Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

The gut microbiota, composed of numerous species of microbes, works in synergy with the various organ systems in the body to bolster our overall health and well-being. The most well-known function of the gut microbiome is to facilitate the metabolism and absorption of crucial nutrients, such as complex carbohydrates, while also generating vitamins. In addition, the gut microbiome plays a crucial role in regulating the functioning of the central nervous system (CNS). Host genetics, including specific genes and single nucleotide polymorphisms (SNPs), have been implicated in the pathophysiology of neurological disorders, including Parkinson’s disease (PD), Alzheimer’s disease (AD), and autism spectrum disorder (ASD). The gut microbiome dysbiosis also plays a role in the pathogenesis of these neurodegenerative disorders, thus perturbing the gut-brain axis. Overproduction of certain metabolites synthesized by the gut microbiome, such as short-chain fatty acids (SCFAs) and p-cresyl sulfate, are known to interfere with microglial function and trigger misfolding of alpha-synuclein protein, which can build up inside neurons and cause damage. By determining the association of the gut microbiome and its metabolites with various diseases, such as neurological disorders, future research will pave the way for the development of effective preventive and treatment modalities.

Loading

Article metrics loading...

/content/journals/cn/10.2174/1570159X20666221003085508
2024-01-01
2025-01-11
Loading full text...

Full text loading...

References

  1. VerhaarB.J.H. HendriksenH.M.A. de LeeuwF.A. DoorduijnA.S. van LeeuwenstijnM. TeunissenC.E. BarkhofF. ScheltensP. KraaijR. van DuijnC.M. NieuwdorpM. MullerM. van der FlierW.M. Gut microbiota composition is related to AD pathology.Front. Immunol.20221279451910.3389/fimmu.2021.79451935173707
    [Google Scholar]
  2. KonopelskiP. MogilnickaI. Biological effects of indole-3-propionic acid, a gut microbiota-derived metabolite, and its precursor tryptophan in mammals’ health and disease.Int. J. Mol. Sci.2022233122210.3390/ijms2303122235163143
    [Google Scholar]
  3. EshraghiR.S. DaviesC. IyengarR. PerezL. MittalR. EshraghiA.A. Gut-induced inflammation during development may compromise the blood-brain barrier and predispose to autism spectrum disorder.J. Clin. Med.20201012710.3390/jcm1001002733374296
    [Google Scholar]
  4. EshraghiR.S. DethR.C. MittalR. ArankeM. KayS.I.S. MoshireeB. EshraghiA.A. Early disruption of the microbiome leading to decreased antioxidant capacity and epigenetic changes: Implications for the rise in autism.Front. Cell. Neurosci.20181225610.3389/fncel.2018.0025630158857
    [Google Scholar]
  5. KimC.H. JungJ. LeeY. KimK. KangS. KangG. ChuH. KimS.Y. LeeS. Comparison of metabolites and gut microbes between patients with Parkinson’s disease and healthy individuals – a pilot clinical observational study (STROBE compliant).Healthcare (Basel)202210230210.3390/healthcare1002030235206916
    [Google Scholar]
  6. ChenS.J. ChenC.C. LiaoH.Y. LinY.T. WuY.W. LiouJ.M. WuM.S. KuoC.H. LinC.H. Association of fecal and plasma levels of short-chain fatty acids with gut microbiota and clinical severity in patients with Parkinson disease.Neurology2022988e848e85810.1212/WNL.000000000001322534996879
    [Google Scholar]
  7. SampsonT.R. DebeliusJ.W. ThronT. JanssenS. ShastriG.G. IlhanZ.E. ChallisC. SchretterC.E. RochaS. GradinaruV. ChesseletM.F. KeshavarzianA. ShannonK.M. Krajmalnik-BrownR. Wittung-StafshedeP. KnightR. MazmanianS.K. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease.Cell2016167614691480.e1210.1016/j.cell.2016.11.01827912057
    [Google Scholar]
  8. BrodyH. The gut microbiome.Nature20205777792S510.1038/d41586‑020‑00194‑231996824
    [Google Scholar]
  9. CresciG.A. BawdenE. Gut microbiome.Nutr. Clin. Pract.201530673474610.1177/088453361560989926449893
    [Google Scholar]
  10. LozuponeC.A. StombaughJ.I. GordonJ.I. JanssonJ.K. KnightR. Diversity, stability and resilience of the human gut microbiota.Nature2012489741522023010.1038/nature1155022972295
    [Google Scholar]
  11. ShreinerA.B. KaoJ.Y. YoungV.B. The gut microbiome in health and in disease.Curr. Opin. Gastroenterol.2015311697510.1097/MOG.000000000000013925394236
    [Google Scholar]
  12. Human Microbiome Project ConsortiumStructure, function and diversity of the healthy human microbiome.Nature2012486740220721410.1038/nature1123422699609
    [Google Scholar]
  13. ManorO. DaiC.L. KornilovS.A. SmithB. PriceN.D. LovejoyJ.C. GibbonsS.M. MagisA.T. Health and disease markers correlate with gut microbiome composition across thousands of people.Nat. Commun.2020111520610.1038/s41467‑020‑18871‑133060586
    [Google Scholar]
  14. WuY.T. ShenS.J. LiaoK.F. HuangC.Y. Dietary plant and animal protein sources oppositely modulate fecal Bilophila and Lachnoclostridium in vegetarians and omnivores.Microbiol. Spectr.2022102e02047e2110.1128/spectrum.02047‑2135285706
    [Google Scholar]
  15. TanesC. BittingerK. GaoY. FriedmanE.S. NesselL. PaladhiU.R. ChauL. PanfenE. FischbachM.A. BraunJ. XavierR.J. ClishC.B. LiH. BushmanF.D. LewisJ.D. WuG.D. Role of dietary fiber in the recovery of the human gut microbiome and its metabolome.Cell Host Microbe2021293394407.e510.1016/j.chom.2020.12.01233440171
    [Google Scholar]
  16. CahanaI. IraqiF.A. Impact of host genetics on gut microbiome: Take‐home lessons from human and mouse studies.Animal Model. Exp. Med.20203322923610.1002/ame2.1213433024944
    [Google Scholar]
  17. KurilshikovA. Medina-GomezC. BacigalupeR. RadjabzadehD. WangJ. DemirkanA. Le RoyC.I. Raygoza GarayJ.A. FinnicumC.T. LiuX. ZhernakovaD.V. BonderM.J. HansenT.H. FrostF. RühlemannM.C. TurpinW. MoonJ.Y. KimH.N. LüllK. BarkanE. ShahS.A. FornageM. Szopinska-TokovJ. WallenZ.D. BorisevichD. AgreusL. AndreassonA. BangC. BedraniL. BellJ.T. BisgaardH. BoehnkeM. BoomsmaD.I. BurkR.D. ClaringbouldA. CroitoruK. DaviesG.E. van DuijnC.M. DuijtsL. FalonyG. FuJ. van der GraafA. HansenT. HomuthG. HughesD.A. IjzermanR.G. JacksonM.A. JaddoeV.W.V. JoossensM. JørgensenT. KeszthelyiD. KnightR. LaaksoM. LaudesM. LaunerL.J. LiebW. LusisA.J. MascleeA.A.M. MollH.A. MujagicZ. QibinQ. RothschildD. ShinH. SørensenS.J. StevesC.J. ThorsenJ. TimpsonN.J. TitoR.Y. Vieira-SilvaS. VölkerU. VölzkeH. VõsaU. WadeK.H. WalterS. WatanabeK. WeissS. WeissF.U. WeissbrodO. WestraH.J. WillemsenG. PayamiH. JonkersD.M.A.E. Arias VasquezA. de GeusE.J.C. MeyerK.A. StokholmJ. SegalE. OrgE. WijmengaC. KimH.L. KaplanR.C. SpectorT.D. UitterlindenA.G. RivadeneiraF. FrankeA. LerchM.M. FrankeL. SannaS. D’AmatoM. PedersenO. PatersonA.D. KraaijR. RaesJ. ZhernakovaA. Large-scale association analyses identify host factors influencing human gut microbiome composition.Nat. Genet.202153215616510.1038/s41588‑020‑00763‑133462485
    [Google Scholar]
  18. SchmidtV. EnavH. SpectorT.D. YoungblutN.D. LeyR.E. Strain-level analysis of Bifidobacterium spp. from gut microbiomes of adults with differing lactase persistence genotypes.mSystems202055e00911e0092010.1128/mSystems.00911‑2032994293
    [Google Scholar]
  19. KoldeR. FranzosaE.A. RahnavardG. HallA.B. VlamakisH. StevensC. DalyM.J. XavierR.J. HuttenhowerC. Host genetic variation and its microbiome interactions within the Human Microbiome Project.Genome Med.2018101610.1186/s13073‑018‑0515‑829378630
    [Google Scholar]
  20. LimM.Y. YouH.J. YoonH.S. KwonB. LeeJ.Y. LeeS. SongY.M. LeeK. SungJ. KoG. The effect of heritability and host genetics on the gut microbiota and metabolic syndrome.Gut20176661031103810.1136/gutjnl‑2015‑31132627053630
    [Google Scholar]
  21. MontgomeryT.L. KünstnerA. KennedyJ.J. FangQ. AsarianL. Culp-HillR. D’AlessandroA. TeuscherC. BuschH. KrementsovD.N. Interactions between host genetics and gut microbiota determine susceptibility to CNS autoimmunity.Proc. Natl. Acad. Sci. USA202011744275162752710.1073/pnas.200281711733077601
    [Google Scholar]
  22. TurpinW. Espin-GarciaO. XuW. SilverbergM.S. KevansD. SmithM.I. GuttmanD.S. GriffithsA. PanaccioneR. OtleyA. XuL. ShestopaloffK. Moreno-HagelsiebG. PatersonA.D. CroitoruK. Association of host genome with intestinal microbial composition in a large healthy cohort.Nat. Genet.201648111413141710.1038/ng.369327694960
    [Google Scholar]
  23. BubierJ.A. CheslerE.J. WeinstockG.M. Host genetic control of gut microbiome composition.Mamm. Genome202132426328110.1007/s00335‑021‑09884‑234159422
    [Google Scholar]
  24. TangJ. WuX. MouM. WangC. WangL. LiF. GuoM. YinJ. XieW. WangX. WangY. DingY. XueW. ZhuF. GIMICA: Host genetic and immune factors shaping human microbiota.Nucleic Acids Res.202149D1D715D72210.1093/nar/gkaa85133045729
    [Google Scholar]
  25. SilvaY.P. BernardiA. FrozzaR.L. The role of short-chain fatty acids from gut microbiota in gut-brain communication.Front. Endocrinol. (Lausanne)2020112510.3389/fendo.2020.0002532082260
    [Google Scholar]
  26. MitchellR.W. OnN.H. Del BigioM.R. MillerD.W. HatchG.M. Fatty acid transport protein expression in human brain and potential role in fatty acid transport across human brain microvessel endothelial cells.J. Neurochem.20111174no10.1111/j.1471‑4159.2011.07245.x21395585
    [Google Scholar]
  27. LeeJ. VennaV.R. DurganD.J. ShiH. HudobenkoJ. PutluriN. PetrosinoJ. McCulloughL.D. BryanR.M. Young versus aged microbiota transplants to germ-free mice: Increased short-chain fatty acids and improved cognitive performance.Gut Microbes2020121181410710.1080/19490976.2020.181410732897773
    [Google Scholar]
  28. UngerM.M. SpiegelJ. DillmannK.U. GrundmannD. PhilippeitH. BürmannJ. FaßbenderK. SchwiertzA. SchäferK.H. Short chain fatty acids and gut microbiota differ between patients with Parkinson’s disease and age-matched controls.Parkinsonism Relat. Disord.201632667210.1016/j.parkreldis.2016.08.01927591074
    [Google Scholar]
  29. ThomasR.H. MeekingM.M. MephamJ.R. TichenoffL. PossmayerF. LiuS. MacFabeD.F. The enteric bacterial metabolite propionic acid alters brain and plasma phospholipid molecular species: Further development of a rodent model of autism spectrum disorders.J. Neuroinflammation20129169510.1186/1742‑2094‑9‑15322747852
    [Google Scholar]
  30. ThomasR.H. FoleyK.A. MephamJ.R. TichenoffL.J. PossmayerF. MacFabeD.F. Altered brain phospholipid and acylcarnitine profiles in propionic acid infused rodents: Further development of a potential model of autism spectrum disorders.J. Neurochem.2010113251552910.1111/j.1471‑4159.2010.06614.x20405543
    [Google Scholar]
  31. MacFabeD.F. CainN.E. BoonF. OssenkoppK.P. CainD.P. Effects of the enteric bacterial metabolic product propionic acid on object-directed behavior, social behavior, cognition, and neuroinflammation in adolescent rats: Relevance to autism spectrum disorder.Behav. Brain Res.20112171475410.1016/j.bbr.2010.10.00520937326
    [Google Scholar]
  32. ShultzS.R. MacFabeD.F. MartinS. JacksonJ. TaylorR. BoonF. OssenkoppK.P. CainD.P. Intracerebroventricular injections of the enteric bacterial metabolic product propionic acid impair cognition and sensorimotor ability in the Long–Evans rat: Further development of a rodent model of autism.Behav. Brain Res.20092001334110.1016/j.bbr.2008.12.02319154758
    [Google Scholar]
  33. ShultzS.R. MacFabeD.F. OssenkoppK.P. ScratchS. WhelanJ. TaylorR. CainD.P. Intracerebroventricular injection of propionic acid, an enteric bacterial metabolic end-product, impairs social behavior in the rat: Implications for an animal model of autism.Neuropharmacology200854690191110.1016/j.neuropharm.2008.01.01318395759
    [Google Scholar]
  34. ZhengW. HeR. YanZ. HuangY. HuangW. CaiZ. SuY. LiuS. DengY. WangQ. XieH. Regulation of immune-driven pathogenesis in Parkinson’s disease by gut microbiota.Brain Behav. Immun.20208789089710.1016/j.bbi.2020.01.00931931152
    [Google Scholar]
  35. SharonG. CruzN.J. KangD.W. GandalM.J. WangB. KimY.M. ZinkE.M. CaseyC.P. TaylorB.C. LaneC.J. BramerL.M. IsernN.G. HoytD.W. NoeckerC. SweredoskiM.J. MoradianA. BorensteinE. JanssonJ.K. KnightR. MetzT.O. LoisC. GeschwindD.H. Krajmalnik-BrownR. MazmanianS.K. MazmanianS.K. Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice.Cell2019177616001618.e1710.1016/j.cell.2019.05.00431150625
    [Google Scholar]
  36. MersmanB. ZaidiW. SyedN.I. XuF. Taurine promotes neurite outgrowth and synapse development of both vertebrate and invertebrate central neurons.Front. Synaptic Neurosci.2020122910.3389/fnsyn.2020.0002932792935
    [Google Scholar]
  37. KaelbererM.M. BuchananK.L. KleinM.E. BarthB.B. MontoyaM.M. ShenX. BohórquezD.V. A gut-brain neural circuit for nutrient sensory transduction.Science20183616408eaat523610.1126/science.aat523630237325
    [Google Scholar]
  38. NeedhamB.D. Kaddurah-DaoukR. MazmanianS.K. Gut microbial molecules in behavioural and neurodegenerative conditions.Nat. Rev. Neurosci.2020211271773110.1038/s41583‑020‑00381‑033067567
    [Google Scholar]
  39. Bermudez-MartinP. BeckerJ.A.J. CaramelloN. FernandezS.P. Costa-CamposR. CanaguierJ. BarbosaS. Martinez-GiliL. MyridakisA. DumasM.E. BruneauA. CherbuyC. LangellaP. CallebertJ. LaunayJ.M. ChabryJ. BarikJ. Le MerrerJ. GlaichenhausN. DavidovicL. The microbial metabolite p-Cresol induces autistic-like behaviors in mice by remodeling the gut microbiota.Microbiome20219115710.1186/s40168‑021‑01103‑z34238386
    [Google Scholar]
  40. NeedhamB.D. AdameM.D. SerenaG. RoseD.R. PrestonG.M. ConradM.C. CampbellA.S. DonabedianD.H. FasanoA. AshwoodP. MazmanianS.K. Plasma and fecal metabolite profiles in autism spectrum disorder.Biol. Psychiatry202189545146210.1016/j.biopsych.2020.09.02533342544
    [Google Scholar]
  41. HsiaoE.Y. McBrideS.W. HsienS. SharonG. HydeE.R. McCueT. CodelliJ.A. ChowJ. ReismanS.E. PetrosinoJ.F. PattersonP.H. MazmanianS.K. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders.Cell201315571451146310.1016/j.cell.2013.11.02424315484
    [Google Scholar]
  42. GabrieleS. SaccoR. CerulloS. NeriC. UrbaniA. TripiG. MalvyJ. BarthelemyC. Bonnet-BrihaultF. PersicoA.M. Urinary p -cresol is elevated in young French children with autism spectrum disorder: A replication study.Biomarkers201419646347010.3109/1354750X.2014.93691125010144
    [Google Scholar]
  43. GaciasM. GaspariS. SantosP.M.G. TamburiniS. AndradeM. ZhangF. ShenN. TolstikovV. KiebishM.A. DupreeJ.L. ZachariouV. ClementeJ.C. CasacciaP. Microbiota-driven transcriptional changes in prefrontal cortex override genetic differences in social behavior.eLife20165e1344210.7554/eLife.1344227097105
    [Google Scholar]
  44. Guzmán-SalasS. WeberA. MalciA. LinX. Herrera-MolinaR. CerpaW. DoradorC. SignorelliJ. ZamoranoP. The metaboliteP ‐cresol impairs dendritic development, synaptogenesis, and synapse function in hippocampal neurons: Implications for autism spectrum disorder.J. Neurochem.2022161433534910.1111/jnc.1560435257373
    [Google Scholar]
  45. DanebergaZ. Nakazawa-MiklasevicaM. Berga-SvitinaE. MurmaneD. IsarovaD. CupaneL. MasinskaM. NartisaI. LazdaneA. MiklasevicsE. Urinary organic acids spectra in children with altered gut microbiota composition and autistic spectrum disorder.Nord. J. Psychiatry20211710.1080/08039488.2021.201495434935590
    [Google Scholar]
  46. KangD.W. AdamsJ.B. VargasonT. SantiagoM. HahnJ. Krajmalnik-BrownR. Distinct fecal and plasma metabolites in children with autism spectrum disorders and their modulation after microbiota transfer therapy.MSphere202055e00314e0032010.1128/mSphere.00314‑2033087514
    [Google Scholar]
  47. GeviF. BelardoA. ZollaL. A metabolomics approach to investigate urine levels of neurotransmitters and related metabolites in autistic children.Biochim. Biophys. Acta Mol. Basis Dis.202018661016585910.1016/j.bbadis.2020.16585932512190
    [Google Scholar]
  48. KangD.W. IlhanZ.E. IsernN.G. HoytD.W. HowsmonD.P. ShafferM. LozuponeC.A. HahnJ. AdamsJ.B. Krajmalnik-BrownR. Differences in fecal microbial metabolites and microbiota of children with autism spectrum disorders.Anaerobe20184912113110.1016/j.anaerobe.2017.12.00729274915
    [Google Scholar]
  49. AltieriL. NeriC. SaccoR. CuratoloP. BenvenutoA. MuratoriF. SantocchiE. BravaccioC. LentiC. SaccaniM. RigardettoR. GandioneM. UrbaniA. PersicoA.M. Urinary p -cresol is elevated in small children with severe autism spectrum disorder.Biomarkers201116325226010.3109/1354750X.2010.54801021329489
    [Google Scholar]
  50. VelasquezM. RamezaniA. ManalA. RajD. Trimethylamine N-oxide: The good, the bad and the unknown.Toxins (Basel)201681132610.3390/toxins811032627834801
    [Google Scholar]
  51. HoylesL. PontifexM.G. Rodriguez-RamiroI. Anis-AlaviM.A. JelaneK.S. SnellingT. SolitoE. FonsecaS. CarvalhoA.L. CardingS.R. MüllerM. GlenR.C. VauzourD. McArthurS. Regulation of blood–brain barrier integrity by microbiome-associated methylamines and cognition by trimethylamine N-oxide.Microbiome20219123510.1186/s40168‑021‑01181‑z34836554
    [Google Scholar]
  52. GobbettiT. CoorayS.N. Annexin A1 and resolution of inflammation: Tissue repairing properties and signalling signature.Biol. Chem.20163971098199310.1515/hsz‑2016‑020027447237
    [Google Scholar]
  53. CristanteE. McArthurS. MauroC. MaggioliE. RomeroI.A. Wylezinska-ArridgeM. CouraudP.O. Lopez-TremoledaJ. ChristianH.C. WekslerB.B. MalaspinaA. SolitoE. Identification of an essential endogenous regulator of blood–brain barrier integrity, and its pathological and therapeutic implications.Proc. Natl. Acad. Sci. USA2013110383284110.1073/pnas.120936211023277546
    [Google Scholar]
  54. MatheoudD. CannonT. VoisinA. PenttinenA.M. RametL. FahmyA.M. DucrotC. LaplanteA. BourqueM.J. ZhuL. CayrolR. Le CampionA. McBrideH.M. GruenheidS. TrudeauL.E. DesjardinsM. Intestinal infection triggers Parkinson’s disease-like symptoms in Pink1−/− mice.Nature2019571776656556910.1038/s41586‑019‑1405‑y31316206
    [Google Scholar]
  55. WeiG.Z. MartinK.A. XingP.Y. AgrawalR. WhileyL. WoodT.K. HejndorfS. NgY.Z. LowJ.Z.Y. RossantJ. NechanitzkyR. HolmesE. NicholsonJ.K. TanE.K. MatthewsP.M. PetterssonS. Tryptophan-metabolizing gut microbes regulate adult neurogenesis via the aryl hydrocarbon receptor.Proc. Natl. Acad. Sci. USA202111827e202109111810.1073/pnas.202109111834210797
    [Google Scholar]
  56. AgirmanG. YuK.B. HsiaoE.Y. Signaling inflammation across the gut-brain axis.Science202137465711087109210.1126/science.abi608734822299
    [Google Scholar]
  57. Campos-AcuñaJ. ElguetaD. PachecoR. T-cell-driven inflammation as a mediator of the gut-brain axis involved in Parkinson’s disease.Front. Immunol.20191023910.3389/fimmu.2019.0023930828335
    [Google Scholar]
  58. SinghV. RothS. LloveraG. SadlerR. GarzettiD. StecherB. DichgansM. LieszA. Microbiota dysbiosis controls the neuroinflammatory response after stroke.J. Neurosci.201636287428744010.1523/JNEUROSCI.1114‑16.201627413153
    [Google Scholar]
  59. RothhammerV. MascanfroniI.D. BunseL. TakenakaM.C. KenisonJ.E. MayoL. ChaoC.C. PatelB. YanR. BlainM. AlvarezJ.I. KébirH. AnandasabapathyN. IzquierdoG. JungS. ObholzerN. PochetN. ClishC.B. PrinzM. PratA. AntelJ. QuintanaF.J. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor.Nat. Med.201622658659710.1038/nm.410627158906
    [Google Scholar]
  60. WolfS.A. BoddekeH.W.G.M. KettenmannH. Microglia in physiology and disease.Annu. Rev. Physiol.201779161964310.1146/annurev‑physiol‑022516‑03440627959620
    [Google Scholar]
  61. ErnyD. Hrabě de AngelisA.L. JaitinD. WieghoferP. StaszewskiO. DavidE. Keren-ShaulH. MahlakoivT. JakobshagenK. BuchT. SchwierzeckV. UtermöhlenO. ChunE. GarrettW.S. McCoyK.D. DiefenbachA. StaeheliP. StecherB. AmitI. PrinzM. Host microbiota constantly control maturation and function of microglia in the CNS.Nat. Neurosci.201518796597710.1038/nn.403026030851
    [Google Scholar]
  62. Martins-SilvaT. Salatino-OliveiraA. GenroJ.P. MeyerF.D.T. LiY. RohdeL.A. HutzM.H. Tovo-RodriguesL. Host genetics influences the relationship between the gut microbiome and psychiatric disorders.Prog. Neuropsychopharmacol. Biol. Psychiatry202110611015310.1016/j.pnpbp.2020.11015333130294
    [Google Scholar]
  63. SantosS.F. de OliveiraH.L. YamadaE.S. NevesB.C. PereiraA.Jr The gut and Parkinson’s disease—a bidirectional pathway.Front. Neurol.20191057410.3389/fneur.2019.0057431214110
    [Google Scholar]
  64. Perez VisñukD. Savoy de GioriG. LeBlancJ.G. de Moreno de LeBlancA. Neuroprotective effects associated with immune modulation by selected lactic acid bacteria in a Parkinson’s disease model.Nutrition202079-8011099510.1016/j.nut.2020.11099532977125
    [Google Scholar]
  65. ChengL.H. LiuY.W. WuC.C. WangS. TsaiY.C. Psychobiotics in mental health, neurodegenerative and neurodevelopmental disorders.Yao Wu Shi Pin Fen Xi201927363264831324280
    [Google Scholar]
  66. CerdóT. RuízA. SuárezA. CampoyC. Probiotic, prebiotic, and brain development.Nutrients2017911124710.3390/nu911124729135961
    [Google Scholar]
  67. Tahami MonfaredA.A. ByrnesM.J. WhiteL.A. ZhangQ. Alzheimer’s disease: Epidemiology and clinical progression.Neurol. Ther.202211255356910.1007/s40120‑022‑00338‑835286590
    [Google Scholar]
  68. FisherR.A. MinersJ.S. LoveS. Pathological changes within the cerebral vasculature in Alzheimer’s disease: New perspectives.Brain Pathol.2022e1306110.1111/bpa.1306135289012
    [Google Scholar]
  69. ScheltensP. De StrooperB. KivipeltoM. HolstegeH. ChételatG. TeunissenC.E. CummingsJ. van der FlierW.M. Alzheimer’s disease.Lancet2021397102841577159010.1016/S0140‑6736(20)32205‑433667416
    [Google Scholar]
  70. RezaeiA.Z. SepehriG. SalamiM. Probiotic treatment improves the impaired spatial cognitive performance and restores synaptic plasticity in an animal model of Alzheimer’s disease.Behav. Brain Res.201937611218310.1016/j.bbr.2019.11218331472194
    [Google Scholar]
  71. BabürE. TanB. DelibaşS. YousefM. DursunN. SüerC. Depotentiation of long-term potentiation is associated with epitope-specific tau hyper-/hypophosphorylation in the hippocampus of adult rats.J. Mol. Neurosci.201967219320310.1007/s12031‑018‑1224‑x30498986
    [Google Scholar]
  72. AthariN.A.S. DjazayeriA. SafaM. AzamiK. DjalaliM. SharifzadehM. VafaM. Probiotics improve insulin resistance status in an experimental model of Alzheimer’s disease.Med. J. Islam. Repub. Iran201731169970410.14196/mjiri.31.10329951404
    [Google Scholar]
  73. YaminG. NMDA receptor-dependent signaling pathways that underlie amyloid β-protein disruption of LTP in the hippocampus.J. Neurosci. Res.20098781729173610.1002/jnr.2199819170166
    [Google Scholar]
  74. WiatrakB. JawieńP. MatuszewskaA. SzelągA. Kubis-KubiakA. Effect of amyloid-β on the redox system activity in SH-SY5Y cells preincubated with lipopolysaccharide or co-cultured with microglia cells.Biomed. Pharmacother.202214911288010.1016/j.biopha.2022.11288035367762
    [Google Scholar]
  75. HemertS.V. OrmelG. Influence of the multispecies probiotic Ecologic® BARRIER on parameters of intestinal barrier function.Food Nutr. Sci.20145181739174510.4236/fns.2014.518187
    [Google Scholar]
  76. Romo-AraizaA. Gutiérrez-SalmeánG. GalvánE.J. Hernández-FraustoM. Herrera-LópezG. Romo-ParraH. García-ContrerasV. Fernández-PresasA.M. Jasso-ChávezR. BorlonganC.V. IbarraA. Probiotics and prebiotics as a therapeutic strategy to improve memory in a model of middle-aged rats.Front. Aging Neurosci.20181041610.3389/fnagi.2018.0041630618722
    [Google Scholar]
  77. American Psychiatric AssociationDiagnostic and Statistical Manual of Mental Disorders.5th edWashington, USAATA2013
    [Google Scholar]
  78. GaoJ. WangX. SunH. CaoY. LiangS. WangH. WangY. YangF. ZhangF. WuL. Neuroprotective effects of docosahexaenoic acid on hippocampal cell death and learning and memory impairments in a valproic acid‐induced rat autism model.Int. J. Dev. Neurosci.2016491677810.1016/j.ijdevneu.2015.11.00626639559
    [Google Scholar]
  79. DanZ. MaoX. LiuQ. GuoM. ZhuangY. LiuZ. ChenK. ChenJ. XuR. TangJ. QinL. GuB. LiuK. SuC. ZhangF. XiaY. HuZ. LiuX. Altered gut microbial profile is associated with abnormal metabolism activity of Autism Spectrum Disorder.Gut Microbes20201151246126710.1080/19490976.2020.174732932312186
    [Google Scholar]
  80. GolubevaA.V. JoyceS.A. MoloneyG. BurokasA. SherwinE. ArboleyaS. FlynnI. KhochanskiyD. Moya-PérezA. PetersonV. ReaK. MurphyK. MakarovaO. BuravkovS. HylandN.P. StantonC. ClarkeG. GahanC.G.M. DinanT.G. CryanJ.F. Microbiota-related changes in bile acid & tryptophan metabolism are associated with gastrointestinal dysfunction in a mouse model of autism.EBioMedicine20172416617810.1016/j.ebiom.2017.09.02028965876
    [Google Scholar]
  81. LiuZ. MaoX. DanZ. PeiY. XuR. GuoM. LiuK. ZhangF. ChenJ. SuC. ZhuangY. TangJ. XiaY. QinL. HuZ. LiuX. Gene variations in Autism Spectrum Disorder are associated with alternation of gut microbiota, metabolites and cytokines.Gut Microbes2021131185496710.1080/19490976.2020.185496733412999
    [Google Scholar]
  82. SabitH. TombulogluH. RehmanS. AlmandilN.B. CevikE. Abdel-GhanyS. RashwanS. AbasiyanikM.F. Yee WayeM.M. Gut microbiota metabolites in autistic children: An epigenetic perspective.Heliyon202171e0610510.1016/j.heliyon.2021.e0610533553761
    [Google Scholar]
  83. JyonouchiH. SunS. ItokazuN. Innate immunity associated with inflammatory responses and cytokine production against common dietary proteins in patients with autism spectrum disorder.Neuropsychobiology2002462768410.1159/00006541612378124
    [Google Scholar]
  84. MacFabeD. CainD. RodriguezcapoteK. FranklinA. HoffmanJ. BoonF. TaylorA. KavaliersM. OssenkoppK. Neurobiological effects of intraventricular propionic acid in rats: Possible role of short chain fatty acids on the pathogenesis and characteristics of autism spectrum disorders.Behav. Brain Res.2007176114916910.1016/j.bbr.2006.07.02516950524
    [Google Scholar]
  85. De AngelisM. PiccoloM. VanniniL. SiragusaS. De GiacomoA. SerrazzanettiD.I. CristoforiF. GuerzoniM.E. GobbettiM. FrancavillaR. Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified.PLoS One2013810e7699310.1371/journal.pone.007699324130822
    [Google Scholar]
  86. D’EufemiaP. CelliM. FinocchiaroR. PacificoL. ViozziL. ZaccagniniM. CardiE. GiardiniO. Abnormal intestinal permeability in children with autism.Acta Paediatr.19968591076107910.1111/j.1651‑2227.1996.tb14220.x8888921
    [Google Scholar]
  87. KangD.W. ParkJ.G. IlhanZ.E. WallstromG. LaBaerJ. AdamsJ.B. Krajmalnik-BrownR. Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children.PLoS One201387e6832210.1371/journal.pone.006832223844187
    [Google Scholar]
  88. LunaR.A. OezguenN. BalderasM. VenkatachalamA. RungeJ.K. VersalovicJ. Veenstra-VanderWeeleJ. AndersonG.M. SavidgeT. WilliamsK.C. Distinct microbiome-neuroimmune signatures correlate with functional abdominal pain in children with autism spectrum disorder.Cell. Mol. Gastroenterol. Hepatol.20173221823010.1016/j.jcmgh.2016.11.00828275689
    [Google Scholar]
  89. McElhanonB.O. McCrackenC. KarpenS. SharpW.G. Gastrointestinal symptoms in autism spectrum disorder: A meta-analysis.Pediatrics2014133587288310.1542/peds.2013‑399524777214
    [Google Scholar]
  90. TomovaA. HusarovaV. LakatosovaS. BakosJ. VlkovaB. BabinskaK. OstatnikovaD. Gastrointestinal microbiota in children with autism in Slovakia.Physiol. Behav.201513817918710.1016/j.physbeh.2014.10.03325446201
    [Google Scholar]
  91. Peralta-MarzalL.N. PrinceN. BajicD. RoussinL. NaudonL. RabotS. GarssenJ. KraneveldA.D. Perez-PardoP. The impact of gut microbiota-derived metabolites in autism spectrum disorders.Int. J. Mol. Sci.202122181005210.3390/ijms22181005234576216
    [Google Scholar]
  92. KociszewskaD. VlajkovicS.M. The association of inflammatory gut diseases with neuroinflammatory and auditory disorders.Front. Biosci. (Elite Ed.)2022142810.31083/j.fbe140200835730449
    [Google Scholar]
  93. FrostG. SleethM.L. Sahuri-ArisoyluM. LizarbeB. CerdanS. BrodyL. AnastasovskaJ. GhourabS. HankirM. ZhangS. CarlingD. SwannJ.R. GibsonG. ViardotA. MorrisonD. LouiseT.E. BellJ.D. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism.Nat. Commun.201451361110.1038/ncomms461124781306
    [Google Scholar]
  94. MorimotoM. HashimotoT. TsudaY. NakatsuT. KitaokaT. KyotaniS. Assessment of oxidative stress in autism spectrum disorder using reactive oxygen metabolites and biological antioxidant potential.PLoS One2020155e023355010.1371/journal.pone.023355032442231
    [Google Scholar]
  95. GreeneW.C. ChenL.F. Regulation of NF-kappaB action by reversible acetylation.Novartis Found. Symp.200425920821715171256
    [Google Scholar]
  96. NankovaB.B. AgarwalR. MacFabeD.F. La GammaE.F. Enteric bacterial metabolites propionic and butyric acid modulate gene expression, including CREB-dependent catecholaminergic neurotransmission, in PC12 cells-possible relevance to autism spectrum disorders.PLoS One201498e10374010.1371/journal.pone.010374025170769
    [Google Scholar]
  97. Al-LahhamS.H. PeppelenboschM.P. RoelofsenH. VonkR.J. VenemaK. Biological effects of propionic acid in humans; metabolism, potential applications and underlying mechanisms.Biochim. Biophys. Acta Mol. Cell Biol. Lipids20101801111175118310.1016/j.bbalip.2010.07.00720691280
    [Google Scholar]
  98. ChelakkotC. GhimJ. RyuS.H. Mechanisms regulating intestinal barrier integrity and its pathological implications.Exp. Mol. Med.20185081910.1038/s12276‑018‑0126‑x30115904
    [Google Scholar]
  99. GünzelD. YuA.S.L. Claudins and the modulation of tight junction permeability.Physiol. Rev.201393252556910.1152/physrev.00019.201223589827
    [Google Scholar]
  100. BeatchM. JesaitisL.A. GallinW.J. GoodenoughD.A. StevensonB.R. The tight junction protein ZO-2 contains three PDZ (PSD-95/Discs-Large/ZO-1) domains and an alternatively spliced region.J. Biol. Chem.199627142257232572610.1074/jbc.271.42.257238824195
    [Google Scholar]
  101. ItohM. FuruseM. MoritaK. KubotaK. SaitouM. TsukitaS. Direct binding of three tight junction-associated MAGUKs, ZO-1, ZO-2, and ZO-3, with the COOH termini of claudins.J. Cell Biol.199914761351136310.1083/jcb.147.6.135110601346
    [Google Scholar]
  102. FeldmanG. MullinJ. RyanM. Occludin: Structure, function and regulation.Adv. Drug Deliv. Rev.200557688391710.1016/j.addr.2005.01.00915820558
    [Google Scholar]
  103. Allam-NdoulB. Castonguay-ParadisS. VeilleuxA. Gut microbiota and intestinal trans-epithelial permeability.Int. J. Mol. Sci.20202117640210.3390/ijms2117640232899147
    [Google Scholar]
  104. HanX. LeeA. HuangS. GaoJ. SpenceJ.R. OwyangC. Lactobacillus rhamnosus GG prevents epithelial barrier dysfunction induced by interferon-gamma and fecal supernatants from irritable bowel syndrome patients in human intestinal enteroids and colonoids.Gut Microbes2019101597610.1080/19490976.2018.147962530040527
    [Google Scholar]
  105. YoshidaN. EmotoT. YamashitaT. WatanabeH. HayashiT. TabataT. HoshiN. HatanoN. OzawaG. SasakiN. MizoguchiT. AminH.Z. HirotaY. OgawaW. YamadaT. HirataK. Bacteroides vulgatus and Bacteroides dorei reduce gut microbial lipopolysaccharide production and inhibit atherosclerosis.Circulation2018138222486249810.1161/CIRCULATIONAHA.118.03371430571343
    [Google Scholar]
  106. ChelakkotC. ChoiY. KimD.K. ParkH.T. GhimJ. KwonY. JeonJ. KimM.S. JeeY.K. GhoY.S. ParkH.S. KimY.K. RyuS.H. Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions.Exp. Mol. Med.2018502e45010.1038/emm.2017.28229472701
    [Google Scholar]
  107. AndersonR.C. CooksonA.L. McNabbW.C. ParkZ. McCannM.J. KellyW.J. RoyN.C. Lactobacillus plantarum MB452 enhances the function of the intestinal barrier by increasing the expression levels of genes involved in tight junction formation.BMC Microbiol.201010131610.1186/1471‑2180‑10‑31621143932
    [Google Scholar]
  108. BhattaraiY. Microbiota-gut-brain axis: Interaction of gut microbes and their metabolites with host epithelial barriers.Neurogastroenterol. Motil.2018306e1336610.1111/nmo.1336629878576
    [Google Scholar]
  109. MaX. FanP.X. LiL.S. QiaoS.Y. ZhangG.L. LiD.F. Butyrate promotes the recovering of intestinal wound healing through its positive effect on the tight junctions.J. Anim. Sci.201290Suppl. 426626810.2527/jas.5096523365351
    [Google Scholar]
  110. PradhanS. KarveS.S. WeissA.A. HawkinsJ. PolingH.M. HelmrathM.A. WellsJ.M. McCauleyH.A. Tissue responses to Shiga toxin in human intestinal organoids.Cell. Mol. Gastroenterol. Hepatol.202010117119010.1016/j.jcmgh.2020.02.00632145469
    [Google Scholar]
  111. ShiH. YuY. LinD. ZhengP. ZhangP. HuM. WangQ. PanW. YangX. HuT. LiQ. TangR. ZhouF. ZhengK. HuangX.F. β-glucan attenuates cognitive impairment via the gut-brain axis in diet-induced obese mice.Microbiome20208114310.1186/s40168‑020‑00920‑y33008466
    [Google Scholar]
  112. TulyeuJ. KumagaiH. JimboE. WatanabeS. YokoyamaK. CuiL. OsakaH. MienoM. YamagataT. Probiotics prevents sensitization to oral antigen and subsequent increases in intestinal tight junction permeability in juvenile-young adult rats.Microorganisms201971046310.3390/microorganisms710046331623229
    [Google Scholar]
  113. DavenportE.R. SandersJ.G. SongS.J. AmatoK.R. ClarkA.G. KnightR. The human microbiome in evolution.BMC Biol.201715112710.1186/s12915‑017‑0454‑729282061
    [Google Scholar]
  114. WangX. ZhangA. MiaoJ. SunH. YanG. WuF. WangX. Gut microbiota as important modulator of metabolism in health and disease.RSC Advances2018874423804238910.1039/C8RA08094A35558413
    [Google Scholar]
  115. GagliardiA. TotinoV. CacciottiF. IebbaV. NeroniB. BonfiglioG. TrancassiniM. PassarielloC. PantanellaF. SchippaS. Rebuilding the gut microbiota ecosystem.Int. J. Environ. Res. Public Health2018158167910.3390/ijerph1508167930087270
    [Google Scholar]
  116. ManzoorS. WaniS.M. Ahmad MirS. RizwanD. Role of probiotics and prebiotics in mitigation of different diseases.Nutrition20229611160210.1016/j.nut.2022.11160235182833
    [Google Scholar]
  117. ChenM. LiuC. DaiM. WangQ. LiC. HungW. Bifidobacterium lactis BL-99 modulates intestinal inflammation and functions in zebrafish models.PLoS One2022172e026294210.1371/journal.pone.026294235171916
    [Google Scholar]
  118. LuJ. LuL. YuY. BaranowskiJ. ClaudE.C. Maternal administration of probiotics promotes brain development and protects offspring’s brain from postnatal inflammatory insults in C57/BL6J mice.Sci. Rep.2020101817810.1038/s41598‑020‑65180‑032424168
    [Google Scholar]
  119. TamtajiO.R. TaghizadehM. Daneshvar KakhakiR. KouchakiE. BahmaniF. BorzabadiS. OryanS. MafiA. AsemiZ. Clinical and metabolic response to probiotic administration in people with Parkinson’s disease: A randomized, double-blind, placebo-controlled trial.Clin. Nutr.20193831031103510.1016/j.clnu.2018.05.01829891223
    [Google Scholar]
  120. ChudzikA. OrzyłowskaA. RolaR. StaniszG.J. Probiotics, prebiotics and postbiotics on mitigation of depression symptoms: Modulation of the brain-gut-microbiome axis.Biomolecules2021117100010.3390/biom1107100034356624
    [Google Scholar]
  121. ŻółkiewiczJ. MarzecA. RuszczyńskiM. FeleszkoW. Postbiotics— a step beyond pre- and probiotics.Nutrients2020128218910.3390/nu1208218932717965
    [Google Scholar]
  122. GuZ. MengS. WangY. LyuB. LiP. ShangN. A novel bioactive postbiotics: From microbiota-derived extracellular nanoparticles to health promoting.Crit. Rev. Food Sci. Nutr.2022115Advance online publication10.1080/10408398.2022.203989735179102
    [Google Scholar]
  123. HillC. GuarnerF. ReidG. GibsonG.R. MerensteinD.J. PotB. MorelliL. CananiR.B. FlintH.J. SalminenS. CalderP.C. SandersM.E. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic.Nat. Rev. Gastroenterol. Hepatol.201411850651410.1038/nrgastro.2014.6624912386
    [Google Scholar]
  124. VallianouN. StratigouT. ChristodoulatosG.S. TsigalouC. DalamagaM. Probiotics, prebiotics, synbiotics, postbiotics, and obesity: Current evidence, controversies, and perspectives.Curr. Obes. Rep.20209317919210.1007/s13679‑020‑00379‑w32472285
    [Google Scholar]
  125. LiH.Y. ZhouD.D. GanR.Y. HuangS.Y. ZhaoC.N. ShangA. XuX.Y. LiH.B. Effects and mechanisms of probiotics, prebiotics, synbiotics, and postbiotics on metabolic diseases targeting gut microbiota: A narrative review.Nutrients2021139321110.3390/nu1309321134579087
    [Google Scholar]
  126. GarrettW.S. LordG.M. PunitS. Lugo-VillarinoG. MazmanianS.K. ItoS. GlickmanJ.N. GlimcherL.H. Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system.Cell20071311334510.1016/j.cell.2007.08.01717923086
    [Google Scholar]
  127. RichardsJ.L. YapY.A. McLeodK.H. MackayC.R. MariñoE. Dietary metabolites and the gut microbiota: An alternative approach to control inflammatory and autoimmune diseases.Clin. Transl. Immunology201655e8210.1038/cti.2016.2927350881
    [Google Scholar]
  128. SonnenburgE.D. SmitsS.A. TikhonovM. HigginbottomS.K. WingreenN.S. SonnenburgJ.L. Diet-induced extinctions in the gut microbiota compound over generations.Nature2016529758521221510.1038/nature1650426762459
    [Google Scholar]
  129. HuaX. ZhuJ. YangT. GuoM. LiQ. ChenJ. LiT. The gut microbiota and associated metabolites are altered in sleep disorder of children with autism spectrum disorders.Front. Psychiatry20201185510.3389/fpsyt.2020.0085532982808
    [Google Scholar]
  130. AgusA. PlanchaisJ. SokolH. Gut microbiota regulation of tryptophan metabolism in health and disease.Cell Host Microbe201823671672410.1016/j.chom.2018.05.00329902437
    [Google Scholar]
  131. OssenkoppK.P. FoleyK.A. GibsonJ. FudgeM.A. KavaliersM. CainD.P. MacFabeD.F. Systemic treatment with the enteric bacterial fermentation product, propionic acid, produces both conditioned taste avoidance and conditioned place avoidance in rats.Behav. Brain Res.2012227113414110.1016/j.bbr.2011.10.04522085877
    [Google Scholar]
  132. HouY. LiX. LiuC. ZhangM. ZhangX. GeS. ZhaoL. Neuroprotective effects of short-chain fatty acids in MPTP induced mice model of Parkinson’s disease.Exp. Gerontol.202115011137610.1016/j.exger.2021.11137633905875
    [Google Scholar]
  133. PageM.J. PretoriusE. Platelet behavior contributes to neuropathologies: A focus on Alzheimer’s and Parkinson’s disease.Semin. Thromb. Hemost.202248338240410.1055/s‑0041‑173396034624913
    [Google Scholar]
  134. Abdel-RahmanE.A. ZakyE.A. AboulsaoudM. ElhossinyR.M. YoussefW.Y. MahmoudA.M. AliS.S. Autism spectrum disorder (ASD)-associated mitochondrial deficits are revealed in children’s platelets but unimproved by hyperbaric oxygen therapy.Free Radic. Res.2021551264010.1080/10715762.2020.185637633402007
    [Google Scholar]
  135. XieZ. LiuX. HuangX. LiuQ. YangM. HuangD. ZhaoP. TianJ. WangX. HouJ. Remodelling of gut microbiota by Berberine attenuates trimethylamine N-oxide-induced platelet hyperreaction and thrombus formation.Eur. J. Pharmacol.202191117452610.1016/j.ejphar.2021.17452634599914
    [Google Scholar]
  136. AndersonG. RodriguezM. ReiterR.J. Multiple sclerosis: Melatonin, orexin, and ceramide interact with platelet activation coagulation factors and gut-microbiome-derived butyrate in the circadian dysregulation of mitochondria in glia and immune cells.Int. J. Mol. Sci.20192021550010.3390/ijms2021550031694154
    [Google Scholar]
  137. ChenZ. LiuC. JiangY. LiuH. ShaoL. ZhangK. ChengD. ZhouY. ChongW. HDAC inhibitor attenuated NETs formation induced by activated platelets in vitro, partially through downregulating platelet secretion.Shock202054332132910.1097/SHK.000000000000151832044829
    [Google Scholar]
  138. AndersonG. MaesM. Gut dysbiosis dysregulates central and systemic homeostasis via suboptimal mitochondrial function: Assessment, treatment and classification implications.Curr. Top. Med. Chem.202020752453910.2174/156802662066620013109444532003689
    [Google Scholar]
  139. Ghafouri-FardS. NamvarA. Arsang-JangS. KomakiA. TaheriM. Expression analysis of BDNF, BACE1, and their natural occurring antisenses in autistic patients.J. Mol. Neurosci.202070219420010.1007/s12031‑019‑01432‑731760580
    [Google Scholar]
/content/journals/cn/10.2174/1570159X20666221003085508
Loading
/content/journals/cn/10.2174/1570159X20666221003085508
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test