of TRP channels in calcium signalling and immunomodulation: Review of pathways and implications for clinical practice.Clin. Rev. Allergy Immunol.202160227129210.1007/s12016‑020‑08824‑333405100
    [Google Scholar]
  40. LaingR.J. DhakaA. ThermoTRPs and pain.Neuroscientist201622217118710.1177/107385841456788425608689
    [Google Scholar]
  41. ClaphamD.E. RunnelsL.W. StrübingC. The trp ion channel family.Nat. Rev. Neurosci.20012638739610.1038/3507754411389472
    [Google Scholar]
  42. MaglieR. SouzaM. de A. D.; Antiga, E.; Geppetti, P.; Nassini, R.; De Logu, F. The role of TRPA1 in skin physiology and pathology.Int. J. Mol. Sci.20212263065510.3390/ijms2206306533802836
    [Google Scholar]
  43. MooreC. GuptaR. JordtS.E. ChenY. LiedtkeW.B. Regulation of pain and itch by TRP channels.Neurosci. Bull.201834112014210.1007/s12264‑017‑0200‑829282613
    [Google Scholar]
  44. CaterinaM.J. SchumacherM.A. TominagaM. RosenT.A. LevineJ.D. JuliusD. The capsaicin receptor: A heat-activated ion channel in the pain pathway.Nature1997389665381682410.1038/398079349813
    [Google Scholar]
  45. DietrichA. Modulators of transient receptor potential (TRP) channels as therapeutic options in lung disease.Pharmaceuticals201912123310.3390/ph1201002330717260
    [Google Scholar]
  46. StorozhukM.V. MorozO.F. ZholosA.V. Multifunctional TRPV1 ion channels in physiology and pathology with focus on the brain, vasculature, and some visceral systems.BioMed Res. Int.2019201911210.1155/2019/580632131263706
    [Google Scholar]
  47. SugiyamaD. KangS. ArpeyN. ArunakulP. UsachevY.M. BrennanT.J. Hydrogen peroxide induces muscle nociception via Transient receptor potential ankyrin 1 receptors.Anesthesiology2017127469570810.1097/ALN.000000000000175628640016
    [Google Scholar]
  48. SugiyamaD. KangS. BrennanT.J. Muscle reactive oxygen species (ROS) contribute to post-incisional guarding via the TRPA1 receptor.PLoS One2017121e017041010.1371/journal.pone.017041028103292
    [Google Scholar]
  49. FangY. ZhuJ. DuanW. XieY. MaC. Inhibition of muscular nociceptive afferents via the activation of cutaneous nociceptors in a rat model of inflammatory muscle pain.Neurosci. Bull.202036111010.1007/s12264‑019‑00406‑431230211
    [Google Scholar]
  50. Simonic-KocijanS. ZhaoX. LiuW. WuY. UhacI. WangK. TRPV1 channel-mediated bilateral allodynia induced by unilateral masseter muscle inflammation in rats.Mol. Pain201396810.1186/1744‑8069‑9‑68
    [Google Scholar]
  51. WangS. LimJ. JosephJ. SenW. FengW. JinY. Ro, Man-K. C. Spontaneous and bite-evoked muscle pain are mediated by a common nociceptive pathway with differential contribution by TRPV1.J. Pain201718111333134510.1016/j.jpain.2017.06.00528669862
    [Google Scholar]
  52. WangS. BrigoliB. LimJ. KarleyA. ChungM.K. Roles of TRPV1 and TRPA1 in spontaneous pain from inflamed masseter muscle.Neuroscience201838429029910.1016/j.neuroscience.2018.05.04829890293
    [Google Scholar]
  53. BaiX. ZhangX. ZhouQ. Effect of testosterone on TRPV1 expression in a model of orofacial myositis pain in the rat.J. Mol. Neurosci.20186419310110.1007/s12031‑017‑1009‑729209900
    [Google Scholar]
  54. RoJ.Y. LeeJ.S. ZhangY. Activation of TRPV1 and TRPA1 leads to muscle nociception and mechanical hyperalgesia.Pain2009144327027710.1016/j.pain.2009.04.02119464796
    [Google Scholar]
  55. LeeJ. SalomanJ.L. WeilandG. AuhQ.S. ChungM.K. RoJ.Y. Functional interactions between NMDA receptors and TRPV1 in trigeminal sensory neurons mediate mechanical hyperalgesia in the rat masseter muscle.Pain201215371514152410.1016/j.pain.2012.04.01522609428
    [Google Scholar]
  56. SalomanJ.L. ChungM.K. RoJ.Y. P2X3 and TRPV1 functionally interact and mediate sensitization of trigeminal sensory neurons.Neuroscience201323222623810.1016/j.neuroscience.2012.11.01523201260
    [Google Scholar]
  57. ChungM.K. LeeJ. JosephJ. SalomanJ. RoJ.Y. Peripheral group I metabotropic glutamate receptor activation leads to muscle mechanical hyperalgesia through TRPV1 phosphorylation in the rat.J. Pain2015161677610.1016/j.jpain.2014.10.00825451626
    [Google Scholar]
  58. FujiiY. OzakiN. TaguchiT. MizumuraK. FurukawaK. SugiuraY. TRP channels and ASICs mediate mechanical hyperalgesia in models of inflammatory muscle pain and delayed onset muscle soreness.Pain2008140229230410.1016/j.pain.2008.08.01318834667
    [Google Scholar]
  59. MuraseS. KatoK. TaguchiT. MizumuraK. Glial cell line-derived neurotrophic factor sensitized the mechanical response of muscular thin-fibre afferents in rats.Eur. J. Pain201418562963810.1002/j.1532‑2149.2013.00411.x24174387
    [Google Scholar]
  60. WalderR.Y. RadhakrishnanR. LooL. LynnA.R. DurgaP.M. StevenP.W. KathleenA.S. TRPV1 is important for mechanical and heat sensitivity in uninjured animals and development of heat hypersensitivity after muscle inflammation.Pain201215381664167210.1016/j.pain.2012.04.03422694790
    [Google Scholar]
  61. ChenW.N. LeeC.H. LinS.H. Chia-WenW. Wei-HsinS. JohnN.W. Chih-ChengC. Roles of ASIC3, TRPV1, and NaV1.8 in the transition from acute to chronic pain in a mouse model of fibromyalgia.Mol. Pain20141014010.1016/j.jpain.2014.01.16524957987
    [Google Scholar]
  62. SchmelzM. SchmidR. HandwerkerH.O. TorebjörkH.E. Encoding of burning pain from capsaicin-treated human skin in two categories of unmyelinated nerve fibres.Brain2000123356057110.1093/brain/123.3.56010686178
    [Google Scholar]
  63. MarchettiniP. SimoneD.A. CaputiG. OchoaJ. Pain from excitation of identified muscle nociceptors in humans.Brain Res.19967401-210911610.1016/S0006‑8993(96)00851‑78973804
    [Google Scholar]
  64. GregoryN.S. SlukaK.A. Anatomical and physiological factors contributing to chronic muscle pain.Curr. Top. Behav. Neurosci.20142032734810.1007/7854_2014_294
    [Google Scholar]
  65. AmannM. SidhuS.K. WeavilJ.C. MangumT.S. VenturelliM. Autonomic responses to exercise: Group III/IV muscle afferents and fatigue.Auton. Neurosci.2015188192310.1016/j.autneu.2014.10.01825458423
    [Google Scholar]
  66. LaurinJ. PerticiV. DoussetE. MarquesteT. DecherchiP. Group III and IV muscle afferents: Role on central motor drive and clinical implications.Neuroscience201529054355110.1016/j.neuroscience.2015.01.06525659344
    [Google Scholar]
  67. ChristiansonJ.A. McIlwrathS.L. KoerberH.R. DavisB.M. Transient receptor potential vanilloid 1-immunopositive neurons in the mouse are more prevalent within colon afferents compared to skin and muscle afferents.Neuroscience2006140124725710.1016/j.neuroscience.2006.02.01516564640
    [Google Scholar]
  68. ShinD.S. KimE.H. SongK.Y. HongH.J. KongM.H. HwangS.J. Neurochemical characterization of the TRPV1-positive nociceptive primary afferents innervating skeletal muscles in the rats.J. Korean Neurosurg. Soc.20084329710410.3340/jkns.2008.43.2.9719096612
    [Google Scholar]
  69. LinY-W. ChenC-C. Electrophysiological characteristics of IB4-negative TRPV1-expressing muscle afferent DRG neurons.Biophysics20151191610.2142/biophysics.11.9
    [Google Scholar]
  70. AnderssonD.A. GentryC. MossS. BevanS. Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress.J. Neurosci.200828102485249410.1523/JNEUROSCI.5369‑07.200818322093
    [Google Scholar]
  71. Arendt-NielsenL. SvenssonP. SessleB.J. WangK. Interactions between glutamate and capsaicin in inducing muscle pain and sensitization in humans.Eur. J. Pain200812566167010.1016/j.ejpain.2007.10.013
    [Google Scholar]
  72. ConnorM. NavesL.A. McCleskeyE.W. Contrasting phenotypes of putative proprioceptive and nociceptive trigeminal neurons innervating jaw muscle in rat.Mol. Pain200511744-8069-1-3110.1186/1744‑8069‑1‑3116242047
    [Google Scholar]
  73. SatoM. SatoT. YajimaT. ShimazakiK. IchikawaH. The transient receptor potential cation channel subfamily V members 1 and 2, P2X purinoceptor 3 and calcitonin gene-related peptide in sensory neurons of the rat trigeminal ganglion, innervating the periosteum, masseter muscle and facial skin.Arch. Oral Biol.201896667310.1016/j.archoralbio.2018.08.01230195141
    [Google Scholar]
  74. LindquistK.A. BeluginS. HovhannisyanA.H. CoreyT.M. SalmonA. AkopianA.N. Identification of trigeminal sensory neuronal types innervating masseter muscle.eNeuro.2021850176-21.202110.1523/ENEURO.0176‑21.2021
    [Google Scholar]
  75. JordtS.E. BautistaD.M. ChuangH. DavidD. McKemy, Peter, M. Z., Edward, D. H., Ian, D. M., David, J. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1.Nature2004427697126026510.1038/nature0228214712238
    [Google Scholar]
  76. SouzaM. de A.D. NassiniR. GeppettiP. De LoguF. TRPA1 as a therapeutic target for nociceptive pain.Expert Opin. Ther. Targets20202410997100810.1080/14728222.2020.181519132838583
    [Google Scholar]
  77. TakizawaM. HaradaK. NakamuraK. TsuboiT. Transient receptor potential ankyrin 1 channels are involved in spontaneous peptide hormone release from astrocytes.Biochem. Biophys. Res. Commun.2018501498899510.1016/j.bbrc.2018.05.09729777700
    [Google Scholar]
  78. ZengD. ChenC. ZhouW. Xuesu, Ma, Xi, P., Yue, Z., Weikang, Z., Fenglin, L. TRPA1 deficiency alleviates inflammation of atopic dermatitis by reducing macrophage infiltration.Life Sci.2021266118906610.1016/j.lfs.2020.11890633338502
    [Google Scholar]
  79. OsterlohM. BöhmM. KalbeB. OsterlohS. HattH. Identification and functional characterization of TRPA1 in human myoblasts.Pflugers Arch.2016468232133310.1007/s00424‑015‑1729‑x26328519
    [Google Scholar]
  80. AsgarJ. ZhangY. SalomanJ.L. WangS. ChungM.K. RoJ.Y. The role of TRPA1 in muscle pain and mechanical hypersensitivity under inflammatory conditions in rats.Neuroscience201531020621510.1016/j.neuroscience.2015.09.04226393428
    [Google Scholar]
  81. MiharaH. BoudakaA. TominagaM. SugiyamaT. Transient receptor potential vanilloid 4 regulation of adenosine triphosphate release by the adenosine triphosphate transporter vesicular nucleotide transporter, a novel therapeutic target for gastrointestinal baroreception and chronic inflammation.Digestion2020101161110.1159/00050402131770754
    [Google Scholar]
  82. RodriguesP. RuviaroN.A. TrevisanG. TRPV4 role in neuropathic pain mechanisms in rodents.Antioxidants202212124410.3390/antiox1201002436670886
    [Google Scholar]
  83. RyskampD.A. JoA.O. FryeA.M. Felix, Vazquez-Chona, Nanna, M., Wallace, B.T., David, K. Swelling and eicosanoid metabolites differentially gate TRPV4 channels in retinal neurons and glia.J. Neurosci.20143447156891570010.1523/JNEUROSCI.2540‑14.201425411497
    [Google Scholar]
  84. BalemansD. BoeckxstaensG.E. TalaveraK. WoutersM.M. Transient receptor potential ion channel function in sensory transduction and cellular signaling cascades underlying visceral hypersensitivity.Am. J. Physiol. Gastrointest. Liver Physiol.20173126G635G64810.1152/ajpgi.00401.201628385695
    [Google Scholar]
  85. ChenL. LiuC. LiuL. Changes in osmolality modulate voltage-gated calcium channels in trigeminal ganglion neurons.Brain Res.20081208566610.1016/j.brainres.2008.02.04818378217
    [Google Scholar]
  86. ZhangY. WangY.H. GeH.Y. Arendt-NielsenL. WangR. YueS.W. A transient receptor potential vanilloid 4 contributes to mechanical allodynia following chronic compression of dorsal root ganglion in rats.Neurosci. Lett.2008432322222710.1016/j.neulet.2007.12.02818206306
    [Google Scholar]
  87. PhanM.N. LeddyH.A. VottaB.J. SanjayK. DanaS. Levy, David, B.L., Suk, H.L., Wolfgang, L., Farshid, G. Functional characterization of TRPV4 as an osmotically sensitive ion channel in porcine articular chondrocytes.Arthritis Rheum.200960103028303710.1002/art.2479919790068
    [Google Scholar]
  88. NishidaT. KubotaS. Roles of CCN2 as a mechano-sensing regulator of chondrocyte differentiation.Jpn. Dent. Sci. Rev.202056111912610.1016/j.jdsr.2020.07.00133088364
    [Google Scholar]
  89. ChenY. FangQ. WangZ. JenniferY.Z. AmandaS.M. RussellP.H. WolfgangB.L. Transient receptor potential vanilloid 4 ion channel functions as a pruriceptor in epidermal keratinocytes to evoke histaminergic itch.J. Biol. Chem.201629119102521026210.1074/jbc.M116.71646426961876
    [Google Scholar]
  90. KwonM. BaekS.H. ParkC.K. ChungG. OhS.B. Single-cell RT-PCR and immunocytochemical detection of mechanosensitive transient receptor potential channels in acutely isolated rat odontoblasts.Arch. Oral Biol.201459121266127110.1016/j.archoralbio.2014.07.01625150531
    [Google Scholar]
  91. Solé-MagdalenaA. Martínez-AlonsoM. CoronadoC.A. JunqueraL.M. CoboJ. VegaJ.A. Molecular basis of dental sensitivity: The odontoblasts are multisensory cells and express multifunctional ion channels.Ann. Anat.2018215202910.1016/j.aanat.2017.09.00628954208
    [Google Scholar]
  92. BenfenatiV. Amiry-MoghaddamM. CapriniM. MylonakouM.N. RapisardaC. OttersenO.P. FerroniS. Expression and functional characterization of transient receptor potential vanilloid-related channel 4 (TRPV4) in rat cortical astrocytes.Neuroscience2007148487689210.1016/j.neuroscience.2007.06.03917719182
    [Google Scholar]
  93. KanjuP. LiedtkeW. Pleiotropic function of TRPV4 ion channels in the central nervous system.Exp. Physiol.2016101121472147610.1113/EP08579027701788
    [Google Scholar]
  94. KonnoM. ShirakawaH. IidaS. ShinyaS. IkkeiM. TakahitoM. KeikoK. TakayukiN. KojiS. ShujiK. Stimulation of transient receptor potential vanilloid 4 channel suppresses abnormal activation of microglia induced by lipopolysaccharide.Glia201260576177010.1002/glia.2230622331560
    [Google Scholar]
  95. WhiteJ.P.M. CibelliM. UrbanL. NiliusB. McGeown. J.G., Nagy, I. TRPV4: Molecular conductor of a diverse orchestra.Physiol. Rev.201696391197310.1152/physrev.00016.201527252279
    [Google Scholar]
  96. Denadai-SouzaA. MartinL. de PaulaM.A.V. MariaC. Werneck, de A., Marcelo, N. M., Nathalie, V., Nicolas, C. Role of transient receptor potential vanilloid 4 in rat joint inflammation.Arthritis Rheum.20126461848185810.1002/art.3434522184014
    [Google Scholar]
  97. PritschowB.W. LangeT. KaschJ. Kunert-KeilC. LiedtkeW. BrinkmeierH. Functional TRPV4 channels are expressed in mouse skeletal muscle and can modulate resting Ca2+ influx and muscle fatigue.Pflugers Arch.2011461111512210.1007/s00424‑010‑0883‑420924600
    [Google Scholar]
  98. OtaH. KatanosakaK. MuraseS. KashioM. TominagaM. MizumuraK. TRPV1 and TRPV4 play pivotal roles in delayed onset muscle soreness.PLoS One201386e6575110.1371/journal.pone.006575123799042
    [Google Scholar]
  99. BrumE.S. FialhoM.F.P. FischerS.P.M. DianeD.H. DéboraF.G. RahisaS. RicardoA. Machado-de-Ávila, Cristiane, L., Dalla, C., Félix, A. A. S., Sara, M. O. Relevance of mitochondrial dysfunction in the reserpine-induced experimental fibromyalgia model.Mol. Neurobiol.202057104202421710.1007/s12035‑020‑01996‑132685997
    [Google Scholar]
  100. MacfarlaneT.V. BlinkhornA.S. DaviesR.M. RyanP. WorthingtonH.V. MacfarlaneG.J. Orofacial pain: Just another chronic pain? Results from a population-based survey.Pain200299345345810.1016/S0304‑3959(02)00181‑112406520
    [Google Scholar]
  101. SchiffmanE. OhrbachR. TrueloveE. JohnL. GaryA. Jean-PaulG. ThomasL. PeterS. YolyG. FrankL. AmbraM. SharonL. B., Werner, C. Mark, D., Dominik, E., Charly, G., Louis, J. G., Jennifer, A H., Lars, H., Rigmor, J., Mike, T. J., Antoon, De Laat., Reny de Leeuw., William, M., Marylee, van der Meulen., Greg, M. M., Donald, R. N., Sandro, P., Arne, P., Paul, P., Barry, S., Corine, M. V. Joanna, Z., Samuel, F. D. Diagnostic criteria for temporomandibular disorders (DC/TMD) for clinical and research applications: Recommendations of the international RDC/TMD consortium network and orofacial pain special interest group.J. Oral Facial Pain Headache201428162710.11607/jop.115124482784
    [Google Scholar]
  102. LövgrenA. Häggman-HenriksonB. VisscherC.M. LobbezooF. MarklundS. WänmanA. Temporomandibular pain and jaw dysfunction at different ages covering the lifespan: A population based study.Eur. J. Pain201620453254010.1002/ejp.75526311138
    [Google Scholar]
  103. TaheriJ.B. AnbariF. SaniS.K. MirmoeziS.M. KhalighiH.R. A 10-year overview of chronic orofacial pain in patients at an oral medicine center in Iran.J. Dent. Anesth. Pain Med.202222428929410.17245/jdapm.2022.22.4.28935991358
    [Google Scholar]
  104. ShuebS.S. NixdorfD.R. JohnM.T. AlonsoB.F. DurhamJ. What is the impact of acute and chronic orofacial pain on quality of life?J. Dent.201543101203121010.1016/j.jdent.2015.06.00126073033
    [Google Scholar]
  105. OghliI. ListT. SuN. Häggman-HenriksonB. The impact of oro‐facial pain conditions on oral health‐related quality of life: A systematic review.J. Oral Rehabil.20204781052106410.1111/joor.1299432415993
    [Google Scholar]
  106. SarlaniE. GraceE.G. ReynoldsM.A. GreenspanJ.D. Evidence for up-regulated central nociceptive processing in patients with masticatory myofascial pain.J. Orofac. Pain2004181415515029872
    [Google Scholar]
  107. FerrilloM. GiudiceA. MarottaN. FrancescoF. Daniela, Di V., Antonio, A., Pietro F., Alessandro, de, S. Pain management and rehabilitation for central sensitization in temporomandibular disorders: A comprehensive review.Int. J. Mol. Sci.2022232012164410.3390/ijms23201216436293017
    [Google Scholar]
  108. MatsukaY. Orofacial pain: Molecular mechanisms, diagnosis, and treatment 2021.Int. J. Mol. Sci.20222394826610.3390/ijms2309482635563219
    [Google Scholar]
  109. KörtésiT. TukaB. NyáriA. VécseiL. TajtiJ. The effect of orofacial complete Freund’s adjuvant treatment on the expression of migraine-related molecules.J. Headache Pain201920143310.1186/s10194‑019‑0999‑731035923
    [Google Scholar]
  110. OkamotoK. HasegawaM. PiriyaprasathK. KakiharaY. SaekiM. YamamuraK. Preclinical models of deep craniofacial nociception and temporomandibular disorder pain.Jpn. Dent. Sci. Rev.20215723124110.1016/j.jdsr.2021.10.00234815817
    [Google Scholar]
  111. BagüésA. Martín-FontellesM.I. Esteban-HernándezJ. Sánchez-RoblesE.M. Characterization of the nociceptive effect of carrageenan: Masseter versus gastrocnemius.Muscle Nerve201756480481310.1002/mus.2553828026014
    [Google Scholar]
  112. McCarsonK.E. FehrenbacherJ.C. Models of inflammation: Carrageenan‐ or complete freund’s adjuvant (CFA)–Induced edema and hypersensitivity in the rat.Curr. Protoc.202117e20210.1002/cpz1.20234314105
    [Google Scholar]
  113. Martínez-GarcíaM.A. Migueláñez-MedránB.C. GoicoecheaC. Animal models in the study and treatment of orofacial pain.J. Clin. Exp. Dent.2019114e38210.4317/jced.5542931110619
    [Google Scholar]
  114. ChungM.K. ParkJ. AsgarJ. RoJ.Y. Transcriptome analysis of trigeminal ganglia following masseter muscle inflammation in rats.Mol. Pain201612174480691666852610.1177/174480691666852627702909
    [Google Scholar]
  115. ChenJ. QinH.J. YangF. LiuJ. GuanT. QuF.M. ZhangG.H. ShiJ.R. XieX.C. YangC.L. WuK.H. LiY.Q. LuL. Gate-voltage control of chemical potential and weak antilocalization in Bi2Se.Phys. Rev. Lett.201010517176602210.1103/PhysRevLett.105.17660221231064
    [Google Scholar]
  116. Häggman-HenriksonB. LivP. IlgunasA. CorineM.V. FrankL. JustinD. AnnaL. Increasing gender differences in the prevalence and chronification of orofacial pain in the population.Pain202016181768177510.1097/j.pain.000000000000187232701837
    [Google Scholar]
  117. HartmannA. SeebergerR. BittnerM. RolkeR. Welte-JzykC. DaubländerM. Profiling intraoral neuropathic disturbances following lingual nerve injury and in burning mouth syndrome.BMC Oral Health20171716810.1186/s12903‑017‑0360‑y28330489
    [Google Scholar]
  118. GazeraniP. AndersenO.K. Arendt-NielsenL. Site-specific, dose-dependent, and sex-related responses to the experimental pain model induced by intradermal injection of capsaicin to the foreheads and forearms of healthy humans.J. Orofac. Pain200721428930218018990
    [Google Scholar]
  119. HodyS. CroisierJ.L. BuryT. RogisterB. LeprinceP. Eccentric muscle contractions: Risks and benefits.Front. Physiol.20191053610.3389/fphys.2019.0053631130877
    [Google Scholar]
  120. MenseS. Muscle pain.Dtsch. Arztebl. Int.20081051221421910.3238/artzebl.2008.021419629211
    [Google Scholar]
  121. FernandesE.S. FernandesM.A. KeebleJ.E. The functions of TRPA1 and TRPV1: Moving away from sensory nerves.Br. J. Pharmacol.2012166251052110.1111/j.1476‑5381.2012.01851.x22233379
    [Google Scholar]
  122. O’NeillJ. BrockC. OlesenA.E. AndresenT. NilssonM. DickensonA.H. Unravelling the mystery of capsaicin: A tool to understand and treat pain.Pharmacol. Rev.201264493997110.1124/pr.112.00616323023032
    [Google Scholar]
  123. ChungM.K. CampbellJ. Use of capsaicin to treat pain: Mechanistic and therapeutic considerations.Pharmaceuticals2016946610.3390/ph904006627809268
    [Google Scholar]
  124. RetamosoL.T. SilveiraM.E.P. LimaF.D. GuilhermeL.B. GuilhermeB. LeandroR.R. PietroM.C. CristinaW.N. AnaC.M.B. AnaF.F. MauroS.O. 7, Michele, R. F., Luiz, F. F. R. Increased xanthine oxidase-related ROS production and TRPV1 synthesis preceding DOMS post-eccentric exercise in rats.Life Sci.2016152525910.1016/j.lfs.2016.03.02926987748
    [Google Scholar]
  125. AbdelhamidR.E. KovacsK.J. PasleyJ.D. NunezM.G. LarsonA.A. Forced swim-induced musculoskeletal hyperalgesia is mediated by CRF2 receptors but not by TRPV1 receptors.Neuropharmacology201372293710.1016/j.neuropharm.2013.04.01623624287
    [Google Scholar]
  126. BasbaumA.I. BautistaD.M. ScherrerG. JuliusD. Cellular and molecular mechanisms of pain.Cell2009139226728410.1016/j.cell.2009.09.02819837031
    [Google Scholar]
/content/journals/cn/10.2174/1570159X21666230908094159
Loading
/content/journals/cn/10.2174/1570159X21666230908094159
Loading

Data & Media loading...

  • Article Type: Review Article
Keyword(s): Carrageenan; CFA; Gastrocnemius; masseter; muscle afferents; tibial
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test