Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Parkinson’s disease (PD) is a heterogeneous disease involving a complex interaction between genes and the environment that affects various cellular pathways and neural networks. Several studies have suggested that environmental factors such as exposure to herbicides, pesticides, heavy metals, and other organic pollutants are significant risk factors for the development of PD. Among the herbicides, paraquat has been commonly used, although it has been banned in many countries due to its acute toxicity. Although the direct causational relationship between paraquat exposure and PD has not been established, paraquat has been demonstrated to cause the degeneration of dopaminergic neurons in the substantia nigra . The underlying mechanisms of the dopaminergic lesion are primarily driven by the generation of reactive oxygen species, decrease in antioxidant enzyme levels, neuroinflammation, mitochondrial dysfunction, and ER stress, leading to a cascade of molecular crosstalks that result in the initiation of apoptosis. This review critically analyses the crucial upstream molecular pathways of the apoptotic cascade involved in paraquat neurotoxicity, including mitogen-activated protein kinase (MAPK), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/AKT, mammalian target of rapamycin (mTOR), and Wnt/β-catenin signaling pathways.

Loading

Article metrics loading...

/content/journals/cn/10.2174/1570159X21666230126161524
2024-01-01
2025-01-11
Loading full text...

Full text loading...

References

  1. TysnesO.B. StorsteinA. Epidemiology of Parkinson’s disease.J. Neural Transm. (Vienna)2017124890190510.1007/s00702‑017‑1686‑y28150045
    [Google Scholar]
  2. SchapiraA.H.V. ChaudhuriK.R. JennerP. Non-motor features of Parkinson disease.Nat. Rev. Neurosci.201718743545010.1038/nrn.2017.6228592904
    [Google Scholar]
  3. ReeveA.K. GradyJ.P. CosgraveE.M. BennisonE. ChenC. HepplewhiteP.D. MorrisC.M. Mitochondrial dysfunction within the synapses of substantia nigra neurons in Parkinson’s disease.NPJ Parkinsons Dis.201841910.1038/s41531‑018‑0044‑629872690
    [Google Scholar]
  4. GoedertM. SpillantiniM.G. Del TrediciK. BraakH. 100 years of Lewy pathology.Nat. Rev. Neurol.201391132410.1038/nrneurol.2012.24223183883
    [Google Scholar]
  5. ShahmoradianS.H. LewisA.J. GenoudC. HenchJ. MoorsT.E. NavarroP.P. Castaño-DíezD. SchweighauserG. Graff-MeyerA. GoldieK.N. SütterlinR. HuismanE. IngrassiaA. GierY. RozemullerA.J.M. WangJ. PaepeA.D. ErnyJ. StaempfliA. HoernschemeyerJ. GroßerüschkampF. NiediekerD. El-MashtolyS.F. QuadriM. Van IJckenW.F.J. BonifatiV. GerwertK. BohrmannB. FrankS. BritschgiM. StahlbergH. Van de BergW.D.J. LauerM.E. Lewy pathology in Parkinson’s disease consists of crowded organelles and lipid membranes.Nat. Neurosci.20192271099110910.1038/s41593‑019‑0423‑231235907
    [Google Scholar]
  6. ElkouziA. Vedam-MaiV. EisingerR.S. OkunM.S. Emerging therapies in Parkinson disease — repurposed drugs and new approaches.Nat. Rev. Neurol.201915420422310.1038/s41582‑019‑0155‑730867588
    [Google Scholar]
  7. ParmarM. GrealishS. HenchcliffeC. The future of stem cell therapies for Parkinson disease.Nat. Rev. Neurosci.202021210311510.1038/s41583‑019‑0257‑731907406
    [Google Scholar]
  8. KaliaL.V. LangA.E. Parkinson’s disease.Lancet2015386999689691210.1016/S0140‑6736(14)61393‑325904081
    [Google Scholar]
  9. VerstraetenA. TheunsJ. Van BroeckhovenC. Progress in unraveling the genetic etiology of Parkinson disease in a genomic era.Trends Genet.201531314014910.1016/j.tig.2015.01.00425703649
    [Google Scholar]
  10. BallN. TeoW.P. ChandraS. ChapmanJ. Parkinson’s disease and the environment.Front. Neurol.20191021821810.3389/fneur.2019.0021830941085
    [Google Scholar]
  11. CorreiaG.L. MestreT. OuteiroT.F. FerreiraJ.J. Are genetic and idiopathic forms of Parkinson’s disease the same disease?J. Neurochem.2020152551552210.1111/jnc.1490231643079
    [Google Scholar]
  12. PriyadarshiA. KhuderS.A. SchaubE.A. PriyadarshiS.S. Environmental risk factors and Parkinson’s disease: a metaanalysis.Environ. Res.200186212212710.1006/enrs.2001.426411437458
    [Google Scholar]
  13. PouchieuC. PielC. CarlesC. GruberA. HelmerC. TualS. MarcotullioE. LebaillyP. BaldiI. Pesticide use in agriculture and Parkinson’s disease in the AGRICAN cohort study.Int. J. Epidemiol.201847129931010.1093/ije/dyx22529136149
    [Google Scholar]
  14. ChengY.H. ChouW.C. YangY.F. HuangC.W. HowC.M. ChenS.C. ChenW.Y. HsiehN.H. LinY.J. YouS.H. LiaoC.M. PBPK/PD assessment for Parkinson’s disease risk posed by airborne pesticide paraquat exposure.Environ. Sci. Pollut. Res. Int.20182565359536810.1007/s11356‑017‑0875‑429209972
    [Google Scholar]
  15. DawsonA.H. EddlestonM. SenarathnaL. MohamedF. GawarammanaI. BoweS.J. ManuweeraG. BuckleyN.A. Acute human lethal toxicity of agricultural pesticides: a prospective cohort study.PLoS Med.2010710e100035710.1371/journal.pmed.100035721048990
    [Google Scholar]
  16. GrantH.C. LantosP.L. ParkinsonC. Cerebral damage in paraquat poisoning.Histopathology19804218519510.1111/j.1365‑2559.1980.tb02911.x7358347
    [Google Scholar]
  17. WeedD.L. Does paraquat cause Parkinson’s disease? A review of reviews.Neurotoxicology20218618018410.1016/j.neuro.2021.08.00634400206
    [Google Scholar]
  18. AliS.F. DavidS.N. NewportG.D. CadetJ.L. SlikkerW. Jr MPTP-induced oxidative stress and neurotoxicity are age-dependent: Evidence from measures of reactive oxygen species and striatal dopamine levels.Synapse1994181273410.1002/syn.8901801057825121
    [Google Scholar]
  19. ReczekC.R. BirsoyK. KongH. Martínez-ReyesI. WangT. GaoP. SabatiniD.M. ChandelN.S. A CRISPR screen identifies a pathway required for paraquat-induced cell death.Nat. Chem. Biol.201713121274127910.1038/nchembio.249929058724
    [Google Scholar]
  20. ShimizuK. OhtakiK. MatsubaraK. AoyamaK. UezonoT. SaitoO. SunoM. OgawaK. HayaseN. KimuraK. ShionoH. Carrier-mediated processes in blood–brain barrier penetration and neural uptake of paraquat.Brain Res.20019061-213514210.1016/S0006‑8993(01)02577‑X11430870
    [Google Scholar]
  21. CastelloP.R. DrechselD.A. PatelM. Mitochondria are a major source of paraquat-induced reactive oxygen species production in the brain.J. Biol. Chem.200728219141861419310.1074/jbc.M70082720017389593
    [Google Scholar]
  22. CocheméH.M. MurphyM.P. ComplexI. Complex I is the major site of mitochondrial superoxide production by paraquat.J. Biol. Chem.200828341786179810.1074/jbc.M70859720018039652
    [Google Scholar]
  23. ShuklaA.K. PragyaP. ChaouhanH.S. PatelD.K. AbdinM.Z. KarC.D. A mutation in Drosophila methuselah resists paraquat induced Parkinson-like phenotypes.Neurobiol. Aging201435102419.e12419.e1610.1016/j.neurobiolaging.2014.04.00824819147
    [Google Scholar]
  24. RappoldP.M. CuiM. ChesserA.S. TibbettJ. GrimaJ.C. DuanL. SenN. JavitchJ.A. TieuK. Paraquat neurotoxicity is mediated by the dopamine transporter and organic cation transporter-3.Proc. Natl. Acad. Sci. USA201110851207662077110.1073/pnas.111514110822143804
    [Google Scholar]
  25. MitraS. ChakrabartiN. BhattacharyyaA. Differential regional expression patterns of α-synuclein, TNF-α and IL-1β and variable status of dopaminergic neurotoxicity in mouse brain after Paraquat treatment.J. Neuroinflammation20118116310.1186/1742‑2094‑8‑16322112368
    [Google Scholar]
  26. DjukicM.M. JovanovicM.D. NinkovicM. StevanovicI. IlicK. CurcicM. VekicJ. Protective role of glutathione reductase in paraquat induced neurotoxicity.Chem. Biol. Interact.20121992748610.1016/j.cbi.2012.05.00822721943
    [Google Scholar]
  27. WillsJ. CredleJ. OaksA.W. DukaV. LeeJ.H. JonesJ. SidhuA. Paraquat, but not maneb, induces synucleinopathy and tauopathy in striata of mice through inhibition of proteasomal and autophagic pathways.PLoS One201271e3074510.1371/journal.pone.003074522292029
    [Google Scholar]
  28. HuangC.L. ChaoC.C. LeeY.C. LuM.K. ChengJ.J. YangY.C. WangV.C. ChangW.C. HuangN.K. Paraquat induces cell death through impairing mitochondrial membrane permeability.Mol. Neurobiol.20165342169218810.1007/s12035‑015‑9198‑y25947082
    [Google Scholar]
  29. SeeW.Z.C. NaiduR. TangK.S. Cellular and molecular events leading to paraquat-induced apoptosis: mechanistic insights into Parkinson’s disease pathophysiology.Mol. Neurobiol.20225963353336910.1007/s12035‑022‑02799‑235306641
    [Google Scholar]
  30. TaylorR.C. CullenS.P. MartinS.J. Apoptosis: controlled demolition at the cellular level.Nat. Rev. Mol. Cell Biol.20089323124110.1038/nrm231218073771
    [Google Scholar]
  31. ElmoreS. Apoptosis: a review of programmed cell death.Toxicol. Pathol.200735449551610.1080/0192623070132033717562483
    [Google Scholar]
  32. NguyenT.T.M. GilletG. PopgeorgievN. Caspases in the developing central nervous system: apoptosis and beyond.Front. Cell Dev. Biol.19102021934336853
    [Google Scholar]
  33. Redza-DutordoirM. Averill-BatesD.A. Activation of apoptosis signalling pathways by reactive oxygen species.Biochim. Biophys. Acta Mol. Cell Res.20161863122977299210.1016/j.bbamcr.2016.09.01227646922
    [Google Scholar]
  34. ChowdhuryI. TharakanB. BhatG.K. Caspases — An update.Comp. Biochem. Physiol. B Biochem. Mol. Biol.20081511102710.1016/j.cbpb.2008.05.01018602321
    [Google Scholar]
  35. KaleJ. OsterlundE.J. AndrewsD.W. BCL-2 family proteins: changing partners in the dance towards death.Cell Death Differ.2018251658010.1038/cdd.2017.18629149100
    [Google Scholar]
  36. HsuY.T. WolterK.G. YouleR.J. Cytosol-to-membrane redistribution of Bax and Bcl-XL during apoptosis.Proc. Natl. Acad. Sci. USA19979483668367210.1073/pnas.94.8.36689108035
    [Google Scholar]
  37. KalkavanH. GreenD.R. MOMP, cell suicide as a BCL-2 family business.Cell Death Differ.2018251465510.1038/cdd.2017.17929053143
    [Google Scholar]
  38. HuangC.L. LeeY.C. YangY.C. KuoT.Y. HuangN.K. Minocycline prevents paraquat-induced cell death through attenuating endoplasmic reticulum stress and mitochondrial dysfunction.Toxicol. Lett.2012209320321010.1016/j.toxlet.2011.12.02122245251
    [Google Scholar]
  39. de OliveiraM.R. FerreiraG.C. SchuckP.F. Protective effect of carnosic acid against paraquat-induced redox impairment and mitochondrial dysfunction in SH-SY5Y cells: Role for PI3K/Akt/Nrf2 pathway.Toxicol. In Vitro201632415410.1016/j.tiv.2015.12.00526686574
    [Google Scholar]
  40. Del PinoJ. MoyanoP. DíazG.G. AnadonM.J. DiazM.J. GarcíaJ.M. LoboM. PelayoA. SolaE. FrejoM.T. Primary hippocampal neuronal cell death induction after acute and repeated paraquat exposures mediated by AChE variants alteration and cholinergic and glutamatergic transmission disruption.Toxicology2017390889910.1016/j.tox.2017.09.00828916328
    [Google Scholar]
  41. SrivastavS. FatimaM. MondalA.C. Bacopa monnieri alleviates paraquat induced toxicity in Drosophila by inhibiting jnk mediated apoptosis through improved mitochondrial function and redox stabilization.Neurochem. Int.20181219810710.1016/j.neuint.2018.10.00130296463
    [Google Scholar]
  42. FeiQ. McCormackA.L. Di MonteD.A. EthellD.W. Paraquat neurotoxicity is mediated by a Bak-dependent mechanism.J. Biol. Chem.200828363357336410.1074/jbc.M70845120018056701
    [Google Scholar]
  43. WestphalD. KluckR.M. DewsonG. Building blocks of the apoptotic pore: how Bax and Bak are activated and oligomerize during apoptosis.Cell Death Differ.201421219620510.1038/cdd.2013.13924162660
    [Google Scholar]
  44. RayR. ChenG. Vande VeldeC. CizeauJ. ParkJ.H. ReedJ.C. GietzR.D. GreenbergA.H. BNIP3 heterodimerizes with Bcl-2/Bcl-X(L) and induces cell death independent of a Bcl-2 homology 3 (BH3) domain at both mitochondrial and nonmitochondrial sites.J. Biol. Chem.200027521439144810.1074/jbc.275.2.143910625696
    [Google Scholar]
  45. PlonerC. KoflerR. VillungerA. Noxa: at the tip of the balance between life and death.Oncogene200827Suppl. 1S84S9210.1038/onc.2009.4619641509
    [Google Scholar]
  46. VelaL. GonzaloO. NavalJ. MarzoI. Direct interaction of Bax and Bak proteins with Bcl-2 homology domain 3 (BH3)-only proteins in living cells revealed by fluorescence complementation.J. Biol. Chem.201328874935494610.1074/jbc.M112.42220423283967
    [Google Scholar]
  47. PlotnikovA. ZehoraiE. ProcacciaS. SegerR. The MAPK cascades: Signaling components, nuclear roles and mechanisms of nuclear translocation.Biochim. Biophys. Acta Mol. Cell Res.2011181391619163310.1016/j.bbamcr.2010.12.01221167873
    [Google Scholar]
  48. BohushA. NiewiadomskaG. FilipekA. Role of mitogen activated protein kinase signaling in parkinson’s disease.Int. J. Mol. Sci.20181910297310.3390/ijms1910297330274251
    [Google Scholar]
  49. PetiW. PageR. Molecular basis of MAP kinase regulation.Protein Sci.201322121698171010.1002/pro.237424115095
    [Google Scholar]
  50. JhaS.K. JhaN.K. KarR. AmbastaR.K. KumarP. p38 MAPK and PI3K/AKT signalling cascades in Parkinson’s disease.Int. J. Mol. Cell. Med.201542678626261796
    [Google Scholar]
  51. Niso-SantanoM. González-PoloR.A. Bravo-San PedroJ.M. Gómez-SánchezR. Lastres-BeckerI. Ortiz-OrtizM.A. SolerG. MoránJ.M. CuadradoA. FuentesJ.M. Activation of apoptosis signal-regulating kinase 1 is a key factor in paraquat-induced cell death: Modulation by the Nrf2/Trx axis.Free Radic. Biol. Med.201048101370138110.1016/j.freeradbiomed.2010.02.02420202476
    [Google Scholar]
  52. LindholmD. WootzH. KorhonenL. ER stress and neurodegenerative diseases.Cell Death Differ.200613338539210.1038/sj.cdd.440177816397584
    [Google Scholar]
  53. Niso-SantanoM. Bravo-San PedroJ.M. Gómez-SánchezR. ClimentV. SolerG. FuentesJ.M. González-PoloR.A. ASK1 overexpression accelerates paraquat-induced autophagy via endoplasmic reticulum stress.Toxicol. Sci.2011119115616810.1093/toxsci/kfq31320929985
    [Google Scholar]
  54. ReinhardC. ShamoonB. ShyamalaV. WilliamsL.T. Tumor necrosis factor alpha -induced activation of c-jun N-terminal kinase is mediated by TRAF2.EMBO J.19971651080109210.1093/emboj/16.5.10809118946
    [Google Scholar]
  55. WangM.C. BohmannD. JasperH. JNK signaling confers tolerance to oxidative stress and extends lifespan in Drosophila.Dev. Cell20035581181610.1016/S1534‑5807(03)00323‑X14602080
    [Google Scholar]
  56. HamdiM. KoolJ. Cornelissen-SteijgerP. CarlottiF. PopeijusH.E. van der BurgtC. JanssenJ.M. YasuiA. HoebenR.C. TerlethC. MullendersL.H. van DamH. DNA damage in transcribed genes induces apoptosis via the JNK pathway and the JNK-phosphatase MKP-1.Oncogene200524487135714410.1038/sj.onc.120887516044158
    [Google Scholar]
  57. DhanasekaranD.N. ReddyE.P. JNK signaling in apoptosis.Oncogene200827486245625110.1038/onc.2008.30118931691
    [Google Scholar]
  58. LinA. DiblingB. The true face of JNK activation in apoptosis.Aging Cell20021211211610.1046/j.1474‑9728.2002.00014.x12882340
    [Google Scholar]
  59. LiuJ. LinA. Role of JNK activation in apoptosis: A double-edged sword.Cell Res.2005151364210.1038/sj.cr.729026215686625
    [Google Scholar]
  60. TournierC. DongC. TurnerT.K. JonesS.N. FlavellR.A. DavisR.J. MKK7 is an essential component of the JNK signal transduction pathway activated by proinflammatory cytokines.Genes Dev.200115111419142610.1101/gad.88850111390361
    [Google Scholar]
  61. SchreckI. Al-RawiM. MingotJ.M. SchollC. DiefenbacherM.E. O’DonnellP. BohmannD. WeissC. c-Jun localizes to the nucleus independent of its phosphorylation by and interaction with JNK and vice versa promotes nuclear accumulation of JNK.Biochem. Biophys. Res. Commun.2011407473574010.1016/j.bbrc.2011.03.09221439937
    [Google Scholar]
  62. JuD.T. SivalingamK. KuoW.W. HoT.J. ChangR.L. ChungL.C. DayC.H. ViswanadhaV.P. LiaoP.H. HuangC.Y. Effect of vasicinone against paraquat-induced MAPK/p53-mediated apoptosis via the IGF-1R/PI3K/AKT Pathway in a Parkinson’s disease-associated SH-SY5Y cell model.Nutrients2019117165510.3390/nu1107165531331066
    [Google Scholar]
  63. FuchsS.Y. AdlerV. PincusM.R. RonaiZ. MEKK1/JNK signaling stabilizes and activates p53.Proc. Natl. Acad. Sci. USA19989518105411054610.1073/pnas.95.18.105419724739
    [Google Scholar]
  64. FerrerI. BlancoR. CarmonaM. PuigB. BarrachinaM. GómezC. AmbrosioS. Active, phosphorylation-dependent mitogen-activated protein kinase (MAPK/ERK), stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), and p38 kinase expression in Parkinson’s disease and Dementia with Lewy bodies.J. Neural Transm. (Vienna)2001108121383139610.1007/s00702010001511810403
    [Google Scholar]
  65. CuendaA. AlonsoG. MorriceN. JonesM. MeierR. CohenP. NebredaA.R. Purification and cDNA cloning of SAPKK3, the major activator of RK/p38 in stress- and cytokine-stimulated monocytes and epithelial cells.EMBO J.199615164156416410.1002/j.1460‑2075.1996.tb00790.x8861944
    [Google Scholar]
  66. CuendaA. CohenP. Buée-ScherrerV. GoedertM. Activation of stress-activated protein kinase-3 (SAPK3) by cytokines and cellular stresses is mediated via SAPKK3 (MKK6); comparison of the specificities of SAPK3 and SAPK2 (RK/p38).EMBO J.199716229530510.1093/emboj/16.2.2959029150
    [Google Scholar]
  67. RaingeaudJ. WhitmarshA.J. BarrettT. DérijardB. DavisR.J. MKK3- and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway.Mol. Cell. Biol.19961631247125510.1128/MCB.16.3.12478622669
    [Google Scholar]
  68. ObergasteigerJ. FrapportiG. PramstallerP.P. HicksA.A. VoltaM. A new hypothesis for Parkinson’s disease pathogenesis: GTPase-p38 MAPK signaling and autophagy as convergence points of etiology and genomics.Mol. Neurodegener.20181314010.1186/s13024‑018‑0273‑530071902
    [Google Scholar]
  69. SubramaniamS. UnsickerK. Extracellular signal-regulated kinase as an inducer of non-apoptotic neuronal death.Neuroscience200613841055106510.1016/j.neuroscience.2005.12.01316442236
    [Google Scholar]
  70. SeoH.J. ChoiS.J. LeeJ.H. Paraquat induces apoptosis through cytochrome C release and ERK activation.Biomol. Ther. (Seoul)201422650350910.4062/biomolther.2014.11525489417
    [Google Scholar]
  71. Niso-SantanoM. MoránJ.M. García-RubioL. Gómez-MartínA. González-PoloR.A. SolerG. FuentesJ.M. Low concentrations of paraquat induces early activation of extracellular signal-regulated kinase 1/2, protein kinase B, and c-Jun N-terminal kinase 1/2 pathways: role of c-Jun N-terminal kinase in paraquat-induced cell death.Toxicol. Sci.200692250751510.1093/toxsci/kfl01316687388
    [Google Scholar]
  72. ZhuJ.H. KulichS.M. OuryT.D. ChuC.T. Cytoplasmic aggregates of phosphorylated extracellular signal-regulated protein kinases in Lewy body diseases.Am. J. Pathol.200216162087209810.1016/S0002‑9440(10)64487‑212466125
    [Google Scholar]
  73. ZhuY. CarveyP.M. LingZ. Age-related changes in glutathione and glutathione-related enzymes in rat brain.Brain Res.200610901354410.1016/j.brainres.2006.03.06316647047
    [Google Scholar]
  74. XuF. NaL. LiY. ChenL. RETRACTED ARTICLE: Roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours.Cell Biosci.20201015410.1186/s13578‑020‑00416‑032266056
    [Google Scholar]
  75. BilangesB. PosorY. VanhaesebroeckB. PI3K isoforms in cell signalling and vesicle trafficking.Nat. Rev. Mol. Cell Biol.201920951553410.1038/s41580‑019‑0129‑z31110302
    [Google Scholar]
  76. ZhengW.H. KarS. QuirionR. Insulin-like growth factor-1-induced phosphorylation of transcription factor FKHRL1 is mediated by phosphatidylinositol 3-kinase/Akt kinase and role of this pathway in insulin-like growth factor-1-induced survival of cultured hippocampal neurons.Mol. Pharmacol.200262222523310.1124/mol.62.2.22512130673
    [Google Scholar]
  77. BianchiV. LocatelliV. RizziL. Neurotrophic and neuroregenerative effects of GH/IGF1.Int. J. Mol. Sci.20171811244110.3390/ijms1811244129149058
    [Google Scholar]
  78. PettmannB. HendersonC.E. Neuronal cell death.Neuron199820463364710.1016/S0896‑6273(00)81004‑19581757
    [Google Scholar]
  79. MalageladaC. JinZ.H. GreeneL.A. RTP801 is induced in Parkinson’s disease and mediates neuron death by inhibiting Akt phosphorylation/activation.J. Neurosci.20082853143631437110.1523/JNEUROSCI.3928‑08.200819118169
    [Google Scholar]
  80. LuoS. KangS.S. WangZ.H. LiuX. DayJ.X. WuZ. PengJ. XiangD. SpringerW. YeK. Akt phosphorylates NQO1 and triggers its degradation, abolishing its antioxidative activities in Parkinson’s disease.J. Neurosci.201939377291730510.1523/JNEUROSCI.0625‑19.201931358653
    [Google Scholar]
  81. FrankeT.F. HornikC.P. SegevL. ShostakG.A. SugimotoC. PI3K/Akt and apoptosis: size matters.Oncogene200322568983899810.1038/sj.onc.120711514663477
    [Google Scholar]
  82. CardoneM.H. RoyN. StennickeH.R. SalvesenG.S. FrankeT.F. StanbridgeE. FrischS. ReedJ.C. Regulation of cell death protease caspase-9 by phosphorylation.Science199828253921318132110.1126/science.282.5392.13189812896
    [Google Scholar]
  83. RomoriniL. GarateX. NeimanG. LuzzaniC. FurmentoV.A. GubermanA.S. SevleverG.E. ScassaM.E. MiriukaS.G. AKT/GSK3β signaling pathway is critically involved in human pluripotent stem cell survival.Sci. Rep.2016613566010.1038/srep3566027762303
    [Google Scholar]
  84. KaleJ. KutukO. BritoG.C. AndrewsT.S. LeberB. LetaiA. AndrewsD.W. Phosphorylation switches Bax from promoting to inhibiting apoptosis thereby increasing drug resistance.EMBO Rep.2018199e4523510.15252/embr.20174523529987135
    [Google Scholar]
  85. YangE. ZhaJ. JockelJ. BoiseL.H. ThompsonC.B. KorsmeyerS.J. Bad, a heterodimeric partner for Bcl-xL and Bcl-2, displaces bax and promotes cell death.Cell199580228529110.1016/0092‑8674(95)90411‑57834748
    [Google Scholar]
  86. TanY. DemeterM.R. RuanH. CombM.J. BAD Ser-155 phosphorylation regulates BAD/Bcl-XL interaction and cell survival.J. Biol. Chem.200027533258652586910.1074/jbc.M00419920010837486
    [Google Scholar]
  87. HiraiI. WangH.G. Survival-factor-induced phosphorylation of Bad results in its dissociation from Bcl-xL but not Bcl-2.Biochem. J.2001359234535210.1042/bj359034511583580
    [Google Scholar]
  88. YamaguchiH. WangH.G. The protein kinase PKB/Akt regulates cell survival and apoptosis by inhibiting Bax conformational change.Oncogene200120537779778610.1038/sj.onc.120498411753656
    [Google Scholar]
  89. KennedyS.G. KandelE.S. CrossT.K. HayN. Akt/Protein kinase B inhibits cell death by preventing the release of cytochrome c from mitochondria.Mol. Cell. Biol.19991985800581010.1128/MCB.19.8.580010409766
    [Google Scholar]
  90. GottliebT.M. LealJ.F.M. SegerR. TayaY. OrenM. Cross-talk between Akt, p53 and Mdm2: possible implications for the regulation of apoptosis.Oncogene20022181299130310.1038/sj.onc.120518111850850
    [Google Scholar]
  91. LamE.W.F. FrancisR.E. PetkovicM. FOXO transcription factors: key regulators of cell fate.Biochem. Soc. Trans.200634572272610.1042/BST034072217052182
    [Google Scholar]
  92. HuW. YangZ. YangW. HanM. XuB. YuZ. ShenM. YangY. Roles of forkhead box O (FoxO) transcription factors in neurodegenerative diseases: A panoramic view.Prog. Neurobiol.201918110164510.1016/j.pneurobio.2019.10164531229499
    [Google Scholar]
  93. ZhangX. TangN. HaddenT.J. RishiA.K. Akt, FoxO and regulation of apoptosis. Biochimica et Biophysica Acta (BBA) -.Mol. Cell Res.201118131119781986
    [Google Scholar]
  94. EssersM.A.G. WeijzenS. de Vries-SmitsA.M.M. SaarloosI. de RuiterN.D. BosJ.L. BurgeringB.M.T. FOXO transcription factor activation by oxidative stress mediated by the small GTPase Ral and JNK.EMBO J.200423244802481210.1038/sj.emboj.760047615538382
    [Google Scholar]
  95. KimA.H. KhursigaraG. SunX. FrankeT.F. ChaoM.V. Akt phosphorylates and negatively regulates apoptosis signal-regulating kinase 1.Mol. Cell. Biol.200121389390110.1128/MCB.21.3.893‑901.200111154276
    [Google Scholar]
  96. WullschlegerS. LoewithR. HallM.N. TOR signaling in growth and metabolism.Cell2006124347148410.1016/j.cell.2006.01.01616469695
    [Google Scholar]
  97. SaxtonR.A. SabatiniD.M. mTOR signaling in growth, metabolism, and disease.Cell2017168696097610.1016/j.cell.2017.02.00428283069
    [Google Scholar]
  98. FriasM.A. ThoreenC.C. JaffeJ.D. SchroderW. SculleyT. CarrS.A. SabatiniD.M. mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s.Curr. Biol.200616181865187010.1016/j.cub.2006.08.00116919458
    [Google Scholar]
  99. NakajimaS. HiramatsuN. HayakawaK. SaitoY. KatoH. HuangT. YaoJ. PatonA.W. PatonJ.C. KitamuraM. Selective abrogation of BiP/GRP78 blunts activation of NF-κB through the ATF6 branch of the UPR: involvement of C/EBPβ and mTOR-dependent dephosphorylation of Akt.Mol. Cell. Biol.20113181710171810.1128/MCB.00939‑1021300786
    [Google Scholar]
  100. KatoH. NakajimaS. SaitoY. TakahashiS. KatohR. KitamuraM. mTORC1 serves ER stress-triggered apoptosis via selective activation of the IRE1–JNK pathway.Cell Death Differ.201219231032010.1038/cdd.2011.9821779001
    [Google Scholar]
  101. ChenC.H. ShaikenovT. PetersonT.R. AimbetovR. BissenbaevA.K. LeeS.W. WuJ. LinH.K. SarbassovD.D. ER stress inhibits mTORC2 and Akt signaling through GSK-3β-mediated phosphorylation of rictor.Sci. Signal.20114161ra10ra1010.1126/scisignal.200173121343617
    [Google Scholar]
  102. DijkstraA.A. IngrassiaA. de MenezesR.X. van KesterenR.E. RozemullerA.J.M. HeutinkP. van de BergW.D.J. Evidence for immune response, axonal dysfunction and reduced endocytosis in the substantia nigra in early stage Parkinson’s Disease.PLoS One2015106e012865110.1371/journal.pone.012865126087293
    [Google Scholar]
  103. CrewsL. SpencerB. DesplatsP. PatrickC. PaulinoA. RockensteinE. HansenL. AdameA. GalaskoD. MasliahE. Selective molecular alterations in the autophagy pathway in patients with Lewy body disease and in models of α-synucleinopathy.PLoS One201052e931310.1371/journal.pone.000931320174468
    [Google Scholar]
  104. LiuZ. ZhuangW. CaiM. LvE. WangY. WuZ. WangH. FuW. Kaemperfol protects dopaminergic neurons by promoting mtor-mediated autophagy in Parkinson’s disease models.Neurochem. Res.2022Dec 5. doi: 10.1007/s11064-022-03819-2. Epub ahead of print. PMID: 3646916310.1007/s11064‑022‑03819‑236469163
    [Google Scholar]
  105. MoritaM. PrudentJ. BasuK. GoyonV. KatsumuraS. HuleaL. PearlD. SiddiquiN. StrackS. McGuirkS. St-PierreJ. LarssonO. TopisirovicI. ValiH. McBrideH.M. BergeronJ.J. SonenbergN. mTOR controls mitochondrial dynamics and cell survival via MTFP1.Mol. Cell2017676922935.e510.1016/j.molcel.2017.08.01328918902
    [Google Scholar]
  106. ShirgadwarS.M. KumarR. PreetiK. KhatriD.K. SinghS.B. Neuroprotective effect of phloretin in rotenone-induced mice Model of Parkinson’s disease: modulating mTOR-NRF2-p62 mediated autophagy-oxidative stress crosstalk.J. Alzheimers Dis.202211610.3233/JAD‑22079336463449
    [Google Scholar]
  107. González-PoloR.A. Niso-SantanoM. Ortíz-OrtízM.A. Gómez-MartínA. MoránJ.M. García-RubioL. Francisco-MorcilloJ. ZaragozaC. SolerG. FuentesJ.M. Inhibition of paraquat-induced autophagy accelerates the apoptotic cell death in neuroblastoma SH-SY5Y cells.Toxicol. Sci.200797244845810.1093/toxsci/kfm04017341480
    [Google Scholar]
  108. KongD. DingY. LiuJ. LiuR. ZhangJ. ZhouQ. LongZ. PengJ. LiL. BaiH. HaiC. Chlorogenic acid prevents paraquat-induced apoptosis via Sirt1-mediated regulation of redox and mitochondrial function.Free Radic. Res.201953668069310.1080/10715762.2019.162130831106605
    [Google Scholar]
  109. ZhangJ. CulpM.L. CraverJ.G. Darley-UsmarV. Mitochondrial function and autophagy: integrating proteotoxic, redox, and metabolic stress in Parkinson’s disease.J. Neurochem.2018144669170910.1111/jnc.1430829341130
    [Google Scholar]
  110. InestrosaN.C. Varela-NallarL. Wnt signalling in neuronal differentiation and development.Cell Tissue Res.2015359121522310.1007/s00441‑014‑1996‑425234280
    [Google Scholar]
  111. HuangP. YanR. ZhangX. WangL. KeX. QuY. Activating Wnt/β-catenin signaling pathway for disease therapy: Challenges and opportunities.Pharmacol. Ther.2019196799010.1016/j.pharmthera.2018.11.00830468742
    [Google Scholar]
  112. StamosJ.L. WeisW.I. The β-catenin destruction complex.Cold Spring Harb. Perspect. Biol.201351a00789810.1101/cshperspect.a00789823169527
    [Google Scholar]
  113. LibroR. BramantiP. MazzonE. The role of the Wnt canonical signaling in neurodegenerative diseases.Life Sci.2016158788810.1016/j.lfs.2016.06.02427370940
    [Google Scholar]
  114. JoksimovicM. AwatramaniR. Wnt/-catenin signaling in midbrain dopaminergic neuron specification and neurogenesis.J. Mol. Cell Biol.201461273310.1093/jmcb/mjt04324287202
    [Google Scholar]
  115. WurstW. PrakashN. Wnt1-regulated genetic networks in midbrain dopaminergic neuron development.J. Mol. Cell Biol.201461344110.1093/jmcb/mjt04624326514
    [Google Scholar]
  116. ArenasE. Wnt signaling in midbrain dopaminergic neuron development and regenerative medicine for Parkinson’s disease.J. Mol. Cell Biol.201461425310.1093/jmcb/mju00124431302
    [Google Scholar]
  117. Cantuti-CastelvetriI. Keller-McGandyC. BouzouB. AsterisG. ClarkT.W. FroschM.P. StandaertD.G. Effects of gender on nigral gene expression and parkinson disease.Neurobiol. Dis.200726360661410.1016/j.nbd.2007.02.00917412603
    [Google Scholar]
  118. ZhangL. DengJ. PanQ. ZhanY. FanJ.B. ZhangK. ZhangZ. Targeted methylation sequencing reveals dysregulated Wnt signaling in Parkinson disease.J. Genet. Genomics2016431058759210.1016/j.jgg.2016.05.00227692691
    [Google Scholar]
  119. YangJ.M. HuangH.M. ChengJ.J. HuangC.L. LeeY.C. ChiouC.T. HuangH.T. HuangN.K. YangY.C. LGK974, a PORCUPINE inhibitor, mitigates cytotoxicity in an in vitro model of Parkinson’s disease by interfering with the WNT/β-CATENIN pathway.Toxicology2018410657210.1016/j.tox.2018.09.00330205152
    [Google Scholar]
  120. CrossD.A. AlessiD.R. VandenheedeJ.R. McDowellH.E. HundalH.S. CohenP. The inhibition of glycogen synthase kinase-3 by insulin or insulin-like growth factor 1 in the rat skeletal muscle cell line L6 is blocked by wortmannin, but not by rapamycin: evidence that wortmannin blocks activation of the mitogen-activated protein kinase pathway in L6 cells between Ras and Raf.Biochem. J.1994303Pt 1212610.1042/bj30300217945242
    [Google Scholar]
  121. StambolicV. WoodgettJ.R. Mitogen inactivation of glycogen synthase kinase-3 beta in intact cells via serine 9 phosphorylation.Biochem. J.1994303Pt 170170410.1042/bj30307017980435
    [Google Scholar]
  122. CrossD.A.E. AlessiD.R. CohenP. AndjelkovichM. HemmingsB.A. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B.Nature1995378655978578910.1038/378785a08524413
    [Google Scholar]
  123. VerheyenE.M. GottardiC.J. Regulation of Wnt/beta-catenin signaling by protein kinases.Dev. Dyn.20102391344419623618
    [Google Scholar]
  124. FunatoY. MichiueT. AsashimaM. MikiH. The thioredoxin-related redox-regulating protein nucleoredoxin inhibits Wnt-β-catenin signalling through Dishevelled.Nat. Cell Biol.20068550150810.1038/ncb140516604061
    [Google Scholar]
  125. BernkopfD.B. BehrensJ. Cell intrinsic Wnt/β-catenin signaling activation.Aging201810585585610.18632/aging.10145529787999
    [Google Scholar]
  126. SekineS. KanamaruY. KoikeM. NishiharaA. OkadaM. KinoshitaH. KamiyamaM. MaruyamaJ. UchiyamaY. IshiharaN. TakedaK. IchijoH. Rhomboid protease PARL mediates the mitochondrial membrane potential loss-induced cleavage of PGAM5.J. Biol. Chem.201228741346353464510.1074/jbc.M112.35750922915595
    [Google Scholar]
  127. BernkopfD.B. JalalK. BrücknerM. KnaupK.X. GentzelM. SchambonyA. BehrensJ. Pgam5 released from damaged mitochondria induces mitochondrial biogenesis via Wnt signaling.J. Cell Biol.201821741383139410.1083/jcb.20170819129438981
    [Google Scholar]
  128. RosenbloomA.B. Tarczyński, M.; Lam, N.; Kane, R.S.; Bugaj, L.J.; Schaffer, D.V. β-Catenin signaling dynamics regulate cell fate in differentiating neural stem cells.Proc. Natl. Acad. Sci.202011746288282883710.1073/pnas.200850911733139571
    [Google Scholar]
  129. SherrC.J. RobertsJ.M. Living with or without cyclins and cyclin-dependent kinases.Genes Dev.200418222699271110.1101/gad.125650415545627
    [Google Scholar]
  130. FuM. WangC. LiZ. SakamakiT. PestellR.G. Minireview: Cyclin D1: normal and abnormal functions.Endocrinology2004145125439544710.1210/en.2004‑095915331580
    [Google Scholar]
  131. KafriP. HasensonS.E. KanterI. SheinbergerJ. KinorN. YungerS. Shav-TalY. Quantifying β-catenin subcellular dynamics and cyclin D1 mRNA transcription during Wnt signaling in single living cells.eLife20165e1674810.7554/eLife.1674827879202
    [Google Scholar]
  132. GuoZ. HaoX. TanF.F. PeiX. ShangL.M. JiangX. YangF. The elements of human cyclin D1 promoter and regulation involved.Clin. Epigenetics201122637610.1007/s13148‑010‑0018‑y22704330
    [Google Scholar]
  133. ZhaoL. YanM. WangX. XiongG. WuC. WangZ. ZhouZ. ChangX. Modification of Wnt signaling pathway on paraquat-induced inhibition of neural progenitor cell proliferation.Food Chem. Toxicol.201812131132510.1016/j.fct.2018.08.06430171970
    [Google Scholar]
/content/journals/cn/10.2174/1570159X21666230126161524
Loading
/content/journals/cn/10.2174/1570159X21666230126161524
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test