Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Neuropsychiatric disorders, such as mood disorders, schizophrenia, and Alzheimer’s disease (AD) and related dementias, are associated to significant morbidity and mortality worldwide. The pathophysiological mechanisms of neuropsychiatric disorders remain to be fully elucidated, which has hampered the development of effective therapies. The Renin Angiotensin System (RAS) is classically viewed as a key regulator of cardiovascular and renal homeostasis. The discovery that RAS components are expressed in the brain pointed out a potential role for this system in central nervous system (CNS) pathologies. The understanding of RAS involvement in the pathogenesis of neuropsychiatric disorders may contribute to identifying novel therapeutic targets.

We aim to report current experimental and clinical evidence on the role of RAS in physiology and pathophysiology of mood disorders, schizophrenia, AD and related dementias. We also aim to discuss bottlenecks and future perspectives that can foster the development of new related therapeutic strategies.

The available evidence supports positive therapeutic effects for neuropsychiatric disorders with the inhibition/antagonism of the ACE/Ang II/AT1 receptor axis or the activation of the ACE2/Ang-(1-7)/Mas receptor axis. Most of this evidence comes from pre-clinical studies and clinical studies lag much behind, hampering a potential translation into clinical practice.

Loading

Article metrics loading...

/content/journals/cn/10.2174/1570159X20666220927093815
2024-01-01
2025-01-11
Loading full text...

Full text loading...

References

  1. KahnR.S. SommerI.E. MurrayR.M. Meyer-LindenbergA. WeinbergerD.R. CannonT.D. O’DonovanM. CorrellC.U. KaneJ.M. van OsJ. InselT.R. Schizophrenia.Nat. Rev. Dis. Primers2015111506710.1038/nrdp.2015.6727189524
    [Google Scholar]
  2. JamesS.L. AbateD. AbateK.H. AbayS.M. AbbafatiC. AbbasiN. AbbastabarH. Abd-AllahF. AbdelaJ. AbdelalimA. AbdollahpourI. AbdulkaderR.S. AbebeZ. AberaS.F. AbilO.Z. AbrahaH.N. Abu-RaddadL.J. Abu-RmeilehN.M.E. AccrombessiM.M.K. AcharyaD. AcharyaP. AckermanI.N. AdamuA.A. AdebayoO.M. AdekanmbiV. AdetokunbohO.O. AdibM.G. AdsuarJ.C. AfanviK.A. AfaridehM. AfshinA. AgarwalG. AgesaK.M. AggarwalR. AghayanS.A. AgrawalS. AhmadiA. AhmadiM. AhmadiehH. AhmedM.B. AichourA.N. AichourI. AichourM.T.E. AkinyemijuT. AkseerN. Al-AlyZ. Al-EyadhyA. Al-MekhlafiH.M. Al-RaddadiR.M. AlahdabF. AlamK. AlamT. AlashiA. AlavianS.M. AleneK.A. AlijanzadehM. Alizadeh-NavaeiR. AljunidS.M. AlkerwiA. AllaF. AllebeckP. AlouaniM.M.L. AltirkawiK. Alvis-GuzmanN. AmareA.T. AmindeL.N. AmmarW. AmoakoY.A. AnberN.H. AndreiC.L. AndroudiS. AnimutM.D. AnjomshoaM. AnshaM.G. AntonioC.A.T. AnwariP. ArablooJ. ArauzA. AremuO. ArianiF. ArmoonB. ÄrnlövJ. AroraA. ArtamanA. AryalK.K. AsayeshH. AsgharR.J. AtaroZ. AtreS.R. AusloosM. Avila-BurgosL. AvokpahoE.F.G.A. AwasthiA. Ayala QuintanillaB.P. AyerR. AzzopardiP.S. BabazadehA. BadaliH. BadawiA. BaliA.G. BallesterosK.E. BallewS.H. BanachM. BanoubJ.A.M. BanstolaA. BaracA. BarbozaM.A. Barker-ColloS.L. BärnighausenT.W. BarreroL.H. BauneB.T. Bazargan-HejaziS. BediN. BeghiE. BehzadifarM. BehzadifarM. BéjotY. BelachewA.B. BelayY.A. BellM.L. BelloA.K. BensenorI.M. BernabeE. BernsteinR.S. BeuranM. BeyranvandT. BhalaN. BhattaraiS. BhaumikS. BhuttaZ.A. BiadgoB. BijaniA. BikbovB. BilanoV. BililignN. Bin SayeedM.S. BisanzioD. BlackerB.F. BlythF.M. Bou-OrmI.R. BoufousS. BourneR. BradyO.J. BraininM. BrantL.C. BrazinovaA. BreitbordeN.J.K. BrennerH. BriantP.S. BriggsA.M. BrikoA.N. BrittonG. BrughaT. BuchbinderR. BusseR. ButtZ.A. Cahuana-HurtadoL. CanoJ. CárdenasR. CarreroJ.J. CarterA. CarvalhoF. Castañeda-OrjuelaC.A. CastilloR.J. CastroF. Catalá-LópezF. CercyK.M. CerinE. ChaiahY. ChangA.R. ChangH-Y. ChangJ-C. CharlsonF.J. ChattopadhyayA. ChattuV.K. ChaturvediP. ChiangP.P-C. ChinK.L. ChitheerA. ChoiJ-Y.J. ChowdhuryR. ChristensenH. ChristopherD.J. CicuttiniF.M. CiobanuL.G. CirilloM. ClaroR.M. Collado-MateoD. CooperC. CoreshJ. CortesiP.A. CortinovisM. CostaM. CousinE. CriquiM.H. CromwellE.A. CrossM. CrumpJ.A. DadiA.F. DandonaL. DandonaR. DarganP.I. DaryaniA. Das GuptaR. Das NevesJ. DasaT.T. DaveyG. DavisA.C. DavitoiuD.V. De CourtenB. De La HozF.P. De LeoD. De NeveJ-W. DegefaM.G. DegenhardtL. DeiparineS. DellavalleR.P. DemozG.T. DeribeK. DervenisN. Des JarlaisD.C. DessieG.A. DeyS. DharmaratneS.D. DinberuM.T. DiracM.A. DjalaliniaS. DoanL. DokovaK. DokuD.T. DorseyE.R. DoyleK.E. DriscollT.R. DubeyM. DubljaninE. DukenE.E. DuncanB.B. DuraesA.R. EbrahimiH. EbrahimpourS. EchkoM.M. EdvardssonD. EffiongA. EhrlichJ.R. El BcheraouiC. El Sayed ZakiM. El-KhatibZ. ElkoutH. ElyazarI.R.F. EnayatiA. EndriesA.Y. ErB. ErskineH.E. EshratiB. EskandariehS. EsteghamatiA. EsteghamatiS. FakhimH. Fallah OmraniV. FaramarziM. FareedM. FarhadiF. FaridT.A. FarinhaC.S.E. FarioliA. FaroA. FarvidM.S. FarzadfarF. FeiginV.L. FentahunN. FereshtehnejadS-M. FernandesE. FernandesJ.C. FerrariA.J. FeyissaG.T. FilipI. FischerF. FitzmauriceC. FoigtN.A. ForemanK.J. FoxJ. FrankT.D. FukumotoT. FullmanN. FürstT. FurtadoJ.M. FutranN.D. GallS. GanjiM. GankpeF.G. Garcia-BasteiroA.L. GardnerW.M. GebreA.K. GebremedhinA.T. GebremichaelT.G. GelanoT.F. GeleijnseJ.M. Genova-MalerasR. GeramoY.C.D. GethingP.W. GezaeK.E. GhadiriK. GhasemiF.K. Ghasemi-KasmanM. GhimireM. GhoshR. GhoshalA.G. GiampaoliS. GillP.S. GillT.K. GinawiI.A. GiussaniG. GnedovskayaE.V. GoldbergE.M. GoliS. Gómez-DantésH. GonaP.N. GopalaniS.V. GormanT.M. GoulartA.C. GoulartB.N.G. GradaA. GramsM.E. GrossoG. GugnaniH.C. GuoY. GuptaP.C. GuptaR. GuptaR. GuptaT. GyawaliB. HaagsmaJ.A. HachinskiV. Hafezi-NejadN. Haghparast BidgoliH. HagosT.B. HailuG.B. Haj-MirzaianA. Haj-MirzaianA. HamadehR.R. HamidiS. HandalA.J. HankeyG.J. HaoY. HarbH.L. HarikrishnanS. HaroJ.M. HasanM. HassankhaniH. HassenH.Y. HavmoellerR. HawleyC.N. HayR.J. HayS.I. Hedayatizadeh-OmranA. HeibatiB. HendrieD. HenokA. HerteliuC. HeydarpourS. HibstuD.T. HoangH.T. HoekH.W. HoffmanH.J. HoleM.K. Homaie RadE. HoogarP. HosgoodH.D. HosseiniS.M. HosseinzadehM. HostiucM. HostiucS. HotezP.J. HoyD.G. HsairiM. HtetA.S. HuG. HuangJ.J. HuynhC.K. IburgK.M. IkedaC.T. IleanuB. IlesanmiO.S. IqbalU. IrvaniS.S.N. IrvineC.M.S. IslamS.M.S. IslamiF. JacobsenK.H. JahangiryL. JahanmehrN. JainS.K. JakovljevicM. JavanbakhtM. JayatillekeA.U. JeemonP. JhaR.P. JhaV. JiJ.S. JohnsonC.O. JonasJ.B. JozwiakJ.J. JungariS.B. JürissonM. KabirZ. KadelR. KahsayA. KalaniR. KanchanT. KaramiM. Karami MatinB. KarchA. KaremaC. KarimiN. KarimiS.M. KasaeianA. KassaD.H. KassaG.M. KassaT.D. KassebaumN.J. KatikireddiS.V. KawakamiN. KaryaniA.K. KeighobadiM.M. KeiyoroP.N. KemmerL. KempG.R. KengneA.P. KerenA. KhaderY.S. KhafaeiB. KhafaieM.A. KhajaviA. KhalilI.A. KhanE.A. KhanM.S. KhanM.A. KhangY-H. KhazaeiM. KhojaA.T. KhosraviA. KhosraviM.H. KiadaliriA.A. KiirithioD.N. KimC-I. KimD. KimP. KimY-E. KimY.J. KimokotiR.W. KinfuY. KisaA. Kissimova-SkarbekK. KivimäkiM. KnudsenA.K.S. KocarnikJ.M. KochharS. KokuboY. KololaT. KopecJ.A. KosenS. KotsakisG.A. KoulP.A. KoyanagiA. KravchenkoM.A. KrishanK. KrohnK.J. KuateDefo B.; Kucuk Bicer, B.; Kumar, G.A.; Kumar, M.; Kyu, H.H.; Lad, D.P.; Lad, S.D.; Lafranconi, A.; Lalloo, R.; Lallukka, T.; Lami, F.H.; Lansingh, V.C.; Latifi, A.; Lau, K.M-M.; Lazarus, J.V.; Leasher, J.L.; Ledesma, J.R.; Lee, P.H.; Leigh, J.; Leung, J.; Levi, M.; Lewycka, S.; Li, S.; Li, Y.; Liao, Y.; Liben, M.L.; Lim, L-L.; Lim, S.S.; Liu, S.; Lodha, R.; Looker, K.J.; Lopez, A.D.; Lorkowski, S.; Lotufo, P.A.; Low, N.; Lozano, R.; Lucas, T.C.D.; Lucchesi, L.R.; Lunevicius, R.; Lyons, R.A.; Ma, S.; Macarayan, E.R.K.; Mackay, M.T.; Madotto, F.; Magdy Abd El Razek, H.; Magdy Abd El Razek, M.; Maghavani, D.P.; Mahotra, N.B.; Mai, H.T.; Majdan, M.; Majdzadeh, R.; Majeed, A.; Malekzadeh, R.; Malta, D.C.; Mamun, A.A.; Manda, A-L.; Manguerra, H.; Manhertz, T.; Mansournia, M.A.; Mantovani, L.G.; Mapoma, C.C.; Maravilla, J.C.; Marcenes, W.; Marks, A.; Martins-Melo, F.R.; Martopullo, I.; März, W.; Marzan, M.B.; Mashamba-Thompson, T.P.; Massenburg, B.B.; Mathur, M.R.; Matsushita, K.; Maulik, P.K.; Mazidi, M.; McAlinden, C.; McGrath, J.J.; McKee, M.; Mehndiratta, M.M.; Mehrotra, R.; Mehta, K.M.; Mehta, V.; Mejia-Rodriguez, F.; Mekonen, T.; Melese, A.; Melku, M.; Meltzer, M.; Memiah, P.T.N.; Memish, Z.A.; Mendoza, W.; Mengistu, D.T.; Mengistu, G.; Mensah, G.A.; Mereta, S.T.; Meretoja, A.; Meretoja, T.J.; Mestrovic, T.; Mezerji, N.M.G.; Miazgowski, B.; Miazgowski, T.; Millear, A.I.; Miller, T.R.; Miltz, B.; Mini, G.K.; Mirarefin, M.; Mirrakhimov, E.M.; Misganaw, A.T.; Mitchell, P.B.; Mitiku, H.; Moazen, B.; Mohajer, B.; Mohammad, K.A.; Mohammadifard, N.; Mohammadnia-Afrouzi, M.; Mohammed, M.A.; Mohammed, S.; Mohebi, F.; Moitra, M.; Mokdad, A.H.; Molokhia, M.; Monasta, L.; Moodley, Y.; Moosazadeh, M.; Moradi, G.; Moradi-Lakeh, M.; Moradinazar, M.; Moraga, P.; Morawska, L.; Moreno Velásquez, I.; Morgado-Da-Costa, J.; Morrison, S.D.; Moschos, M.M.; Mountjoy-Venning, W.C.; Mousavi, S.M.; Mruts, K.B.; Muche, A.A.; Muchie, K.F.; Mueller, U.O.; Muhammed, O.S.; Mukhopadhyay, S.; Muller, K.; Mumford, J.E.; Murhekar, M.; Musa, J.; Musa, K.I.; Mustafa, G.; Nabhan, A.F.; Nagata, C.; Naghavi, M.; Naheed, A.; Nahvijou, A.; Naik, G.; Naik, N.; Najafi, F.; Naldi, L.; Nam, H.S.; Nangia, V.; Nansseu, J.R.; Nascimento, B.R.; Natarajan, G.; Neamati, N.; Negoi, I.; Negoi, R.I.; Neupane, S.; Newton, C.R.J.; Ngunjiri, J.W.; Nguyen, A.Q.; Nguyen, H.T.; Nguyen, H.L.T.; Nguyen, H.T.; Nguyen, L.H.; Nguyen, M.; Nguyen, N.B.; Nguyen, S.H.; Nichols, E.; Ningrum, D.N.A.; Nixon, M.R.; Nolutshungu, N.; Nomura, S.; Norheim, O.F.; Noroozi, M.; Norrving, B.; Noubiap, J.J.; Nouri, H.R.; Nourollahpour Shiadeh, M.; Nowroozi, M.R.; Nsoesie, E.O.; Nyasulu, P.S.; Odell, C.M.; Ofori-Asenso, R.; Ogbo, F.A.; Oh, I-H.; Oladimeji, O.; Olagunju, A.T.; Olagunju, T.O.; Olivares, P.R.; Olsen, H.E.; Olusanya, B.O.; Ong, K.L.; Ong, S.K.; Oren, E.; Ortiz, A.; Ota, E.; Otstavnov, S.S.; Øverland, S.; Owolabi, M.O.; P A, M.; Pacella, R.; Pakpour, A.H.; Pana, A.; Panda-Jonas, S.; Parisi, A.; Park, E-K.; Parry, C.D.H.; Patel, S.; Pati, S.; Patil, S.T.; Patle, A.; Patton, G.C.; Paturi, V.R.; Paulson, K.R.; Pearce, N.; Pereira, D.M.; Perico, N.; Pesudovs, K.; Pham, H.Q.; Phillips, M.R.; Pigott, D.M.; Pillay, J.D.; Piradov, M.A.; Pirsaheb, M.; Pishgar, F.; Plana-Ripoll, O.; Plass, D.; Polinder, S.; Popova, S.; Postma, M.J.; Pourshams, A.; Poustchi, H.; Prabhakaran, D.; Prakash, S.; Prakash, V.; Purcell, C.A.; Purwar, M.B.; Qorbani, M.; Quistberg, D.A.; Radfar, A.; Rafay, A.; Rafiei, A.; Rahim, F.; Rahimi, K.; Rahimi-Movaghar, A.; Rahimi-Movaghar, V.; Rahman, M.; Rahman, M.H.; Rahman, M.A.; Rahman, S.U.; Rai, R.K.; Rajati, F.; Ram, U.; Ranjan, P.; Ranta, A.; Rao, P.C.; Rawaf, D.L.; Rawaf, S.; Reddy, K.S.; Reiner, R.C.; Reinig, N.; Reitsma, M.B.; Remuzzi, G.; Renzaho, A.M.N.; Resnikoff, S.; Rezaei, S.; Rezai, M.S.; Ribeiro, A.L.P.; Roberts, N.L.S.; Robinson, S.R.; Roever, L.; Ronfani, L.; Roshandel, G.; Rostami, A.; Roth, G.A.; Roy, A.; Rubagotti, E.; Sachdev, P.S.; Sadat, N.; Saddik, B.; Sadeghi, E.; Saeedi, M.S.; Safari, H.; Safari, Y.; Safari-Faramani, R.; Safdarian, M.; Safi, S.; Safiri, S.; Sagar, R.; Sahebkar, A.; Sahraian, M.A.; Sajadi, H.S.; Salam, N.; Salama, J.S.; Salamati, P.; Saleem, K.; Saleem, Z.; Salimi, Y.; Salomon, J.A.; Salvi, S.S.; Salz, I.; Samy, A.M.; Sanabria, J.; Sang, Y.; Santomauro, D.F.; Santos, I.S.; Santos, J.V.; Santric, M.M.M.; Sao Jose, B.P.; Sardana, M.; Sarker, A.R.; Sarrafzadegan, N.; Sartorius, B.; Sarvi, S.; Sathian, B.; Satpathy, M.; Sawant, A.R.; Sawhney, M.; Saxena, S.; Saylan, M.; Schaeffner, E.; Schmidt, M.I.; Schneider, I.J.C.; Schöttker, B.; Schwebel, D.C.; Schwendicke, F.; Scott, J.G.; Sekerija, M.; Sepanlou, S.G.; Serván-Mori, E.; Seyedmousavi, S.; Shabaninejad, H.; Shafieesabet, A.; Shahbazi, M.; Shaheen, A.A.; Shaikh, M.A.; Shams-Beyranvand, M.; Shamsi, M.; Shamsizadeh, M.; Sharafi, H.; Sharafi, K.; Sharif, M.; Sharif-Alhoseini, M.; Sharma, M.; Sharma, R.; She, J.; Sheikh, A.; Shi, P.; Shibuya, K.; Shigematsu, M.; Shiri, R.; Shirkoohi, R.; Shishani, K.; Shiue, I.; Shokraneh, F.; Shoman, H.; Shrime, M.G.; Si, S.; Siabani, S.; Siddiqi, T.J.; Sigfusdottir, I.D.; Sigurvinsdottir, R.; Silva, J.P.; Silveira, D.G.A.; Singam, N.S.V.; Singh, J.A.; Singh, N.P.; Singh, V.; Sinha, D.N.; Skiadaresi, E.; Slepak, E.L.N.; Sliwa, K.; Smith, D.L.; Smith, M.; Soares Filho, A.M.; Sobaih, B.H.; Sobhani, S.; Sobngwi, E.; Soneji, S.S.; Soofi, M.; Soosaraei, M.; Sorensen, R.J.D.; Soriano, J.B.; Soyiri, I.N.; Sposato, L.A.; Sreeramareddy, C.T.; Srinivasan, V.; Stanaway, J.D.; Stein, D.J.; Steiner, C.; Steiner, T.J.; Stokes, M.A.; Stovner, L.J.; Subart, M.L.; Sudaryanto, A.; Sufiyan, M.B.; Sunguya, B.F.; Sur, P.J.; Sutradhar, I.; Sykes, B.L.; Sylte, D.O.; Tabarés-Seisdedos, R.; Tadakamadla, S.K.; Tadesse, B.T.; Tandon, N.; Tassew, S.G.; Tavakkoli, M.; Taveira, N.; Taylor, H.R.; Tehrani-Banihashemi, A.; Tekalign, T.G.; Tekelemedhin, S.W.; Tekle, M.G.; Temesgen, H.; Temsah, M-H.; Temsah, O.; Terkawi, A.S.; Teweldemedhin, M.; Thankappan, K.R.; Thomas, N.; Tilahun, B.; To, Q.G.; Tonelli, M.; Topor-Madry, R.; Topouzis, F.; Torre, A.E.; Tortajada-Girbés, M.; Touvier, M.; Tovani-Palone, M.R.; Towbin, J.A.; Tran, B.X.; Tran, K.B.; Troeger, C.E.; Truelsen, T.C.; Tsilimbaris, M.K.; Tsoi, D.; Tudor Car, L.; Tuzcu, E.M.; Ukwaja, K.N.; Ullah, I.; Undurraga, E.A.; Unutzer, J.; Updike, R.L.; Usman, M.S.; Uthman, O.A.; Vaduganathan, M.; Vaezi, A.; Valdez, P.R.; Varughese, S.; Vasankari, T.J.; Venketasubramanian, N.; Villafaina, S.; Violante, F.S.; Vladimirov, S.K.; Vlassov, V.; Vollset, S.E.; Vosoughi, K.; Vujcic, I.S.; Wagnew, F.S.; Waheed, Y.; Waller, S.G.; Wang, Y.; Wang, Y-P.; Weiderpass, E.; Weintraub, R.G.; Weiss, D.J.; Weldegebreal, F.; Weldegwergs, K.G.; Werdecker, A.; West, T.E.; Whiteford, H.A.; Widecka, J.; Wijeratne, T.; Wilner, L.B.; Wilson, S.; Winkler, A.S.; Wiyeh, A.B.; Wiysonge, C.S.; Wolfe, C.D.A.; Woolf, A.D.; Wu, S.; Wu, Y-C.; Wyper, G.M.A.; Xavier, D.; Xu, G.; Yadgir, S.; Yadollahpour, A.; Yahyazadeh Jabbari, S.H.; Yamada, T.; Yan, L.L.; Yano, Y.; Yaseri, M.; Yasin, Y.J.; Yeshaneh, A.; Yimer, E.M.; Yip, P.; Yisma, E.; Yonemoto, N.; Yoon, S-J.; Yotebieng, M.; Younis, M.Z.; Yousefifard, M.; Yu, C.; Zadnik, V.; Zaidi, Z.; Zaman, S.B.; Zamani, M.; Zare, Z.; Zeleke, A.J.; Zenebe, Z.M.; Zhang, K.; Zhao, Z.; Zhou, M.; Zodpey, S.; Zucker, I.; Vos, T.; Murray, C.J.L. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017.Lancet2018392101591789185810.1016/S0140‑6736(18)32279‑730496104
    [Google Scholar]
  3. VillarroelM.A. TerlizziE.P. Symptoms of depression among adults: United States, 2019.NCHS Data Brief20203791833054920
    [Google Scholar]
  4. DattaS. SuryadevaraU. CheongJ. Mood disorders.Continuum (Minneap. Minn.)20212761712173710.1212/CON.000000000000105134881733
    [Google Scholar]
  5. ScheltensP. De StrooperB. KivipeltoM. HolstegeH. ChételatG. TeunissenC.E. CummingsJ. van der FlierW.M. Alzheimer’s disease.Lancet2021397102841577159010.1016/S0140‑6736(20)32205‑433667416
    [Google Scholar]
  6. NovickD.M. SwartzH.A. FrankE. Suicide attempts in bipolar I and bipolar II disorder: A review and meta-analysis of the evidence.Bipolar Disord.20101211910.1111/j.1399‑5618.2009.00786.x20148862
    [Google Scholar]
  7. HasinD.S. SarvetA.L. MeyersJ.L. SahaT.D. RuanW.J. StohlM. GrantB.F. Epidemiology of adult DSM-5 major depressive disorder and its specifiers in the United States.JAMA Psychiatry201875433634610.1001/jamapsychiatry.2017.460229450462
    [Google Scholar]
  8. WHO. Schizophrenia2022
  9. GhneimM. DiazJ.J.Jr Dementia and the critically ill older adult.Crit. Care Clin.202137119120310.1016/j.ccc.2020.08.01033190770
    [Google Scholar]
  10. MitchellS.L. Advanced dementia.N. Engl. J. Med.2015372262533254010.1056/NEJMcp141265226107053
    [Google Scholar]
  11. Stępnicki, P.; Kondej, M.; Kaczor, A.A. Current concepts and treatments of schizophrenia.Molecules2018238208710.3390/molecules2308208730127324
    [Google Scholar]
  12. FabbriC. KasperS. ZoharJ. SoueryD. MontgomeryS. AlbaniD. ForloniG. FerentinosP. RujescuD. MendlewiczJ. De RonchiD. RivaM.A. LewisC.M. SerrettiA. Drug repositioning for treatment-resistant depression: Hypotheses from a pharmacogenomic study.Prog. Neuropsychopharmacol. Biol. Psychiatry202110411005010.1016/j.pnpbp.2020.11005032738352
    [Google Scholar]
  13. ColpoG.D. LeboyerM. DantzerR. TrivediM.H. TeixeiraA.L. Immune-based strategies for mood disorders: Facts and challenges.Expert Rev. Neurother.201818213915210.1080/14737175.2018.140724229179585
    [Google Scholar]
  14. PaulM. Poyan MehrA. KreutzR. Physiology of local renin-angiotensin systems.Physiol. Rev.200686374780310.1152/physrev.00036.200516816138
    [Google Scholar]
  15. FyhrquistF. SaijonmaaO. Renin-angiotensin system revisited.J. Intern. Med.2008264322423610.1111/j.1365‑2796.2008.01981.x18793332
    [Google Scholar]
  16. Simões e SilvaA.C. TeixeiraM.M. ACE inhibition, ACE2 and angiotensin-(1-7) axis in kidney and cardiac inflammation and fibrosis.Pharmacol. Res.201610715416210.1016/j.phrs.2016.03.01826995300
    [Google Scholar]
  17. Rodrigues PrestesT.R. RochaN.P. MirandaA.S. TeixeiraA.L. Simoes-E-Silva, A.C. The anti-inflammatory potential of ACE2/Angiotensin-(1-7)/mas receptor axis: Evidence from basic and clinical research.Curr. Drug Targets201718111301131327469342
    [Google Scholar]
  18. KamoT. AkazawaH. KomuroI. Pleiotropic effects of angiotensin II receptor signaling in cardiovascular homeostasis and aging.Int. Heart J.201556324925410.1536/ihj.14‑42925912907
    [Google Scholar]
  19. RochaN.P. ToledoA. CorgosinhoL.T.S. de SouzaL.C. GuimarãesH.C. ResendeE.P.F. BrazN.F.T. GomesK.B. Simoes e SilvaA.C. CaramelliP. TeixeiraA.L. Cerebrospinal fluid levels of angiotensin-converting enzyme are associated with amyloid-β42 burden in Alzheimer’s disease.J. Alzheimers Dis.20186441085109010.3233/JAD‑18028230040721
    [Google Scholar]
  20. RochaN.P. Simoes e SilvaA.C. PrestesT.R.R. FeracinV. MachadoC.A. FerreiraR.N. TeixeiraA.L. de MirandaA.S. RAS in the central nervous system: Potential role in neuropsychiatric disorders.Curr. Med. Chem.201825283333335210.2174/092986732566618022610235829484978
    [Google Scholar]
  21. de MirandaA.S. TeixeiraA.L. Coronavirus disease-2019 conundrum: RAS blockade and geriatric-associated neuropsychiatric disorders.Front. Med. (Lausanne)2020751510.3389/fmed.2020.0051532850927
    [Google Scholar]
  22. LakattaE.G. The reality of getting old.Nat. Rev. Cardiol.201815949950010.1038/s41569‑018‑0068‑y30065260
    [Google Scholar]
  23. AlGhatrifM. CingolaniO. LakattaE.G. The dilemma of coronavirus disease 2019, aging, and cardiovascular disease.JAMA Cardiol.20205774774810.1001/jamacardio.2020.132932242886
    [Google Scholar]
  24. LavoieJ.L. SigmundC.D. Minireview: Overview of the renin-angiotensin system--an endocrine and paracrine system.Endocrinology200314462179218310.1210/en.2003‑015012746271
    [Google Scholar]
  25. GuoD.F. SunY.L. HametP. InagamiT. The angiotensin II type 1 receptor and receptor-associated proteins.Cell Res.200111316518010.1038/sj.cr.729008311642401
    [Google Scholar]
  26. Simões e SilvaA.C. FlynnJ.T. The renin-angiotensin-aldosterone system in 2011: Role in hypertension and chronic kidney disease.Pediatr. Nephrol.201227101835184510.1007/s00467‑011‑2002‑y21947887
    [Google Scholar]
  27. SantosR.A.S. FerreiraA.J. Simões e SilvaA.C. Recent advances in the angiotensin-converting enzyme 2-angiotensin(1-7)-Mas axis.Exp. Physiol.200893551952710.1113/expphysiol.2008.04200218310257
    [Google Scholar]
  28. TipnisS.R. HooperN.M. HydeR. KarranE. ChristieG. TurnerA.J. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase.J. Biol. Chem.200027543332383324310.1074/jbc.M00261520010924499
    [Google Scholar]
  29. SantosR.A.S. SilvaA.C.S. MaricC. SilvaD.M.R. MachadoR.P. de BuhrI. Heringer-WaltherS. PinheiroS.V.B. LopesM.T. BaderM. MendesE.P. LemosV.S. Campagnole-SantosM.J. SchultheissH.P. SpethR. WaltherT. Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas.Proc. Natl. Acad. Sci. USA2003100148258826310.1073/pnas.143286910012829792
    [Google Scholar]
  30. SaavedraJ.M. Brain angiotensin II: New developments, unanswered questions and therapeutic opportunities.Cell. Mol. Neurobiol.2005253-448551210.1007/s10571‑005‑4011‑516075377
    [Google Scholar]
  31. BragaV.A. MedeirosI.A. RibeiroT.P. França-SilvaM.S. Botelho-OnoM.S. GuimarãesD.D. Angiotensin-II-induced reactive oxygen species along the SFO-PVN-RVLM pathway: Implications in neurogenic hypertension.Braz. J. Med. Biol. Res.201144987187610.1590/S0100‑879X201100750008821755262
    [Google Scholar]
  32. AndoH. ZhouJ. MacovaM. ImbodenH. SaavedraJ.M. Angiotensin II AT1 receptor blockade reverses pathological hypertrophy and inflammation in brain microvessels of spontaneously hypertensive rats.Stroke20043571726173110.1161/01.STR.0000129788.26346.1815143297
    [Google Scholar]
  33. NishimuraY. ItoT. HoeK.L. SaavedraJ.M. Chronic peripheral administration of the angiotensin II AT1 receptor antagonist Candesartan blocks brain AT1 receptors.Brain Res.20008711293810.1016/S0006‑8993(00)02377‑510882779
    [Google Scholar]
  34. BlezerE.L.A. NicolayK. BärP.R.D. GoldschmedingR. JansenG.H. KoomansH.A. JolesJ.A. Enalapril prevents imminent and reduces manifest cerebral edema in stroke-prone hypertensive rats.Stroke19982981671167810.1161/01.STR.29.8.16719707211
    [Google Scholar]
  35. NishimuraY. ItoT. SaavedraJ.M. Angiotensin II AT(1) blockade normalizes cerebrovascular autoregulation and reduces cerebral ischemia in spontaneously hypertensive rats.Stroke200031102478248610.1161/01.STR.31.10.247811022082
    [Google Scholar]
  36. ItoT. YamakawaH. BregonzioC. TerrónJ.A. Falcón-NeriA. SaavedraJ.M. Protection against ischemia and improvement of cerebral blood flow in genetically hypertensive rats by chronic pretreatment with an angiotensin II AT1 antagonist.Stroke20023392297230310.1161/01.STR.0000027274.03779.F312215602
    [Google Scholar]
  37. YamakawaH. JezovaM. AndoH. SaavedraJ.M. Normalization of endothelial and inducible nitric oxide synthase expression in brain microvessels of spontaneously hypertensive rats by angiotensin II AT1 receptor inhibition.J. Cereb. Blood Flow Metab.200323337138010.1097/01.WCB.0000047369.05600.0312621312
    [Google Scholar]
  38. DahlöfB. DevereuxR.B. KjeldsenS.E. JuliusS. BeeversG. de FaireU. FyhrquistF. IbsenH. KristianssonK. Lederballe-PedersenO. LindholmL.H. NieminenM.S. OmvikP. OparilS. WedelH. Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): A randomised trial against atenolol.Lancet20023599311995100310.1016/S0140‑6736(02)08089‑311937178
    [Google Scholar]
  39. SchraderJ. LüdersS. KulschewskiA. HammersenF. PlateK. BergerJ. ZidekW. DominiakP. DienerH.C. Morbidity and mortality after stroke, eprosartan compared with nitrendipine for secondary prevention: Principal results of a prospective randomized controlled study (MOSES).Stroke20053661218122410.1161/01.STR.0000166048.35740.a915879332
    [Google Scholar]
  40. JuliusS. NesbittS.D. EganB.M. WeberM.A. MichelsonE.L. KacirotiN. BlackH.R. GrimmR.H.Jr MesserliF.H. OparilS. SchorkM.A. Feasibility of treating prehypertension with an angiotensin-receptor blocker.N. Engl. J. Med.2006354161685169710.1056/NEJMoa06083816537662
    [Google Scholar]
  41. LiJ.M. MogiM. IwanamiJ. MinL.J. TsukudaK. SakataA. FujitaT. IwaiM. HoriuchiM. Temporary pretreatment with the angiotensin II type 1 receptor blocker, valsartan, prevents ischemic brain damage through an increase in capillary density.Stroke20083972029203610.1161/STROKEAHA.107.50345818436887
    [Google Scholar]
  42. SchiavoneM.T. SantosR.A. BrosnihanK.B. KhoslaM.C. FerrarioC.M. Release of vasopressin from the rat hypothalamo-neurohypophysial system by angiotensin-(1-7) heptapeptide.Proc. Natl. Acad. Sci. USA198885114095409810.1073/pnas.85.11.40953375255
    [Google Scholar]
  43. BlockC.H. SantosR.A.S. BrosnihanK.B. FerrarioC.M. Immunocytochemical localization of angiotensin-(1-7) in the rat forebrain.Peptides1988961395140110.1016/0196‑9781(88)90208‑23247256
    [Google Scholar]
  44. Campagnole-SantosM.J. HeringerS.B. BatistaE.N. KhoslaM.C. SantosR.A. Differential baroreceptor reflex modulation by centrally infused angiotensin peptides.Am. J. Physiol.19922631 Pt 2R89R941636797
    [Google Scholar]
  45. Heringer-WaltherS. BatistaÉ.N. WaltherT. KhoslaM.C. SantosR.A.S. Campagnole-SantosM.J. Baroreflex improvement in shr after ace inhibition involves angiotensin-(1-7).Hypertension20013751309131410.1161/01.HYP.37.5.130911358946
    [Google Scholar]
  46. ChavesG.Z. CaligiorneS.M. SantosR.A.S. KhoslaM.C. Campagnole-SantosM.J. Modulation of the baroreflex control of heart rate by angiotensin-(1-7) at the nucleus tractus solitarii of normotensive and spontaneously hypertensive rats.J. Hypertens.200018121841184810.1097/00004872‑200018120‑0001911132609
    [Google Scholar]
  47. YamazatoM. FerreiraA.J. YamazatoY. Diez-FreireC. YuanL. GilliesR. RaizadaM.K. Gene transfer of angiotensin-converting enzyme 2 in the nucleus tractus solitarius improves baroreceptor heart rate reflex in spontaneously hypertensive rats.J. Renin Angiotensin Aldosterone Syst.201112445646110.1177/147032031141280921719524
    [Google Scholar]
  48. JiangT. GaoL. ShiJ. LuJ. WangY. ZhangY. Angiotensin-(1-7) modulates renin-angiotensin system associated with reducing oxidative stress and attenuating neuronal apoptosis in the brain of hypertensive rats.Pharmacol. Res.2013671849310.1016/j.phrs.2012.10.01423127917
    [Google Scholar]
  49. RegenhardtR.W. MeccaA.P. DeslandF. Ritucci-ChinniP.F. LudinJ.A. GreensteinD. BanuelosC. BizonJ.L. ReinhardM.K. SumnersC. Centrally administered angiotensin-(1-7) increases the survival of stroke-prone spontaneously hypertensive rats.Exp. Physiol.201499244245310.1113/expphysiol.2013.07524224142453
    [Google Scholar]
  50. LeongD.S. TerrónJ.A. Falcón-NeriA. ArmandoI. ItoT. JöhrenO. TonelliL.H. HoeK.L. SaavedraJ.M. Restraint stress modulates brain, pituitary and adrenal expression of angiotensin II AT(1A), AT(1B) and AT(2) receptors.Neuroendocrinology200275422724010.1159/00005471411979053
    [Google Scholar]
  51. SapolskyR.M. The possibility of neurotoxicity in the hippocampus in major depression: A primer on neuron death.Biol. Psychiatry200048875576510.1016/S0006‑3223(00)00971‑911063972
    [Google Scholar]
  52. BaghaiT.C. BinderE.B. SchuleC. SalyakinaD. EserD. LucaeS. ZwanzgerP. HabergerC. ZillP. IsingM. DeimlT. UhrM. IlligT. WichmannH-E. ModellS. NothdurfterC. HolsboerF. Müller-MyhsokB. MöllerH-J. RupprechtR. BondyB. Polymorphisms in the angiotensin-converting enzyme gene are associated with unipolar depression, ACE activity and hypercortisolism.Mol. Psychiatry200611111003101510.1038/sj.mp.400188416924268
    [Google Scholar]
  53. PopoliM. YanZ. McEwenB.S. SanacoraG. The stressed synapse: The impact of stress and glucocorticoids on glutamate transmission.Nat. Rev. Neurosci.2012131223710.1038/nrn313822127301
    [Google Scholar]
  54. ChettyS. FriedmanA.R. Taravosh-LahnK. KirbyE.D. MirescuC. GuoF. KrupikD. NicholasA. GeraghtyA.C. KrishnamurthyA. TsaiM-K. CovarrubiasD. WongA.T. FrancisD.D. SapolskyR.M. PalmerT.D. PleasureD. KauferD. Stress and glucocorticoids promote oligodendrogenesis in the adult hippocampus.Mol. Psychiatry201419121275128310.1038/mp.2013.19024514565
    [Google Scholar]
  55. CastrenE. SaavedraJ.M. Repeated stress increases the density of angiotensin II binding sites in rat paraventricular nucleus and subfornical organ.Endocrinology1988122137037210.1210/endo‑122‑1‑3703335214
    [Google Scholar]
  56. YangG. WanY. ZhuY. Angiotensin II--an important stress hormone.Neurosignals1996511810.1159/0001091688739318
    [Google Scholar]
  57. WincewiczD. BraszkoJ. Validation of brain angiotensin system blockade as a novel drug target in pharmacological treatment of neuropsychiatric disorders.Pharmacopsychiatry201750623324710.1055/s‑0043‑11234528641333
    [Google Scholar]
  58. QadriF. CulmanJ. VeltmarA. MaasK. RascherW. UngerT. Angiotensin II-induced vasopressin release is mediated through alpha-1 adrenoceptors and angiotensin II AT1 receptors in the supraoptic nucleus.J. Pharmacol. Exp. Ther.199326725675748246129
    [Google Scholar]
  59. JezovaD. SkultetyovaI. TokarevD.I. BakosP. VigasM. Vasopressin and oxytocin in stress.Ann. N. Y. Acad. Sci.19957711 Stress19220310.1111/j.1749‑6632.1995.tb44681.x8597399
    [Google Scholar]
  60. SchniderP. BissantzC. BrunsA. DolenteC. GoetschiE. Jakob-RoetneR. KünneckeB. MuegglerT. MusterW. ParrottN. PinardE. RatniH. RisterucciC. Rogers-EvansM. von KienlinM. GrundschoberC. Discovery of balovaptan, a vasopressin 1a receptor antagonist for the treatment of autism spectrum disorder.J. Med. Chem.20206341511152510.1021/acs.jmedchem.9b0147831951127
    [Google Scholar]
  61. SaavedraJ.M. AndoH. ArmandoI. BaiardiG. BregonzioC. JezovaM. ZhouJ. Brain angiotensin II, an important stress hormone: Regulatory sites and therapeutic opportunities.Ann. N. Y. Acad. Sci.200410181768410.1196/annals.1296.00915240355
    [Google Scholar]
  62. KhouryN.M. MarvarP.J. GillespieC.F. WingoA. SchwartzA. BradleyB. KramerM. ResslerK.J. The renin-angiotensin pathway in posttraumatic stress disorder: Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers are associated with fewer traumatic stress symptoms.J. Clin. Psychiatry201273684985510.4088/JCP.11m0731622687631
    [Google Scholar]
  63. MarvarP.J. GoodmanJ. FuchsS. ChoiD.C. BanerjeeS. ResslerK.J. Angiotensin type 1 receptor inhibition enhances the extinction of fear memory.Biol. Psychiatry2014751186487210.1016/j.biopsych.2013.08.02424094510
    [Google Scholar]
  64. RaaschW. WittmershausC. DendorferA. VogesI. PahlkeF. DodtC. DominiakP. JöhrenO. Angiotensin II inhibition reduces stress sensitivity of hypothalamo-pituitary-adrenal axis in spontaneously hypertensive rats.Endocrinology200614773539354610.1210/en.2006‑019816574788
    [Google Scholar]
  65. AugustoM.L. Activation of angiotensin-converting enzyme 2/angiotensin-(1-7)/Mas axis attenuates the cardiac reactiv- ity to acute emotional stress.Am. J. Physiol. Heart Circ. Physiol.2013H1057H1067
    [Google Scholar]
  66. ZhuD. TongQ. LiuW. TianM. XieW. JiL. ShiJ. Angiotensin (1-7) protects against stress-induced gastric lesions in rats.Biochem. Pharmacol.201487346747610.1016/j.bcp.2013.10.02624231511
    [Google Scholar]
  67. OscarC.G. Müller-RibeiroF.C.F. de CastroL.G. Martins LimaA. Campagnole-SantosM.J. SantosR.A.S. XavierC.H. FontesM.A.P. Angiotensin-(1-7) in the basolateral amygdala attenuates the cardiovascular response evoked by acute emotional stress.Brain Res.2015159418318910.1016/j.brainres.2014.11.00625446442
    [Google Scholar]
  68. LazaroniT.L.N. BastosC.P. MoraesM.F.D. SantosR.S. PereiraG.S. Angiotensin-(1-7)/Mas axis modulates fear memory and extinction in mice.Neurobiol. Learn. Mem.2016127273310.1016/j.nlm.2015.11.01226642920
    [Google Scholar]
  69. Moura SantosD. Ribeiro MarinsF. Limborço-FilhoM. de OliveiraM.L. HamamotoD. XavierC.H. MoreiraF.A. SantosR.A.S. Campagnole-SantosM.J. Peliky FontesM.A. Chronic overexpression of angiotensin-(1-7) in rats reduces cardiac reactivity to acute stress and dampens anxious behavior.Stress201720218919610.1080/10253890.2017.129694928288545
    [Google Scholar]
  70. SaavedraJ.M. Angiotensin II AT1 receptor blockers as treatments for inflammatory brain disorders.Clin. Sci. (Lond.)20121231056759010.1042/CS2012007822827472
    [Google Scholar]
  71. RenL. LuX. DanserA.H.J. Revisiting the brain renin-angiotensin system—focus on novel therapies.Curr. Hypertens. Rep.20192142810.1007/s11906‑019‑0937‑830949864
    [Google Scholar]
  72. GongX. HuH. QiaoY. XuP. YangM. DangR. HanW. GuoY. ChenD. JiangP. The involvement of renin-angiotensin system in lipopolysaccharide-induced behavioral changes, neuroinflammation, and disturbed insulin signaling.Front. Pharmacol.20191031810.3389/fphar.2019.0031831001119
    [Google Scholar]
  73. SaavedraJ.M. Sánchez-LemusE. BenickyJ. Blockade of brain angiotensin II AT1 receptors ameliorates stress, anxiety, brain inflammation and ischemia: Therapeutic implications.Psychoneuroendocrinology201136111810.1016/j.psyneuen.2010.10.00121035950
    [Google Scholar]
  74. Timaru-KastR. WyschkonS. LuhC. SchaibleE.V. LehmannF. MerkP. WernerC. EngelhardK. ThalS.C. Delayed inhibition of angiotensin II receptor type 1 reduces secondary brain damage and improves functional recovery after experimental brain trauma.Crit. Care Med.201240393594410.1097/CCM.0b013e31822f08b921926585
    [Google Scholar]
  75. VillapolS. BalarezoM.G. AfframK. SaavedraJ.M. SymesA.J. Neurorestoration after traumatic brain injury through angiotensin II receptor blockage.Brain2015138113299331510.1093/brain/awv17226115674
    [Google Scholar]
  76. ValenzuelaR. Costa-BesadaM.A. Iglesias-GonzalezJ. Perez-CostasE. Villar-ChedaB. Garrido-GilP. Melendez-FerroM. Soto-OteroR. LanciegoJ.L. HenrionD. FrancoR. Labandeira-GarciaJ.L. Mitochondrial angiotensin receptors in dopaminergic neurons. Role in cell protection and aging-related vulnerability to neurodegeneration.Cell Death Dis.2016710e242710.1038/cddis.2016.32727763643
    [Google Scholar]
  77. HammerA. StegbauerJ. LinkerR.A. Macrophages in neuroinflammation: Role of the renin-angiotensin-system.Pflugers Arch.20174693-443144410.1007/s00424‑017‑1942‑x28190090
    [Google Scholar]
  78. DuY.C. XuJ.Y. ZhangS.J. Effects of angiotensin II receptor antagonist on expression of collagen III, collagen V, and transforming growth factor beta1 in the airway walls of sensitized rats.Chin. Med. J. (Engl.)2004117690891215198897
    [Google Scholar]
  79. DagenaisN.J. JamaliF. Protective effects of angiotensin II interruption: Evidence for antiinflammatory actions.Pharmacotherapy20052591213122910.1592/phco.2005.25.9.121316164395
    [Google Scholar]
  80. FerrariA.J. StockingsE. KhooJ.P. ErskineH.E. DegenhardtL. VosT. WhitefordH.A. The prevalence and burden of bipolar disorder: Findings from the Global Burden of Disease Study 2013.Bipolar Disord.201618544045010.1111/bdi.1242327566286
    [Google Scholar]
  81. LiuQ. HeH. YangJ. FengX. ZhaoF. LyuJ. Changes in the global burden of depression from 1990 to 2017: Findings from the Global Burden of Disease study.J. Psychiatr. Res.202012613414010.1016/j.jpsychires.2019.08.00231439359
    [Google Scholar]
  82. HarmerC.J. DumanR.S. CowenP.J. How do antidepressants work? New perspectives for refining future treatment approaches.Lancet Psychiatry20174540941810.1016/S2215‑0366(17)30015‑928153641
    [Google Scholar]
  83. BraszkoJ.J. Karwowska-PoleckaW. HalickaD. GardP.R. Captopril and enalapril improve cognition and depressed mood in hypertensive patients.J. Basic Clin. Physiol. Pharmacol.200314432334310.1515/JBCPP.2003.14.4.32315198305
    [Google Scholar]
  84. TanakaJ. KariyaK. NomuraM. Angiotensin II reduces serotonin release in the rat subfornical organ area.Peptides200324688188710.1016/S0196‑9781(03)00164‑512948840
    [Google Scholar]
  85. NasrS.J. CraytonJ.W. AgarwalB. WendtB. KoraR. Lower frequency of antidepressant use in patients on renin-angiotensin-aldosterone system modifying medications.Cell. Mol. Neurobiol.201131461561810.1007/s10571‑011‑9656‑721301954
    [Google Scholar]
  86. AholaA.J. HarjutsaloV. ForsblomC. GroopP.H. Renin-angiotensin-aldosterone-blockade is associated with decreased use of antidepressant therapy in patients with type 1 diabetes and diabetic nephropathy.Acta Diabetol.201451452953310.1007/s00592‑013‑0547‑x24436029
    [Google Scholar]
  87. PingG. QianW. SongG. ZhaochunS. Valsartan reverses depressive/anxiety-like behavior and induces hippocampal neurogenesis and expression of BDNF protein in unpredictable chronic mild stress mice.Pharmacol. Biochem. Behav.201412451210.1016/j.pbb.2014.05.00624844704
    [Google Scholar]
  88. AswarU. ChepurwarS. ShintreS. AswarM. Telmisartan attenuates diabetes induced depression in rats.Pharmacol. Rep.201769235836410.1016/j.pharep.2016.12.00428189098
    [Google Scholar]
  89. AyyubM. NajmiA.K. AkhtarM. Protective effect of irbesartan an angiotensin (AT1) receptor antagonist in unpredictable chronic mild stress induced depression in mice.Drug Res. (Stuttg.)2017671596427756096
    [Google Scholar]
  90. ZubenkoG.S. NixonR.A. Mood-elevating effect of captopril in depressed patients.Am. J. Psychiatry1984141111011110.1176/ajp.141.1.1106318579
    [Google Scholar]
  91. DeickenR.F. Captopril treatment of depression.Biol. Psychiatry198621141425142810.1016/0006‑3223(86)90334‑33539210
    [Google Scholar]
  92. CohenB.M. ZubenkoG.S. Captopril in the treatment of recurrent major depression.J. Clin. Psychopharmacol.19888214314410.1097/00004714‑198804000‑000183286687
    [Google Scholar]
  93. GermainL. ChouinardG. Treatment of recurrent unipolar major depression with captopril.Biol. Psychiatry198823663764110.1016/0006‑3223(88)90010‑83281718
    [Google Scholar]
  94. GermainL. ChouinardG. Captopril treatment of major depression with serial measurements of blood cortisol concentrations.Biol. Psychiatry198925448949310.1016/0006‑3223(89)90203‑52649159
    [Google Scholar]
  95. PavlatouM.G. MastorakosG. LekakisI. LiatisS. VamvakouG. ZoumakisE. PapassotiriouI. RabavilasA.D. KatsilambrosN. ChrousosG.P. Chronic administration of an angiotensin II receptor antagonist resets the hypothalamic-pituitary-adrenal (HPA) axis and improves the affect of patients with diabetes mellitus type 2: Preliminary results.Stress2008111627210.1080/1025389070147662117853061
    [Google Scholar]
  96. ArinamiT. LimingL. MitsushioH. ItokawaM. HamaguchiH. ToruM. An insertion/deletion polymorphism in the angiotensin converting enzyme gene is associated with both brain substance P contents and affective disorders.Biol. Psychiatry199640111122112710.1016/S0006‑3223(95)00597‑88931914
    [Google Scholar]
  97. SaabY.B. GardP.R. YeomanM.S. MfarrejB. El-MoalemH. IngramM.J. Renin-angiotensin-system gene polymorphisms and depression.Prog. Neuropsychopharmacol. Biol. Psychiatry20073151113111810.1016/j.pnpbp.2007.04.00217499413
    [Google Scholar]
  98. MartinP. MassolJ. PuechA.J. Captopril as an antidepressant? Effects on the learned helplessness paradigm in rats.Biol. Psychiatry199027996897410.1016/0006‑3223(90)90034‑Y2185850
    [Google Scholar]
  99. OkuyamaS. SakagawaT. SugiyamaF. FukamizuA. MurakamiK. Reduction of depressive-like behavior in mice lacking angiotensinogen.Neurosci. Lett.1999261316717010.1016/S0304‑3940(99)00002‑610081975
    [Google Scholar]
  100. VoigtJ.P. HörtnaglH. RexA. van HoveL. BaderM. FinkH. Brain angiotensin and anxiety-related behavior: The transgenic rat TGR(ASrAOGEN)680.Brain Res.200510461-214515610.1016/j.brainres.2005.03.04815869747
    [Google Scholar]
  101. KangussuL.M. Almeida-SantosA.F. BaderM. AleninaN. FontesM.A.P. SantosR.A.S. AguiarD.C. Campagnole-SantosM.J. Angiotensin-(1-7) attenuates the anxiety and depression-like behaviors in transgenic rats with low brain angiotensinogen.Behav. Brain Res.2013257253010.1016/j.bbr.2013.09.00324016839
    [Google Scholar]
  102. Almeida-SantosA.F. KangussuL.M. MoreiraF.A. SantosR.A.S. AguiarD.C. Campagnole-SantosM.J. Anxiolytic- and antidepressant-like effects of angiotensin-(1-7) in hypertensive transgenic (mRen2)27 rats.Clin. Sci. (Lond.)2016130141247125510.1042/CS2016011627129185
    [Google Scholar]
  103. Meira-LimaI.V. PereiraA.C. MotaG.F.A. KriegerJ.E. ValladaH. Angiotensinogen and angiotensin converting enzyme gene polymorphisms and the risk of bipolar affective disorder in humans.Neurosci. Lett.2000293210310610.1016/S0304‑3940(00)01512‑311027844
    [Google Scholar]
  104. SanchesM. ColpoG.D. CuellarV.A. BockmannT. RogithD. SoaresJ.C. TeixeiraA.L. Decreased plasma levels of angiotensin-converting enzyme among patients with bipolar disorder.Front. Neurosci.20211561788810.3389/fnins.2021.61788833642980
    [Google Scholar]
  105. de Souza GomesJ.A. de SouzaG.C. BerkM. CavalcanteL.M. de SousaF.C.F. BudniJ. de LucenaD.F. QuevedoJ. CarvalhoA.F. MacêdoD. Antimanic-like activity of candesartan in mice: Possible involvement of antioxidant, anti-inflammatory and neurotrophic mechanisms.Eur. Neuropsychopharmacol.201525112086209710.1016/j.euroneuro.2015.08.00526321203
    [Google Scholar]
  106. HenriksenM.G. NordgaardJ. JanssonL.B. Genetics of schizophrenia: Overview of methods, findings and limitations.Front. Hum. Neurosci.20171132210.3389/fnhum.2017.0032228690503
    [Google Scholar]
  107. HuiL. WuJ.Q. YeM.J. ZhengK. HeJ.C. ZhangX. LiuJ.H. TianH.J. GongB.H. ChenD.C. LvM.H. SoaresJ.C. ZhangX.Y. Association of angiotensin-converting enzyme gene polymorphism with schizophrenia and depressive symptom severity in a Chinese population.Hum. Psychopharmacol.201530210010710.1002/hup.246025694211
    [Google Scholar]
  108. CrescentiA. GassóP. MasS. AbellanaR. DeulofeuR. ParelladaE. BernardoM. LafuenteA. Insertion/deletion polymorphism of the angiotensin-converting enzyme gene is associated with schizophrenia in a Spanish population.Psychiatry Res.20091651-217518010.1016/j.psychres.2008.04.02418986708
    [Google Scholar]
  109. GadelhaA. YonamineC.M. NeringM. RizzoL.B. NotoC. Cogo-MoreiraH. TeixeiraA.L. BressanR. MaesM. BrietzkeE. HayashiM.A.F. Angiotensin converting enzyme activity is positively associated with IL-17a levels in patients with schizophrenia.Psychiatry Res.2015229370270710.1016/j.psychres.2015.08.01826296754
    [Google Scholar]
  110. GadelhaA. VendraminiA.M. YonamineC.M. NeringM. BerberianA. SuiamaM.A. OliveiraV. Lima-LandmanM.T. BreenG. BressanR.A. AbílioV. HayashiM A F. Convergent evidences from human and animal studies implicate angiotensin I-converting enzyme activity in cognitive performance in schizophrenia.Transl. Psychiatry2015512e69110.1038/tp.2015.18126645626
    [Google Scholar]
  111. NaniJ.V. Dal MasC. YonamineC.M. OtaV.K. NotoC. BelangeroS.I. MariJ.J. BressanR. CordeiroQ. GadelhaA. HayashiM.A.F. A study in first-episode psychosis patients: Does angiotensin I-converting enzyme (ACE) activity associated with genotype predict symptoms severity reductions after treatment with the atypical antipsychotic risperidone?Int. J. Neuropsychopharmacol.2020231172173010.1093/ijnp/pyaa05032696960
    [Google Scholar]
  112. MohiteS. de Campos-CarliS.M. RochaN.P. SharmaS. MirandaA.S. BarbosaI.G. SalgadoJ.V. Simoes-e-SilvaA.C. TeixeiraA.L. Lower circulating levels of angiotensin-converting enzyme (ACE) in patients with schizophrenia.Schizophr. Res.2018202505410.1016/j.schres.2018.06.02329925475
    [Google Scholar]
  113. ChauquetS. ZhuZ. O’DonovanM.C. WaltersJ.T.R. WrayN.R. ShahS. Association of antihypertensive drug target genes with psychiatric disorders.JAMA Psychiatry202178662363110.1001/jamapsychiatry.2021.000533688928
    [Google Scholar]
  114. VeenemanR.R. VermeulenJ.M. AbdellaouiA. SandersonE. WoottonR.E. TadrosR. BezzinaC.R. DenysD. MunafòM.R. VerweijK.J.H. TreurJ.L. Exploring the relationship between schizophrenia and cardiovascular disease: A genetic correlation and multivariable mendelian randomization study.Schizophr. Bull.202248246347310.1093/schbul/sbab13234730178
    [Google Scholar]
  115. ElkahlounA.G. HafkoR. SaavedraJ.M. An integrative genome-wide transcriptome reveals that candesartan is neuroprotective and a candidate therapeutic for Alzheimer’s disease.Alzheimers Res. Ther.201681510.1186/s13195‑015‑0167‑526822027
    [Google Scholar]
  116. VasconcelosG.S. dos Santos JúniorM.A. MonteA.S. da SilvaF.E.R. LimaC.N.C. MoreiraL.N. A.B.; Medeiros, I.S.; Teixeira, A.L.; de Lucena, D.F.; Vasconcelos, S.M.M.; Macedo, D.S. Low-dose candesartan prevents schizophrenia-like behavioral alterations in a neurodevelopmental two-hit model of schizophrenia.Prog. Neuropsychopharmacol. Biol. Psychiatry202111111034810.1016/j.pnpbp.2021.11034833984421
    [Google Scholar]
  117. ThakurK.S. PrakashA. BishtR. BansalP.K. Beneficial effect of candesartan and lisinopril against haloperidol-induced tardive dyskinesia in rat.J. Renin Angiotensin Aldosterone Syst.201516491792910.1177/147032031351503824464858
    [Google Scholar]
  118. GorelickP.B. Role of inflammation in cognitive impairment: Results of observational epidemiological studies and clinical trials.Ann. N. Y. Acad. Sci.20101207115516210.1111/j.1749‑6632.2010.05726.x20955439
    [Google Scholar]
  119. ZakrockaI. Targowska-DudaK.M. WnorowskiA. KockiT. Jóźwiak, K.; Turski, W.A.; Angiotensin, I.I. Angiotensin II type 1 receptor blockers inhibit KAT II activity in the brain—its possible clinical applications.Neurotox. Res.201732463964810.1007/s12640‑017‑9781‑228733707
    [Google Scholar]
  120. LinderholmK.R. SkoghE. OlssonS.K. DahlM.L. HoltzeM. EngbergG. SamuelssonM. ErhardtS. Increased levels of kynurenine and kynurenic acid in the CSF of patients with schizophrenia.Schizophr. Bull.201238342643210.1093/schbul/sbq08620729465
    [Google Scholar]
  121. Alzheimer’s Association2020 Alzheimer’s disease facts and figures.Alzheimers Dement.2020202032157811
    [Google Scholar]
  122. Alzheimer’s Association. FY19-21 strategic plan2019Available from: https://www.alz.org/media/Documents/strategic-plan-fy2019-2021.pdf
  123. SelkoeD.J. Alzheimer’s disease: Genotypes, phenotypes, and treatments.Science1997275530063063110.1126/science.275.5300.6309019820
    [Google Scholar]
  124. ClintonL.K. Blurton-JonesM. MyczekK. TrojanowskiJ.Q. LaFerlaF.M. Synergistic Interactions between Abeta, tau, and α-synuclein: Acceleration of neuropathology and cognitive decline.J. Neurosci.201030217281728910.1523/JNEUROSCI.0490‑10.201020505094
    [Google Scholar]
  125. GiassonB.I. LeeV.M.Y. TrojanowskiJ.Q. Interactions of amyloidogenic proteins.Neuromolecular Med.200341-2495810.1385/NMM:4:1‑2:4914528052
    [Google Scholar]
  126. WalkerL. McAleeseK.E. ThomasA.J. JohnsonM. Martin-RuizC. ParkerC. CollobyS.J. JellingerK. AttemsJ. Neuropathologically mixed Alzheimer’s and Lewy body disease: Burden of pathological protein aggregates differs between clinical phenotypes.Acta Neuropathol.2015129572974810.1007/s00401‑015‑1406‑325758940
    [Google Scholar]
  127. KovacsG.G. AlafuzoffI. Al-SarrajS. ArzbergerT. BogdanovicN. CapellariS. FerrerI. GelpiE. KövariV. KretzschmarH. NagyZ. ParchiP. SeilheanD. SoininenH. TroakesC. BudkaH. Mixed brain pathologies in dementia: The BrainNet Europe consortium experience.Dement. Geriatr. Cogn. Disord.200826434335010.1159/00016156018849605
    [Google Scholar]
  128. BarkerW.W. LuisC.A. KashubaA. LuisM. HarwoodD.G. LoewensteinD. WatersC. JimisonP. ShepherdE. SevushS. Graff-RadfordN. NewlandD. ToddM. MillerB. GoldM. HeilmanK. DotyL. GoodmanI. RobinsonB. PearlG. DicksonD. DuaraR. Relative frequencies of Alzheimer disease, Lewy body, vascular and frontotemporal dementia, and hippocampal sclerosis in the State of Florida Brain Bank.Alzheimer Dis. Assoc. Disord.200216420321210.1097/00002093‑200210000‑0000112468894
    [Google Scholar]
  129. BuchhaveP. MinthonL. ZetterbergH. WallinA.K. BlennowK. HanssonO. Cerebrospinal fluid levels of β-amyloid 1-42, but not of tau, are fully changed already 5 to 10 years before the onset of Alzheimer dementia.Arch. Gen. Psychiatry20126919810610.1001/archgenpsychiatry.2011.15522213792
    [Google Scholar]
  130. BraakE. GriffingK. AraiK. BohlJ. BratzkeH. BraakH. Neuropathology of Alzheimer’s disease: What is new since A. Alzheimer?Eur. Arch. Psychiatry Clin. Neurosci.1999249Suppl. 31422
    [Google Scholar]
  131. dos Santos PicancoL.C. OzelaP.F. de Fatima de Brito BritoM. PinheiroA.A. PadilhaE.C. BragaF.S. de Paula da SilvaC.H.T. dos SantosC.B.R. RosaJ.M.C. da Silva Hage-MelimL.I. Alzheimer’s disease: A review from the pathophysiology to diagnosis, new perspectives for pharmacological treatment.Curr. Med. Chem.201825263141315910.2174/092986732366616121310112630191777
    [Google Scholar]
  132. WrightJ.W. HardingJ.W. The brain renin-angiotensin system: A diversity of functions and implications for CNS diseases.Pflugers Arch.2013465113315110.1007/s00424‑012‑1102‑222535332
    [Google Scholar]
  133. BaltatuO.C. CamposL.A. BaderM. Local renin-angiotensin system and the brain—A continuous quest for knowledge.Peptides20113251083108610.1016/j.peptides.2011.02.00821333703
    [Google Scholar]
  134. JiangT. ZhangY.D. ZhouJ.S. ZhuX.C. TianY.Y. ZhaoH.D. LuH. GaoQ. TanL. YuJ.T. Angiotensin-(1-7) is reduced and inversely correlates with Tau hyperphosphorylation in animal models of Alzheimer’s disease.Mol. Neurobiol.20165342489249710.1007/s12035‑015‑9260‑926044748
    [Google Scholar]
  135. KehoeP.G. WongS. MulhimA.L. N.; Palmer, L.E.; Miners, J.S. Angiotensin-converting enzyme 2 is reduced in Alzheimer’s disease in association with increasing amyloid-β and tau pathology.Alzheimers Res. Ther.2016815010.1186/s13195‑016‑0217‑727884212
    [Google Scholar]
  136. JiangT. TanL. GaoQ. LuH. ZhuX.C. ZhouJ.S. ZhangY.D. Plasma Angiotensin-(1-7) is a potential biomarker for Alzheimer’s disease.Curr. Neurovasc. Res.2016132969910.2174/156720261366616022412473926907614
    [Google Scholar]
  137. RibeiroV.T. CordeiroT.M. FilhaR.S. PerezL.G. CaramelliP. TeixeiraA.L. de SouzaL.C. Simões e SilvaA.C. Circulating angiotensin-(1-7) is reduced in Alzheimer’s disease patients and correlates with white matter abnormalities: Results from a pilot study.Front. Neurosci.20211563675410.3389/fnins.2021.63675433897352
    [Google Scholar]
  138. KurataT. LukicV. KozukiM. WadaD. MiyazakiK. MorimotoN. OhtaY. DeguchiK. YamashitaT. HishikawaN. MatsuzonoK. IkedaY. KamiyaT. AbeK. Long-term effect of telmisartan on Alzheimer’s amyloid genesis in SHR-SR after tMCAO.Transl. Stroke Res.20156210711510.1007/s12975‑013‑0321‑y24435631
    [Google Scholar]
  139. BraszkoJ.J. WincewiczD. JakubówP. Candesartan prevents impairment of recall caused by repeated stress in rats.Psychopharmacology (Berl.)2013225242142810.1007/s00213‑012‑2829‑322890474
    [Google Scholar]
  140. WincewiczD. BraszkoJ.J. Telmisartan attenuates cognitive impairment caused by chronic stress in rats.Pharmacol. Rep.201466343644110.1016/j.pharep.2013.11.00224905520
    [Google Scholar]
  141. WincewiczD. BraszkoJ.J. Angiotensin II AT1 receptor blockade by telmisartan reduces impairment of spatial maze performance induced by both acute and chronic stress.J. Renin Angiotensin Aldosterone Syst.201516349550510.1177/147032031452626924622157
    [Google Scholar]
  142. WincewiczD. JuchniewiczA. WaszkiewiczN. BraszkoJ.J. Angiotensin II type 1 receptor blockade by telmisartan prevents stress-induced impairment of memory via HPA axis deactivation and up-regulation of brain-derived neurotrophic factor gene expression.Pharmacol. Biochem. Behav.201614810811810.1016/j.pbb.2016.06.01027375198
    [Google Scholar]
  143. LiN.C. LeeA. WhitmerR.A. KivipeltoM. LawlerE. KazisL.E. WolozinB. Use of angiotensin receptor blockers and risk of dementia in a predominantly male population: Prospective cohort analysis.BMJ2010340jan12 1b546510.1136/bmj.b546520068258
    [Google Scholar]
  144. KumeK. HanyuH. SakuraiH. TakadaY. OnumaT. IwamotoT. Effects of telmisartan on cognition and regional cerebral blood flow in hypertensive patients with Alzheimer’s disease.Geriatr. Gerontol. Int.201212220721410.1111/j.1447‑0594.2011.00746.x21929736
    [Google Scholar]
  145. ZhuangS. WangH.F. WangX. LiJ. XingC.M. The association of renin-angiotensin system blockade use with the risks of cognitive impairment of aging and Alzheimer’s disease: A meta-analysis.J. Clin. Neurosci.201633323810.1016/j.jocn.2016.02.03627475317
    [Google Scholar]
  146. UekawaK. HasegawaY. SenjuS. NakagataN. MaM. NakagawaT. KoibuchiN. Kim-MitsuyamaS. Intracerebroventricular infusion of angiotensin-(1-7) ameliorates cognitive impairment and memory dysfunction in a mouse model of Alzheimer’s disease.J. Alzheimers Dis.201653112713310.3233/JAD‑15064227128367
    [Google Scholar]
  147. ChenJ.L. ZhangD.L. SunY. ZhaoY.X. ZhaoK.X. PuD. XiaoQ. Angiotensin-(1-7) administration attenuates Alzheimer’s disease-like neuropathology in rats with streptozotocin-induced diabetes via Mas receptor activation.Neuroscience201734626727710.1016/j.neuroscience.2017.01.02728147245
    [Google Scholar]
  148. VarshneyV. GarabaduD. Ang (1-7)/Mas receptor-axis activation promotes amyloid beta-induced altered mitochondrial bioenergetics in discrete brain regions of Alzheimer’s disease-like rats.Neuropeptides20218610212210.1016/j.npep.2021.10212233508525
    [Google Scholar]
  149. DuanR. Wang, S.Y.; Wei, B.; Deng, Y.; Fu, X.X.; Gong, P.Y.; e, Y.; Sun, X.J.; Cao, H.M.; Shi, J.Q.; Jiang, T.; Zhang, Y.D. Angiotensin-(1-7) analogue AVE0991 modulates astrocyte-mediated neuroinflammation via lncRNA SNHG14/miR-223-3p/NLRP3 pathway and offers neuroprotection in a transgenic mouse model of Alzheimer’s disease.J. Inflamm. Res.2021147007701910.2147/JIR.S34357534955647
    [Google Scholar]
  150. EvansC.E. MinersJ.S. PivaG. WillisC.L. HeardD.M. KiddE.J. GoodM.A. KehoeP.G. ACE2 activation protects against cognitive decline and reduces amyloid pathology in the Tg2576 mouse model of Alzheimer’s disease.Acta Neuropathol.2020139348550210.1007/s00401‑019‑02098‑631982938
    [Google Scholar]
  151. ArendseL.B. DanserA.H.J. PoglitschM. TouyzR.M. BurnettJ.C.Jr Llorens-CortesC. EhlersM.R. SturrockE.D. Novel therapeutic approaches targeting the renin-angiotensin system and associated peptides in hypertension and heart failure.Pharmacol. Rev.201971453957010.1124/pr.118.01712931537750
    [Google Scholar]
  152. TreiberK.A. LyketsosC.G. CorcoranC. SteinbergM. NortonM. GreenR.C. RabinsP. SteinD.M. Welsh-BohmerK.A. BreitnerJ.C.S. TschanzJ.T. Vascular factors and risk for neuropsychiatric symptoms in Alzheimer’s disease: The Cache County Study.Int. Psychogeriatr.200820353855310.1017/S104161020800670418289451
    [Google Scholar]
  153. RobinsonR.G. JorgeR.E. Post-stroke depression: A review.Am. J. Psychiatry2016173322123110.1176/appi.ajp.2015.1503036326684921
    [Google Scholar]
  154. JellingerK.A. Pathomechanisms of vascular depression in older adults.Int. J. Mol. Sci.202123130810.3390/ijms2301030835008732
    [Google Scholar]
  155. Machado-SilvaA. Passos-SilvaD. SantosR.A. SinisterraR.D. Therapeutic uses for angiotensin-(1-7).Expert Opin. Ther. Pat.2016266669678
    [Google Scholar]
  156. MogiM. HoriuchiM. Effect of angiotensin II type 2 receptor on stroke, cognitive impairment and neurodegenerative diseases.Geriatr. Gerontol. Int.2013131131810.1111/j.1447‑0594.2012.00900.x22726823
    [Google Scholar]
  157. AhmedH.A. IsmaelS. SalmanM. DevlinP. McDonaldM.P. LiaoF.F. IshratT. Direct AT2R stimulation slows post-stroke cognitive decline in the 5XFAD Alzheimer’s disease mice.Mol. Neurobiol.20225974124414010.1007/s12035‑022‑02839‑x35486224
    [Google Scholar]
  158. EldahshanW. SayedM.A. AwadM.E. AhmedH.A. GillisE. AlthomaliW. PillaiB. AlshammariA. JacksonL. DongG. SullivanJ.C. CooleyM.A. ElsalantyM. ErgulA. FaganS.C. Stimulation of angiotensin II receptor 2 preserves cognitive function and is associated with an enhanced cerebral vascular density after stroke.Vascul. Pharmacol.202114110690410.1016/j.vph.2021.10690434481068
    [Google Scholar]
  159. RoyeaJ. Lacalle-AuriolesM. TrigianiL.J. FermigierA. HamelE. AT2R’s (Angiotensin II Type 2 Receptor’s) role in cognitive and cerebrovascular deficits in a mouse model of Alzheimer disease.Hypertension20207561464147410.1161/HYPERTENSIONAHA.119.1443132362228
    [Google Scholar]
  160. MinL.J. IwanamiJ. ShudouM. BaiH.Y. ShanB.S. HigakiA. MogiM. HoriuchiM. Deterioration of cognitive function after transient cerebral ischemia with amyloid-β infusion—possible amelioration of cognitive function by AT2 receptor activation.J. Neuroinflammation202017110610.1186/s12974‑020‑01775‑832264971
    [Google Scholar]
  161. IwanamiJ. MogiM. TsukudaK. WangX.L. NakaokaH. Kan-noH. ChisakaT. BaiH.Y. ShanB.S. KukidaM. HoriuchiM. Direct angiotensin II type 2 receptor stimulation by compound 21 prevents vascular dementia.J. Am. Soc. Hypertens.20159425025610.1016/j.jash.2015.01.01025753301
    [Google Scholar]
  162. HigakiA. MogiM. IwanamiJ. MinL.J. BaiH.Y. ShanB.S. KukidaM. YamauchiT. TsukudaK. Kan-noH. IkedaS. HigakiJ. HoriuchiM. Beneficial effect of mas receptor deficiency on vascular cognitive impairment in the presence of angiotensin II type 2 receptor.J. Am. Heart Assoc.201873e00812110.1161/JAHA.117.00812129431106
    [Google Scholar]
  163. BosnyakS. JonesE.S. ChristopoulosA. AguilarM.I. ThomasW.G. WiddopR.E. Relative affinity of angiotensin peptides and novel ligands at AT1 and AT2 receptors.Clin. Sci. (Lond.)2011121729730310.1042/CS2011003621542804
    [Google Scholar]
/content/journals/cn/10.2174/1570159X20666220927093815
Loading
/content/journals/cn/10.2174/1570159X20666220927093815
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test