Skip to content
2000
image of Oxidative Stress-mediated Lipid Peroxidation-derived Lipid Aldehydes in the Pathophysiology of Neurodegenerative Diseases

Abstract

Neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and amyotrophic lateral sclerosis cause damage and gradual loss of neurons affecting the central nervous system. Neurodegenerative diseases are most commonly seen in the ageing process. Ageing causes increased reactive oxygen species and decreased mitochondrial ATP generation, resulting in redox imbalance and oxidative stress. Oxidative stress-generated free radicals cause damage to membrane lipids containing polyunsaturated fatty acids, leading to the formation of toxic lipid aldehyde products such as 4-hydroxynonenal and malondialdehyde. Several studies have shown that lipid peroxidation-derived aldehyde products form adducts with cellular proteins, altering their structure and function. Thus, these lipid aldehydes could act as secondary signaling intermediates, modifying important metabolic pathways, and contributing to the pathophysiology of several human diseases, including neurodegenerative disorders. Additionally, they could serve as biomarkers for disease progression. This narrative review article discusses the biological and clinical significance of oxidative stress-mediated lipid peroxidation-derived lipid aldehydes in the pathophysiology of various neurodegenerative diseases.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X342720241014164650
2024-10-21
2024-11-26
Loading full text...

Full text loading...

References

  1. Adamu A. Li S. Gao F. Xue G. The role of neuroinflammation in neurodegenerative diseases: Current understanding and future therapeutic targets. Front. Aging Neurosci. 2024 16 1347987 10.3389/fnagi.2024.1347987 38681666
    [Google Scholar]
  2. Lamptey R.N.L. Chaulagain B. Trivedi R. Gothwal A. Layek B. Singh J. A review of the common neurodegenerative disorders: Current therapeutic approaches and the potential role of nanotherapeutics. Int. J. Mol. Sci. 2022 23 3 1851 10.3390/ijms23031851 35163773
    [Google Scholar]
  3. Wilson D.M. III Cookson M.R. Van Den Bosch L. Zetterberg H. Holtzman D.M. Dewachter I. Hallmarks of neurodegenerative diseases. Cell 2023 186 4 693 714 10.1016/j.cell.2022.12.032 36803602
    [Google Scholar]
  4. Van Schependom J. D’haeseleer M. Advances in neurodegenerative diseases. J. Clin. Med. 2023 12 5 1709 10.3390/jcm12051709 36902495
    [Google Scholar]
  5. Cheslow L. Snook A.E. Waldman S.A. Biomarkers for managing neurodegenerative diseases. Biomolecules 2024 14 4 398 10.3390/biom14040398 38672416
    [Google Scholar]
  6. Chand Dakal T. Choudhary K. Tiwari I. Yadav V. Kumar Maurya P. Kumar Sharma N. Unraveling the triad: Hypoxia, oxidative stress and inflammation in neurodegenerative disorders. Neuroscience 2024 552 126 141 10.1016/j.neuroscience.2024.06.021 38936458
    [Google Scholar]
  7. Olufunmilayo E.O. Gerke-Duncan M.B. Holsinger R.M.D. Oxidative stress and antioxidants in neurodegenerative disorders. Antioxidants 2023 12 2 517 10.3390/antiox12020517 36830075
    [Google Scholar]
  8. Li J.O.W. Li W. Jiang Z.G. Ghanbari H. Oxidative stress and neurodegenerative disorders. Int. J. Mol. Sci. 2013 14 12 24438 24475 10.3390/ijms141224438 24351827
    [Google Scholar]
  9. Butterfield D.A. Boyd-Kimball D. Redox proteomics and amyloid β-peptide: Insights into Alzheimer disease. J. Neurochem. 2019 151 4 459 487 10.1111/jnc.14589
    [Google Scholar]
  10. Butterfield D.A. Perluigi M. Redox proteomics: A key tool for new insights into protein modification with relevance to disease. Antioxid. Redox Signal. 2017 26 7 277 279 10.1089/ars.2016.6919 27835924
    [Google Scholar]
  11. Sonowal H. Ramana K.V. 4-hydroxy-trans-2-nonenal in the regulation of anti-oxidative and pro-inflammatory signaling pathways. Oxid. Med. Cell. Longev. 2019 2019 1 17 10.1155/2019/5937326 31781341
    [Google Scholar]
  12. Shoeb M. Ansari N. Srivastava S. Ramana K. 4-hydroxynonenal in the pathogenesis and progression of human diseases. Curr. Med. Chem. 2013 21 2 230 237 10.2174/09298673113209990181 23848536
    [Google Scholar]
  13. Li Y. Zhao T. Li J. Xia M. Li Y. Wang X. Liu C. Zheng T. Chen R. Kan D. Xie Y. Song J. Feng Y. Yu T. Sun P. Oxidative stress and 4-hydroxy-2-nonenal (4-HNE): Implications in the pathogenesis and treatment of aging-related diseases. J. Immunol. Res. 2022 2022 1 12 10.1155/2022/2233906 35411309
    [Google Scholar]
  14. Butterfield D.A. Mattson M.P. Apolipoprotein E and oxidative stress in brain with relevance to Alzheimer’s disease. Neurobiol. Dis. 2020 138 104795 10.1016/j.nbd.2020.104795 32036033
    [Google Scholar]
  15. Spickett C.M. Pitt A.R. Modification of proteins by reactive lipid oxidation products and biochemical effects of lipoxidation. Essays Biochem. 2020 64 1 19 31 10.1042/EBC20190058 31867621
    [Google Scholar]
  16. Cioffi F. Adam R.H.I. Bansal R. Broersen K. A review of oxidative stress products and related genes in early Alzheimer’s disease. J. Alzheimers Dis. 2021 83 3 977 1001 10.3233/JAD‑210497 34420962
    [Google Scholar]
  17. Abeer M.I. Abdulhasan A. Haguar Z. Narayanaswami V. Isoform-specific modification of apolipoprotein E by 4-hydroxynonenal: Protective role of apolipoprotein E3 against oxidative species. FEBS J. 2023 290 11 3006 3025 10.1111/febs.16729 36661393
    [Google Scholar]
  18. Jaganjac M. Milkovic L. Gegotek A. Cindric M. Zarkovic K. Skrzydlewska E. Zarkovic N. The relevance of pathophysiological alterations in redox signaling of 4-hydroxynonenal for pharmacological therapies of major stress-associated diseases. Free Radic. Biol. Med. 2020 157 128 153 10.1016/j.freeradbiomed.2019.11.023 31756524
    [Google Scholar]
  19. Arnett D. Quillin A. Geldenhuys W.J. Menze M.A. Konkle M. 4-hydroxynonenal and 4-oxononenal differentially bind to the redox sensor MitoNEET. Chem. Res. Toxicol. 2019 32 6 977 981 10.1021/acs.chemrestox.9b00166 31117349
    [Google Scholar]
  20. Kabuta C. Kono K. Wada K. Kabuta T. 4-hydroxynonenal induces persistent insolubilization of TDP-43 and alters its intracellular localization. Biochem. Biophys. Res. Commun. 2015 463 1-2 82 87 10.1016/j.bbrc.2015.05.027 25998392
    [Google Scholar]
  21. Disatnik M.H. Joshi A.U. Saw N.L. Shamloo M. Leavitt B.R. Qi X. Mochly-Rosen D. Potential biomarkers to follow the progression and treatment response of Huntington’s disease. J. Exp. Med. 2016 213 12 2655 2669 10.1084/jem.20160776 27821553
    [Google Scholar]
  22. Ayala A. Muñoz M.F. Argüelles S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell. Longev. 2014 2014 1 31 10.1155/2014/360438 24999379
    [Google Scholar]
  23. Zarkovic K. Jakovcevic A. Zarkovic N. Contribution of the HNE-immunohistochemistry to modern pathological concepts of major human diseases. Free Radic. Biol. Med. 2017 111 110 126 10.1016/j.freeradbiomed.2016.12.009 27993730
    [Google Scholar]
  24. Zhang H. Forman H.J. 4-hydroxynonenal-mediated signaling and aging. Free Radic. Biol. Med. 2017 111 219 225 10.1016/j.freeradbiomed.2016.11.032 27876535
    [Google Scholar]
  25. Adibhatla R.M. Hatcher J.F. Altered lipid metabolism in brain injury and disorders. Subcell. Biochem. 2008 49 241 268 10.1007/978‑1‑4020‑8831‑5_9 18751914
    [Google Scholar]
  26. Di Domenico F. Tramutola A. Butterfield D.A. Role of 4-hydroxy-2-nonenal (HNE) in the pathogenesis of alzheimer disease and other selected age-related neurodegenerative disorders. Free Radic. Biol. Med. 2017 111 253 261 10.1016/j.freeradbiomed.2016.10.490 27789292
    [Google Scholar]
  27. Sultana R. Perluigi M. Butterfield D.A. Lipid peroxidation triggers neurodegeneration: A redox proteomics view into the Alzheimer disease brain. Free Radic. Biol. Med. 2013 62 157 169 10.1016/j.freeradbiomed.2012.09.027 23044265
    [Google Scholar]
  28. Žarković N. Gęgotek A. Łuczaj W. Jaganjac M. Šunjić S.B. Žarković K. Skrzydlewska E. Overview of the lipid peroxidation measurements in patients by the enzyme-linked immunosorbent assay specific for the 4-hydroxynonenal-protein adducts (4-HNE-ELISA). Front. Biosci. (Landmark Ed.) 2024 29 4 153 10.31083/j.fbl2904153
    [Google Scholar]
  29. Barrera G. Pizzimenti S. Ciamporcero E.S. Daga M. Ullio C. Arcaro A. Cetrangolo G.P. Ferretti C. Dianzani C. Lepore A. Gentile F. Role of 4-hydroxynonenal-protein adducts in human diseases. Antioxid. Redox Signal. 2015 22 18 1681 1702 10.1089/ars.2014.6166 25365742
    [Google Scholar]
  30. Milkovic L. Zarkovic N. Marusic Z. Zarkovic K. Jaganjac M. The 4-hydroxynonenal-protein adducts and their biological relevance: Are some proteins preferred targets? Antioxidants 2023 12 4 856 10.3390/antiox12040856 37107229
    [Google Scholar]
  31. Camporez D. Belcavello L. Almeida J.F.F. Silva-Sena G.G. Pimassoni L.H.S. Morelato R.L. do Carmo Pimentel Batitucci M. de Paula F. Positive association of a Sirt1 variant and parameters of oxidative stress on Alzheimer’s disease. Neurol. Sci. 2021 42 5 1843 1851 10.1007/s10072‑020‑04704‑y 32926246
    [Google Scholar]
  32. Deliz J.R. Tanner C.M. Gonzalez-Latapi P. Epidemiology of Parkinson’s disease: An update. Curr. Neurol. Neurosci. Rep. 2024 24 6 163 179 10.1007/s11910‑024‑01339‑w 38642225
    [Google Scholar]
  33. Postuma R.B. Berg D. Stern M. Poewe W. Olanow C.W. Oertel W. Obeso J. Marek K. Litvan I. Lang A.E. Halliday G. Goetz C.G. Gasser T. Dubois B. Chan P. Bloem B.R. Adler C.H. Deuschl G. MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord. 2015 30 12 1591 1601 10.1002/mds.26424 26474316
    [Google Scholar]
  34. Nabizadeh F. Seyedmirzaei H. Rafiei N. Maryam Vafaei S. Shekouh D. Mehrtabar E. Mirzaaghazadeh E. Mirzaasgari Z. Global prevalence and incidence of young onset Parkinson’s disease: A systematic review and meta-analysis. J. Clin. Neurosci. 2024 125 59 67 10.1016/j.jocn.2024.05.015 38754241
    [Google Scholar]
  35. Cai P. Wang J. Xu J. Zhang M. Yin X. He S. Zhuang J. V-set and immunoglobulin domain containing 4 inhibits oxidative stress, mitochondrial dysfunction, and inflammation to attenuate Parkinson’s disease progression by activating the JAK2/STAT3 pathway. J. Neuroimmunol. 2024 391 578345 10.1016/j.jneuroim.2024.578345
    [Google Scholar]
  36. Pfeifer G.P. DNA damage and Parkinson’s disease. Int. J. Mol. Sci. 2024 25 8 4187 10.3390/ijms25084187 38673772
    [Google Scholar]
  37. Sadeghian Z. Eyvari-Brooshghalan S. Sabahi M. Nourouzi N. Haddadi R. Post treatment with Gastrodin suppresses oxidative stress and attenuates motor disorders following 6-OHDA induced Parkinson disease. Neurosci. Lett. 2022 790 136884 10.1016/j.neulet.2022.136884 36162540
    [Google Scholar]
  38. Zhang J. Perry G. Smith M.A. Robertson D. Olson S.J. Graham D.G. Montine T.J. Parkinson’s disease is associated with oxidative damage to cytoplasmic DNA and RNA in substantia nigra neurons. Am. J. Pathol. 1999 154 5 1423 1429 10.1016/S0002‑9440(10)65396‑5 10329595
    [Google Scholar]
  39. Shukla D. Goel A. Mandal P.K. Joon S. Punjabi K. Arora Y. Kumar R. Mehta V.S. Singh P. Maroon J.C. Bansal R. Sandal K. Roy R.G. Samkaria A. Sharma S. Sandhilya S. Gaur S. Parvathi S. Joshi M. Glutathione depletion and concomitant elevation of susceptibility in patients with Parkinson’s Disease: State-of-the-art MR spectroscopy and neuropsychological study. ACS Chem. Neurosci. 2023 14 24 4383 4394 10.1021/acschemneuro.3c00717 38050970
    [Google Scholar]
  40. Bharath S. Hsu M. Kaur D. Rajagopalan S. Andersen J.K. Glutathione, iron and Parkinson’s disease. Biochem. Pharmacol. 2002 64 5-6 1037 1048 10.1016/S0006‑2952(02)01174‑7 12213603
    [Google Scholar]
  41. Wang T. Liu W. Zhang Q. Jiao J. Wang Z. Gao G. Yang H. 4-oxo-2-nonenal- and agitation-induced aggregates of α-synuclein and phosphorylated α-synuclein with distinct biophysical properties and biomedical applications. Cells 2024 13 9 739 10.3390/cells13090739 38727274
    [Google Scholar]
  42. Lin X.M. Pan M.H. Sun J. Wang M. Huang Z.H. Wang G. Wang R. Gong H.B. Huang R.T. Huang F. Sun W.Y. Liu H.Z. Kurihara H. Li Y.F. Duan W.J. He R.R. Membrane phospholipid peroxidation promotes loss of dopaminergic neurons in psychological stress‐induced Parkinson’s disease susceptibility. Aging Cell 2023 22 10 e13970 10.1111/acel.13970 37622525
    [Google Scholar]
  43. Cai Y. Lendel C. Österlund L. Kasrayan A. Lannfelt L. Ingelsson M. Nikolajeff F. Karlsson M. Bergström J. Changes in secondary structure of α-synuclein during oligomerization induced by reactive aldehydes. Biochem. Biophys. Res. Commun. 2015 464 1 336 341 10.1016/j.bbrc.2015.06.154 26129771
    [Google Scholar]
  44. Almandoz-Gil L. Welander H. Ihse E. Khoonsari P.E. Musunuri S. Lendel C. Sigvardson J. Karlsson M. Ingelsson M. Kultima K. Bergström J. Low molar excess of 4-oxo-2-nonenal and 4-hydroxy-2-nonenal promote oligomerization of alpha-synuclein through different pathways. Free Radic. Biol. Med. 2017 110 421 431 10.1016/j.freeradbiomed.2017.07.004 28690195
    [Google Scholar]
  45. Näsström T. Fagerqvist T. Barbu M. Karlsson M. Nikolajeff F. Kasrayan A. Ekberg M. Lannfelt L. Ingelsson M. Bergström J. The lipid peroxidation products 4-oxo-2-nonenal and 4-hydroxy-2-nonenal promote the formation of α-synuclein oligomers with distinct biochemical, morphological, and functional properties. Free Radic. Biol. Med. 2011 50 3 428 437 10.1016/j.freeradbiomed.2010.11.027 21130160
    [Google Scholar]
  46. Acosta G. Race N. Herr S. Fernandez J. Tang J. Rogers E. Shi R. Acrolein-mediated alpha-synuclein pathology involvement in the early post-injury pathogenesis of mild blast-induced Parkinsonian neurodegeneration. Mol. Cell. Neurosci. 2019 98 140 154 10.1016/j.mcn.2019.06.004 31201929
    [Google Scholar]
  47. Wang Y.T. Lin H.C. Zhao W.Z. Huang H.J. Lo Y.L. Wang H.T. Lin A.M.Y. Acrolein acts as a neurotoxin in the nigrostriatal dopaminergic system of rat: Involvement of α-synuclein aggregation and programmed cell death. Sci. Rep. 2017 7 1 45741 10.1038/srep45741 28401906
    [Google Scholar]
  48. Dexter D.T. Carter C.J. Wells F.R. Javoy-Agid F. Agid Y. Lees A. Jenner P. Marsden C.D. Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J. Neurochem. 1989 52 2 381 389 10.1111/j.1471‑4159.1989.tb09133.x 2911023
    [Google Scholar]
  49. Jenner P. Dexter D.T. Sian J. Schapira A.H. Marsden C.D. Oxidative stress as a cause of nigral cell death in Parkinson’s disease and incidental Lewy body disease. The royal kings and queens Parkinson’s disease research group. Ann. Neurol. 1992 32 S1 S82 7 10.1002/ana.410320714
    [Google Scholar]
  50. Farooqui T. Farooqui A.A. Lipid-mediated oxidative stress and inflammation in the pathogenesis of Parkinson’s disease. Parkinsons Dis. 2011 2011 1 9 10.4061/2011/247467 21403820
    [Google Scholar]
  51. Yoritaka A. Hattori N. Uchida K. Tanaka M. Stadtman E.R. Mizuno Y. Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson disease. Proc. Natl. Acad. Sci. USA 1996 93 7 2696 2701 10.1073/pnas.93.7.2696 8610103
    [Google Scholar]
  52. Castellani R.J. Perry G. Siedlak S.L. Nunomura A. Shimohama S. Zhang J. Montine T. Sayre L.M. Smith M.A. Hydroxynonenal adducts indicate a role for lipid peroxidation in neocortical and brainstem Lewy bodies in humans. Neurosci. Lett. 2002 319 1 25 28 10.1016/S0304‑3940(01)02514‑9 11814645
    [Google Scholar]
  53. Monroy C.A. Doorn J.A. Roman D.L. Modification and functional inhibition of regulator of G-protein signaling 4 (RGS4) by 4-hydroxy-2-nonenal. Chem. Res. Toxicol. 2013 26 12 1832 1839 10.1021/tx400212q 24229325
    [Google Scholar]
  54. Shi L. Lin Y. Jiao Y. Herr S.A. Tang J. Rogers E. Chen Z. Shi R. Acrolein scavenger dimercaprol offers neuroprotection in an animal model of Parkinson’s disease: Implication of acrolein and TRPA1. Transl. Neurodegener. 2021 10 1 13 10.1186/s40035‑021‑00239‑0 33910636
    [Google Scholar]
  55. van der Burg J.M.M. Björkqvist M. Brundin P. Beyond the brain: Widespread pathology in Huntington’s disease. Lancet Neurol. 2009 8 8 765 774 10.1016/S1474‑4422(09)70178‑4 19608102
    [Google Scholar]
  56. Shafie A. Ashour A.A. Anwar S. Anjum F. Hassan M.I. Exploring molecular mechanisms, therapeutic strategies, and clinical manifestations of Huntington’s disease. Arch. Pharm. Res. 2024 47 6 571 595 10.1007/s12272‑024‑01499‑w 38764004
    [Google Scholar]
  57. Oosterloo M. Touze A. Byrne L.M. Achenbach J. Aksoy H. Coleman A. Lammert D. Nance M. Nopoulos P. Reilmann R. Saft C. Santini H. Squitieri F. Tabrizi S. Burgunder J.M. Quarrell O. Pediatric Huntington disease working group of the European Huntington disease network. Clinical review of Juvenile Huntington’s disease. J. Huntingtons Dis. 2024 10.3233/JHD‑231523 38669553
    [Google Scholar]
  58. Wells R.G. Neilson L.E. McHill A.W. Hiller A.L. Dietary fasting and time-restricted eating in Huntington’s disease: therapeutic potential and underlying mechanisms. Transl. Neurodegener. 2024 13 1 17 10.1186/s40035‑024‑00406‑z 38561866
    [Google Scholar]
  59. Brondani M. Roginski A.C. Ribeiro R.T. de Medeiros M.P. Hoffmann C.I.H. Wajner M. Leipnitz G. Seminotti B. Mitochondrial dysfunction, oxidative stress, ER stress and mitochondria-ER crosstalk alterations in a chemical rat model of Huntington’s disease: Potential benefits of bezafibrate. Toxicol. Lett. 2023 381 48 59 10.1016/j.toxlet.2023.04.011 37116597
    [Google Scholar]
  60. Hariharan A. Shetty S. Shirole T. Jagtap A.G. Potential of protease inhibitor in 3-nitropropionic acid induced Huntington’s disease like symptoms: Mitochondrial dysfunction and neurodegeneration. Neurotoxicology 2014 45 139 148 10.1016/j.neuro.2014.10.004 25445565
    [Google Scholar]
  61. Maity S. Komal P. Kumar V. Saxena A. Tungekar A. Chandrasekar V. Impact of ER stress and er-mitochondrial crosstalk in Huntington’s disease. Int. J. Mol. Sci. 2022 23 2 780 10.3390/ijms23020780 35054963
    [Google Scholar]
  62. Browne S.E. Beal M.F. Oxidative damage in Huntington’s disease pathogenesis. Antioxid. Redox Signal. 2006 8 11-12 2061 2073 10.1089/ars.2006.8.2061 17034350
    [Google Scholar]
  63. Browne S.E. Mitochondria E. Mitochondria and Huntington’s disease pathogenesis: Insight from genetic and chemical models. Ann. N. Y. Acad. Sci. 2008 1147 1 358 382 10.1196/annals.1427.018 19076457
    [Google Scholar]
  64. Romano A. Serviddio G. Calcagnini S. Villani R. Giudetti A.M. Cassano T. Gaetani S. Linking lipid peroxidation and neuropsychiatric disorders: Focus on 4-hydroxy-2-nonenal. Free Radic. Biol. Med. 2017 111 281 293 10.1016/j.freeradbiomed.2016.12.046 28063940
    [Google Scholar]
  65. Fotoohi A. Moloudi M.R. Hosseini S. Hassanzadeh K. Feligioni M. Izadpanah E. A novel pharmacological protective role for safranal in an animal model of Huntington’s disease. Neurochem. Res. 2021 46 6 1372 1379 10.1007/s11064‑021‑03271‑8 33611726
    [Google Scholar]
  66. Verma M.K. Goel R. Nandakumar K. Nemmani K.V.S. Bilateral quinolinic acid-induced lipid peroxidation, decreased striatal monoamine levels and neurobehavioral deficits are ameliorated by GIP receptor agonist D-Ala2 GIP in rat model of Huntington’s disease. Eur. J. Pharmacol. 2018 828 31 41 10.1016/j.ejphar.2018.03.034 29577894
    [Google Scholar]
  67. Johri A. Beal M.F. Antioxidants in Huntington’s disease. Biochim. Biophys. Acta Mol. Basis Dis. 2012 1822 5 664 674 10.1016/j.bbadis.2011.11.014 22138129
    [Google Scholar]
  68. Alharbi K.S. Europinidin mitigates 3-NPA-induced Huntington’s disease symptoms in rats: A comprehensive analysis of oxidative stress, mitochondrial enzyme complex activity, pro-inflammatory markers and neurotransmitter alterations. Biomedicines 2024 12 3 625 10.3390/biomedicines12030625 38540238
    [Google Scholar]
  69. D’Egidio F. Castelli V. Cimini A. d’Angelo M. Cell rearrangement and oxidant/antioxidant imbalance in Huntington’s disease. Antioxidants 2023 12 3 571 10.3390/antiox12030571 36978821
    [Google Scholar]
  70. Lee J. Kosaras B. Del Signore S.J. Cormier K. McKee A. Ratan R.R. Kowall N.W. Ryu H. Modulation of lipid peroxidation and mitochondrial function improves neuropathology in Huntington’s disease mice. Acta Neuropathol. 2011 121 4 487 498 10.1007/s00401‑010‑0788‑5 21161248
    [Google Scholar]
  71. Tang Q. Liu H. Shi X.J. Cheng Y. Blood oxidative stress marker aberrations in patients with Huntington’s disease: A meta-analysis study. Oxid. Med. Cell. Longev. 2020 2020 1 10 10.1155/2020/9187195 32963705
    [Google Scholar]
  72. Chen L. Qin Y. Guo T. Zhu W. Lin J. Xing T. Duan X. Zhang Y. Ruan E. Li X. Yin P. Li S. Li X.J. Yang S. HAP40 modulates mutant Huntingtin aggregation and toxicity in Huntington’s disease mice. Cell Death Dis. 2024 15 5 337 10.1038/s41419‑024‑06716‑4 38744826
    [Google Scholar]
  73. Saudou F. Humbert S. The biology of Huntingtin. Neuron 2016 89 5 910 926 10.1016/j.neuron.2016.02.003 26938440
    [Google Scholar]
  74. Davranche A. Aviolat H. Zeder-Lutz G. Busso D. Altschuh D. Trottier Y. Klein F.A.C. Huntingtin affinity for partners is not changed by polyglutamine length: Aggregation itself triggers aberrant interactions. Hum. Mol. Genet. 2011 20 14 2795 2806 10.1093/hmg/ddr178 21518730
    [Google Scholar]
  75. Chen Y. Al-Nusaif M. Li S. Tan X. Yang H. Cai H. Le W. Progress on early diagnosing Alzheimer’s disease. Front. Med. 2024 18 3 446 464 10.1007/s11684‑023‑1047‑1 38769282
    [Google Scholar]
  76. Hu S. Yang C. Luo H. Current trends in blood biomarker detection and imaging for Alzheimer’s disease. Biosens. Bioelectron. 2022 210 114278 10.1016/j.bios.2022.114278 35460969
    [Google Scholar]
  77. Mi J. Liu C. Chen H. Qian Y. Zhu J. Zhang Y. Liang Y. Wang L. Ta D. Light on Alzheimer’s disease: From basic insights to preclinical studies. Front. Aging Neurosci. 2024 16 1363458 10.3389/fnagi.2024.1363458 38566826
    [Google Scholar]
  78. Huang W.J. Zhang X. Chen W.W. Role of oxidative stress in Alzheimer’s disease. Biomed. Rep. 2016 4 5 519 522 10.3892/br.2016.630 27123241
    [Google Scholar]
  79. Sultana R. Ravagna A. Mohmmad-Abdul H. Calabrese V. Butterfield D.A. Ferulic acid ethyl ester protects neurons against amyloid β‐ peptide(1–42)‐induced oxidative stress and neurotoxicity: Relationship to antioxidant activity. J. Neurochem. 2005 92 4 749 758 10.1111/j.1471‑4159.2004.02899.x 15686476
    [Google Scholar]
  80. Yu N. Pasha M. Chua J.J.E. Redox changes and cellular senescence in Alzheimer’s disease. Redox Biol. 2024 70 103048 10.1016/j.redox.2024.103048 38277964
    [Google Scholar]
  81. Mark R.J. Lovell M.A. Markesbery W.R. Uchida K. Mattson M.P. A role for 4-hydroxynonenal, an aldehydic product of lipid peroxidation, in disruption of ion homeostasis and neuronal death induced by amyloid beta-peptide. J. Neurochem. 1997 68 1 255 264 10.1046/j.1471‑4159.1997.68010255.x 8978733
    [Google Scholar]
  82. Yamashima T. Ota T. Mizukoshi E. Nakamura H. Yamamoto Y. Kikuchi M. Yamashita T. Kaneko S. Intake of ω-6 polyunsaturated fatty acid-rich vegetable oils and risk of lifestyle diseases. Adv. Nutr. 2020 11 6 1489 1509 10.1093/advances/nmaa072 32623461
    [Google Scholar]
  83. Yamashima T. Seike T. Oikawa S. Kobayashi H. Kido H. Yanagi M. Yamamiya D. Li S. Boontem P. Mizukoshi E. Hsp70.1 carbonylation induces lysosomal cell death for lifestyle-related diseases. Front. Mol. Biosci. 2023 9 1063632 10.3389/fmolb.2022.1063632 36819480
    [Google Scholar]
  84. Yamashima T. Seike T. Mochly-Rosen D. Chen C.H. Kikuchi M. Mizukoshi E. Implication of the cooking oil-peroxidation product “hydroxynonenal” for Alzheimer’s disease. Front. Aging Neurosci. 2023 15 1211141 10.3389/fnagi.2023.1211141 37693644
    [Google Scholar]
  85. Reed T.T. Pierce W.M. Markesbery W.R. Butterfield D.A. Proteomic identification of HNE-bound proteins in early Alzheimer disease: Insights into the role of lipid peroxidation in the progression of AD. Brain Res. 2009 1274 66 76 10.1016/j.brainres.2009.04.009 19374891
    [Google Scholar]
  86. Williams T.I. Lynn B.C. Markesbery W.R. Lovell M.A. Increased levels of 4-hydroxynonenal and acrolein, neurotoxic markers of lipid peroxidation, in the brain in mild cognitive impairment and early Alzheimer’s disease. Neurobiol. Aging 2006 27 8 1094 1099 10.1016/j.neurobiolaging.2005.06.004 15993986
    [Google Scholar]
  87. Singh M. Nam D.T. Arseneault M. Ramassamy C. Role of by-products of lipid oxidation in Alzheimer’s disease brain: A focus on acrolein. J. Alzheimers Dis. 2010 21 3 741 756 10.3233/JAD‑2010‑100405 20634576
    [Google Scholar]
  88. Butterfield D.A. Sultana R. Methionine-35 of aβ(1-42): Importance for oxidative stress in Alzheimer disease. J. Amino Acids 2011 2011 1 10 10.4061/2011/198430 22312456
    [Google Scholar]
  89. Boonpraman N. Yi S.S. NADPH oxidase 4 (NOX4) as a biomarker and therapeutic target in neurodegenerative diseases. Neural Regen. Res. 2024 19 9 1961 1966 10.4103/1673‑5374.390973 38227522
    [Google Scholar]
  90. Boonpraman N. Yoon S. Kim C.Y. Moon J.S. Yi S.S. NOX4 as a critical effector mediating neuroinflammatory cytokines, myeloperoxidase and osteopontin, specifically in astrocytes in the hippocampus in Parkinson’s disease. Redox Biol. 2023 62 102698 10.1016/j.redox.2023.102698 37058998
    [Google Scholar]
  91. Luengo E. Trigo-Alonso P. Fernández-Mendívil C. Nuñez Á. Campo M. Porrero C. García-Magro N. Negredo P. Senar S. Sánchez-Ramos C. Bernal J.A. Rábano A. Hoozemans J. Casas A.I. Schmidt H.H.H.W. López M.G. Implication of type 4 NADPH oxidase (NOX4) in tauopathy. Redox Biol. 2022 49 102210 10.1016/j.redox.2021.102210 34922273
    [Google Scholar]
  92. Park M.W. Cha H.W. Kim J. Kim J.H. Yang H. Yoon S. Boonpraman N. Yi S.S. Yoo I.D. Moon J.S. NOX4 promotes ferroptosis of astrocytes by oxidative stress-induced lipid peroxidation via the impairment of mitochondrial metabolism in Alzheimer’s diseases. Redox Biol. 2021 41 101947 10.1016/j.redox.2021.101947 33774476
    [Google Scholar]
  93. Renuka Sanotra M. Huang W.C. Silver S. Lin C.Y. Chang T.C. Nguyen D.P.Q. Lee C.K. Kao S.H. Chang-Cheng Shieh J. Lin Y.F. Serum levels of 4-hydroxynonenal adducts and responding autoantibodies correlate with the pathogenesis from hyperglycemia to Alzheimer’s disease. Clin. Biochem. 2022 101 26 34 10.1016/j.clinbiochem.2021.12.005 34933007
    [Google Scholar]
  94. Sanotra M.R. Kao S.H. Lee C.K. Hsu C.H. Huang W.C. Chang T.C. Tu F.Y. Hsu I.U. Lin Y.F. Acrolein adducts and responding autoantibodies correlate with metabolic disturbance in Alzheimer’s disease. Alzheimers Res. Ther. 2023 15 1 115 10.1186/s13195‑023‑01261‑2 37349844
    [Google Scholar]
  95. Fukuda M. Kanou F. Shimada N. Sawabe M. Saito Y. Murayama S. Hashimoto M. Maruyama N. Ishigami A. Elevated levels of 4-hydroxynonenal-histidine Michael adduct in the hippocampi of patients with Alzheimer’s disease. Biomed. Res. 2009 30 4 227 233 10.2220/biomedres.30.227 19729853
    [Google Scholar]
  96. Wei Y. Zhong S. Yang H. Wang X. Lv B. Bian Y. Pei Y. Xu C. Zhao Q. Wu Y. Luo D. Wang F. Sun H. Chen Y. Current therapy in amyotrophic lateral sclerosis (ALS): A review on past and future therapeutic strategies. Eur. J. Med. Chem. 2024 272 116496 10.1016/j.ejmech.2024.116496 38759454
    [Google Scholar]
  97. Genge A. Wainwright S. Vande Velde C. Amyotrophic lateral sclerosis: Exploring pathophysiology in the context of treatment. Amyotroph. Lateral Scler. Frontotemporal Degener. 2024 25 3-4 225 236 10.1080/21678421.2023.2278503 38001557
    [Google Scholar]
  98. Hemerková P. Vališ M. Role of oxidative stress in the pathogenesis of amyotrophic lateral sclerosis: Antioxidant metalloenzymes and therapeutic strategies. Biomolecules 2021 11 3 437 10.3390/biom11030437 33809730
    [Google Scholar]
  99. Wang X.X. Chen W.Z. Li C. Xu R.S. Current potential pathogenic mechanisms of copper-zinc superoxide dismutase 1 (SOD1) in amyotrophic lateral sclerosis. Rev. Neurosci. 2024 35 5 549 563 10.1515/revneuro‑2024‑0010 38381656
    [Google Scholar]
  100. Barber S.C. Shaw P.J. Oxidative stress in ALS: Key role in motor neuron injury and therapeutic target. Free Radic. Biol. Med. 2010 48 5 629 641 10.1016/j.freeradbiomed.2009.11.018 19969067
    [Google Scholar]
  101. Carrera-Juliá S. Moreno M.L. Barrios C. de la Rubia Ortí J.E. Drehmer E. Antioxidant alternatives in the treatment of amyotrophic lateral sclerosis: A comprehensive review. Front. Physiol. 2020 11 63 10.3389/fphys.2020.00063 32116773
    [Google Scholar]
  102. Carrera-Juliá S. Estrela J.M. Zacarés M. Navarro M.Á. Vega-Bello M.J. de la Rubia Ortí J.E. Moreno M.L. Drehmer E. Effect of the Mediterranean diet supplemented with nicotinamide riboside and pterostilbene and/or coconut oil on anthropometric variables in amyotrophic lateral sclerosis. A pilot study. Front. Nutr. 2023 10 1232184 10.3389/fnut.2023.1232184 37810917
    [Google Scholar]
  103. Carrera-Juliá S. Estrela J.M. Zacarés M. Navarro M.Á. Vega-Bello M.J. de la Rubia Ortí J.E. Moreno M.L. Drehmer E. Nutritional, clinical and sociodemographic profiles of spanish patients with amyotrophic lateral sclerosis. Nutrients 2024 16 3 350 10.3390/nu16030350 38337635
    [Google Scholar]
  104. Shichiri M. The role of lipid peroxidation in neurological disorders. J. Clin. Biochem. Nutr. 2014 54 3 151 160 10.3164/jcbn.14‑10 24895477
    [Google Scholar]
  105. Schmitt F. Hussain G. Dupuis L. Loeffler J.P. Henriques A. A plural role for lipids in motor neuron diseases: energy, signaling and structure. Front. Cell. Neurosci. 2014 8 25 10.3389/fncel.2014.00025 24600344
    [Google Scholar]
  106. Pedersen W.A. Fu W. Keller J.N. Markesbery W.R. Appel S. Smith R.G. Kasarskis E. Mattson M.P. Protein modification by the lipid peroxidation product 4‐hydroxynonenal in the spinal cords of amyotrophic lateral sclerosis patients. Ann. Neurol. 1998 44 5 819 824 10.1002/ana.410440518 9818940
    [Google Scholar]
  107. Perluigi M. Fai Poon H. Hensley K. Pierce W.M. Klein J.B. Calabrese V. De Marco C. Butterfield D.A. Proteomic analysis of 4-hydroxy-2-nonenal-modified proteins in G93A-SOD1 transgenic mice-A model of familial amyotrophic lateral sclerosis. Free Radic. Biol. Med. 2005 38 7 960 968 10.1016/j.freeradbiomed.2004.12.021 15749392
    [Google Scholar]
  108. Smith R.G. Henry Y.K. Mattson M.P. Appel S.H. Presence of 4‐hydroxynonenal in cerebrospinal fluid of patients with sporadic amyotrophic lateral sclerosis. Ann. Neurol. 1998 44 4 696 699 10.1002/ana.410440419 9778272
    [Google Scholar]
  109. Chaves-Filho A.B. Pinto I.F.D. Dantas L.S. Xavier A.M. Inague A. Faria R.L. Medeiros M.H.G. Glezer I. Yoshinaga M.Y. Miyamoto S. Alterations in lipid metabolism of spinal cord linked to amyotrophic lateral sclerosis. Sci. Rep. 2019 9 1 11642 10.1038/s41598‑019‑48059‑7 31406145
    [Google Scholar]
  110. Zhai J. Ström A.L. Kilty R. Venkatakrishnan P. White J. Everson W.V. Smart E.J. Zhu H. Proteomic characterization of lipid raft proteins in amyotrophic lateral sclerosis mouse spinal cord. FEBS J. 2009 276 12 3308 3323 10.1111/j.1742‑4658.2009.07057.x 19438725
    [Google Scholar]
  111. FernÁndez-Eulate FernÁndez-Eulate, G.; Ruiz-Sanz, J.I.; Riancho, J.; ZufirÍa, M.; GereÑu, G.; FernÁndez-TorrÓn, R.; Poza-Aldea, J.J.; Ondaro, J.; Espinal, J.B.; GonzÁlez-ChinchÓn, G.; Zulaica, M.; Ruiz-Larrea, M.B.; LÓpez De Munain, A.; Gil-Bea, F.J. A comprehensive serum lipidome profiling of amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Frontotemporal Degener. 2020 21 3-4 252 262 10.1080/21678421.2020.1730904 32106710
    [Google Scholar]
  112. Phan K. He Y. Bhatia S. Pickford R. McDonald G. Mazumder S. Timmins H.C. Hodges J.R. Piguet O. Dzamko N. Halliday G.M. Kiernan M.C. Kim W.S. Multiple pathways of lipid dysregulation in amyotrophic lateral sclerosis. Brain Commun. 2022 5 1 fcac340 10.1093/braincomms/fcac340 36632187
    [Google Scholar]
  113. Ashizawa T. Xia G. Ataxia. Continuum (Minneap. Minn.) 2016 22 4 1208 1226 10.1212/CON.0000000000000362 27495205
    [Google Scholar]
  114. Pandolfo M. Manto M. Cerebellar and afferent ataxias. Continuum (Minneap. Minn.) 2013 19 1312 1343 10.1212/01.CON.0000436158.39285.22 24092292
    [Google Scholar]
  115. Manto M. Marmolino D. Cerebellar ataxias. Curr. Opin. Neurol. 2009 22 4 419 429 10.1097/WCO.0b013e32832b9897 19421057
    [Google Scholar]
  116. Rudaks L.I. Yeow D. Ng K. Deveson I.W. Kennerson M.L. Kumar K.R. An update on the adult-onset hereditary cerebellar ataxias: Novel genetic causes and new diagnostic approaches. Cerebellum 2024 10.1007/s12311‑024‑01703‑z 38760634
    [Google Scholar]
  117. Eisel M.L.S. Burns M. Ashizawa T. Byrne B. Corti M. Subramony S.H. Emerging therapies in hereditary ataxias. Trends Mol. Med. 2024 10.1016/j.molmed.2024.07.008
    [Google Scholar]
  118. Soto-Piña A.E. Pulido-Alvarado C.C. Dulski J. Wszolek Z.K. Magaña J.J. Specific biomarkers in spinocerebellar ataxia type 3: A systematic review of their potential uses in disease staging and treatment assessment. Int. J. Mol. Sci. 2024 25 15 8074 10.3390/ijms25158074
    [Google Scholar]
  119. Pandolfo M. Friedreich ataxia: The clinical picture. J. Neurol. 2009 256 S1 3 8 10.1007/s00415‑009‑1002‑3 19283344
    [Google Scholar]
  120. Alqurashi R.M. Aladwani A. Alosaimi T.H. Yousef D.B. Alkhaldi M.H. Amer M.G. Awareness of the effect of vitamin B12 deficiency on the nervous system among the general population in Taif, Saudi Arabia. Cureus 2023 15 11 e49343 10.7759/cureus.49343 38143656
    [Google Scholar]
  121. Omura Y. Ota K. Takasu A. Suzuki T. Vitamin B1 deficiency identified from incidental detection of Hyperlactatemia: A case report. Medicina (Kaunas) 2024 60 5 715 10.3390/medicina60050715 38792898
    [Google Scholar]
  122. Lee J.H. Targeting the ATM pathway in cancer: Opportunities, challenges and personalized therapeutic strategies. Cancer Treat. Rev. 2024 129 102808 10.1016/j.ctrv.2024.102808 39106770
    [Google Scholar]
  123. Varadhan V. Manikandan M.S. Nagarajan A. Palaniyandi T. Ravi M. Sankareswaran S.K. Baskar G. Wahab M.R.A. Surendran H. Ataxia-Telangiectasia Mutated (ATM) gene signaling pathways in human cancers and their therapeutic implications. Pathol. Res. Pract. 2024 260 155447 10.1016/j.prp.2024.155447 38981349
    [Google Scholar]
  124. Lee J.H. Oxidative stress and the multifaceted roles of ATM in maintaining cellular redox homeostasis. Redox Biol. 2024 75 103269 10.1016/j.redox.2024.103269 39018798
    [Google Scholar]
  125. Lee J.H. Paull T.T. Mitochondria at the crossroads of ATM-mediated stress signaling and regulation of reactive oxygen species. Redox Biol. 2020 32 101511 10.1016/j.redox.2020.101511 32244177
    [Google Scholar]
  126. Leeson H.C. Aguado J. Gómez-Inclán C. Chaggar H.K. Fard A.T. Hunter Z. Lavin M.F. Mackay-Sim A. Wolvetang E.J. Ataxia telangiectasia patient-derived neuronal and brain organoid models reveal mitochondrial dysfunction and oxidative stress. Neurobiol. Dis. 2024 199 106562 10.1016/j.nbd.2024.106562 38876322
    [Google Scholar]
  127. Sanz-Alcázar A. Britti E. Delaspre F. Medina-Carbonero M. Pazos-Gil M. Tamarit J. Ros J. Cabiscol E. Mitochondrial impairment, decreased sirtuin activity and protein acetylation in dorsal root ganglia in Friedreich Ataxia models. Cell. Mol. Life Sci. 2024 81 1 12 10.1007/s00018‑023‑05064‑4 38129330
    [Google Scholar]
  128. Lynch D.R. Mathews K.D. Perlman S. Zesiewicz T. Subramony S. Omidvar O. Vogel A.P. Krtolica A. Litterman N. van der Ploeg L. Heerinckx F. Milner P. Midei M. Double blind trial of a deuterated form of linoleic acid (RT001) in Friedreich ataxia. J. Neurol. 2023 270 3 1615 1623 10.1007/s00415‑022‑11501‑4 36462055
    [Google Scholar]
  129. La Rosa P. Petrillo S. Turchi R. Berardinelli F. Schirinzi T. Vasco G. Lettieri-Barbato D. Fiorenza M.T. Bertini E.S. Aquilano K. Piemonte F. The Nrf2 induction prevents ferroptosis in Friedreich’s Ataxia. Redox Biol. 2021 38 101791 10.1016/j.redox.2020.101791 33197769
    [Google Scholar]
  130. Abeti R. Parkinson M.H. Hargreaves I.P. Angelova P.R. Sandi C. Pook M.A. Giunti P. Abramov A.Y. Mitochondrial energy imbalance and lipid peroxidation cause cell death in Friedreich’s ataxia. Cell Death Dis. 2016 7 5 e2237 10.1038/cddis.2016.111 27228352
    [Google Scholar]
  131. Abeti R. Uzun E. Renganathan I. Honda T. Pook M.A. Giunti P. Targeting lipid peroxidation and mitochondrial imbalance in Friedreich’s ataxia. Pharmacol. Res. 2015 99 344 350 10.1016/j.phrs.2015.05.015 26141703
    [Google Scholar]
  132. Barrera G. Pizzimenti S. Daga M. Dianzani C. Arcaro A. Cetrangolo G.P. Giordano G. Cucci M.A. Graf M. Gentile F. Lipid peroxidation-derived aldehydes, 4-hydroxynonenal and malondialdehyde in aging-related disorders. Antioxidants 2018 7 8 102 10.3390/antiox7080102 30061536
    [Google Scholar]
  133. Leung T.C.S. Fields E. Rana N. Shen R.Y.L. Bernstein A.E. Cook A.A. Phillips D.E. Watt A.J. Mitochondrial damage and impaired mitophagy contribute to disease progression in SCA6. Acta Neuropathol. 2024 147 1 26 10.1007/s00401‑023‑02680‑z 38286873
    [Google Scholar]
  134. Chen C. Merrill R.A. Jong C.J. Strack S. Driving mitochondrial fission improves cognitive, but not motor deficits in a mouse model of ataxia of charlevoix-saguenay. Cerebellum 2024 10.1007/s12311‑024‑01701‑1 38735882
    [Google Scholar]
  135. Chaudhary P. Sharma R. Sahu M. Vishwanatha J.K. Awasthi S. Awasthi Y.C. 4-Hydroxynonenal induces G2/M phase cell cycle arrest by activation of the ataxia telangiectasia mutated and Rad3-related protein (ATR)/checkpoint kinase 1 (Chk1) signaling pathway. J. Biol. Chem. 2013 288 28 20532 20546 10.1074/jbc.M113.467662 23733185
    [Google Scholar]
  136. Blignaut M. Harries S. Lochner A. Huisamen B. Ataxia telangiectasia mutated protein kinase: A potential master puppeteer of oxidative stress-induced metabolic recycling. Oxid Med Cell Long 2021 1 12 10.1155/2021/8850708
    [Google Scholar]
  137. Maciejczyk M. Heropolitanska-Pliszka E. Pietrucha B. Sawicka-Powierza J. Bernatowska E. Wolska-Kusnierz B. Pac M. Car H. Zalewska A. Mikoluc B. Antioxidant defense, redox homeostasis, and oxidative damage in children with Ataxia telangiectasia and Nijmegen breakage syndrome. Front. Immunol. 2019 10 2322 10.3389/fimmu.2019.02322 31611883
    [Google Scholar]
  138. Andrade I.G.A. Suano-Souza F.I. Fonseca F.L.A. Lago C.S.A. Sarni R.O.S. Selenium levels and glutathione peroxidase activity in patients with ataxia-telangiectasia: Association with oxidative stress and lipid status biomarkers. Orphanet J. Rare Dis. 2021 16 1 83 10.1186/s13023‑021‑01732‑5 33579341
    [Google Scholar]
  139. Zhang S. Eitan E. Wu T.Y. Mattson M.P. Intercellular transfer of pathogenic α-synuclein by extracellular vesicles is induced by the lipid peroxidation product 4-hydroxynonenal. Neurobiol. Aging 2018 61 52 65 10.1016/j.neurobiolaging.2017.09.016 29035751
    [Google Scholar]
  140. Bae E.J. Ho D.H. Park E. Jung J.W. Cho K. Hong J.H. Lee H.J. Kim K.P. Lee S.J. Lipid peroxidation product 4-hydroxy-2-nonenal promotes seeding-capable oligomer formation and cell-to-cell transfer of α-synuclein. Antioxid. Redox Signal. 2013 18 7 770 783 10.1089/ars.2011.4429 22867050
    [Google Scholar]
  141. Qin Z. Hu D. Han S. Reaney S.H. Di Monte D.A. Fink A.L. Effect of 4-hydroxy-2-nonenal modification on alpha-synuclein aggregation. J Biol Chem 2007 282 8 5862 70 10.1074/jbc.M608126200
    [Google Scholar]
  142. Deas E. Cremades N. Angelova P.R. Ludtmann M.H.R. Yao Z. Chen S. Horrocks M.H. Banushi B. Little D. Devine M.J. Gissen P. Klenerman D. Dobson C.M. Wood N.W. Gandhi S. Abramov A.Y. Alpha-synuclein oligomers interact with metal ions to induce oxidative stress and neuronal death in Parkinson’s disease. Antioxid. Redox Signal. 2016 24 7 376 391 10.1089/ars.2015.6343 26564470
    [Google Scholar]
  143. Tabner B.J. Turnbull S. El-Agnaf O. Allsop D. Production of reactive oxygen species from aggregating proteins implicated in Alzheimer’s disease, Parkinson’s disease and other neurodegenerative diseases. Curr. Top. Med. Chem. 2001 1 6 507 517 10.2174/1568026013394822 11895127
    [Google Scholar]
  144. Di Maio R. Barrett P.J. Hoffman E.K. Barrett C.W. Zharikov A. Borah A. Hu X. McCoy J. Chu C.T. Burton E.A. Hastings T.G. Greenamyre J.T. α-synuclein binds to TOM20 and inhibits mitochondrial protein import in Parkinson’s disease. Sci. Transl. Med. 2016 8 342 342ra78 10.1126/scitranslmed.aaf3634 27280685
    [Google Scholar]
  145. Rani P. Krishnan S. Rani Cathrine C. Study on analysis of peripheral biomarkers for Alzheimer’s disease diagnosis. Front. Neurol. 2017 8 328 10.3389/fneur.2017.00328 28769864
    [Google Scholar]
  146. Markesbery W.R. Lovell M.A. Four-hydroxynonenal, a product of lipid peroxidation, is increased in the brain in Alzheimer’s disease. Neurobiol. Aging 1998 19 1 33 36 10.1016/S0197‑4580(98)00009‑8 9562500
    [Google Scholar]
  147. Edzeamey F.J. Ramchunder Z. Pourzand C. Anjomani Virmouni S. Emerging antioxidant therapies in Friedreich’s ataxia. Front. Pharmacol. 2024 15 1359618 10.3389/fphar.2024.1359618 38379897
    [Google Scholar]
  148. Lana J.V. Rios A. Takeyama R. Santos N. Pires L. Santos G.S. Rodrigues I.J. Jeyaraman M. Purita J. Lana J.F. Nebulized glutathione as a key antioxidant for the treatment of oxidative stress in neurodegenerative conditions. Nutrients 2024 16 15 2476 10.3390/nu16152476 39125356
    [Google Scholar]
  149. Upadhayay S. Kumar P. Mitochondrial targeted antioxidants as potential therapy for Huntington’s disease. Pharmacol. Rep. 2024 76 4 693 713 10.1007/s43440‑024‑00619‑z 38982016
    [Google Scholar]
  150. Pei J. Palanisamy C.P. Natarajan P.M. Umapathy V.R. Roy J.R. Srinivasan G.P. Panagal M. Jayaraman S. Curcumin-loaded polymeric nanomaterials as a novel therapeutic strategy for Alzheimer’s disease: A comprehensive review. Ageing Res. Rev. 2024 99 102393 10.1016/j.arr.2024.102393 38925479
    [Google Scholar]
  151. Shea M.K. Xuan A.Y. Booth S.L. Vitamin D. Vitamin D. Alzheimer’s disease and related dementia. Adv. Food Nutr. Res. 2024 109 185 219 10.1016/bs.afnr.2023.12.003 38777413
    [Google Scholar]
  152. Kumar R.R. Singh L. Thakur A. Singh S. Kumar B. Role of vitamins in neurodegenerative diseases: A review. CNS Neurol. Disord. Drug Targets 2022 21 9 766 773 10.2174/1871527320666211119122150 34802410
    [Google Scholar]
  153. Icer M.A. Arslan N. Gezmen-Karadag M. Effects of vitamin E on neurodegenerative diseases: An update. Acta Neurobiol. Exp. (Warsz.) 2021 81 1 21 33 10.21307/ane‑2021‑003 33949169
    [Google Scholar]
  154. Martinelli C. Pucci C. Battaglini M. Marino A. Ciofani G. Antioxidants and nanotechnology: Promises and limits of potentially disruptive approaches in the treatment of central nervous system diseases. Adv. Healthc. Mater. 2020 9 3 1901589 10.1002/adhm.201901589 31854132
    [Google Scholar]
/content/journals/cn/10.2174/011570159X342720241014164650
Loading
/content/journals/cn/10.2174/011570159X342720241014164650
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test