Skip to content
2000
Volume 23, Issue 6
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and amyotrophic lateral sclerosis cause damage and gradual loss of neurons affecting the central nervous system. Neurodegenerative diseases are most commonly seen in the ageing process. Ageing causes increased reactive oxygen species and decreased mitochondrial ATP generation, resulting in redox imbalance and oxidative stress. Oxidative stress-generated free radicals cause damage to membrane lipids containing polyunsaturated fatty acids, leading to the formation of toxic lipid aldehyde products such as 4-hydroxynonenal and malondialdehyde. Several studies have shown that lipid peroxidation-derived aldehyde products form adducts with cellular proteins, altering their structure and function. Thus, these lipid aldehydes could act as secondary signaling intermediates, modifying important metabolic pathways, and contributing to the pathophysiology of several human diseases, including neurodegenerative disorders. Additionally, they could serve as biomarkers for disease progression. This narrative review article discusses the biological and clinical significance of oxidative stress-mediated lipid peroxidation-derived lipid aldehydes in the pathophysiology of various neurodegenerative diseases.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X342720241014164650
2024-10-21
2025-04-23
Loading full text...

Full text loading...

References

  1. AdamuA. LiS. GaoF. XueG. The role of neuroinflammation in neurodegenerative diseases: Current understanding and future therapeutic targets.Front. Aging Neurosci.202416134798710.3389/fnagi.2024.1347987 38681666
    [Google Scholar]
  2. LampteyR.N.L. ChaulagainB. TrivediR. GothwalA. LayekB. SinghJ. A review of the common neurodegenerative disorders: Current therapeutic approaches and the potential role of nanotherapeutics.Int. J. Mol. Sci.2022233185110.3390/ijms23031851 35163773
    [Google Scholar]
  3. WilsonD.M.III CooksonM.R. Van Den BoschL. ZetterbergH. HoltzmanD.M. DewachterI. Hallmarks of neurodegenerative diseases.Cell2023186469371410.1016/j.cell.2022.12.032 36803602
    [Google Scholar]
  4. Van SchependomJ. D’haeseleerM. Advances in neurodegenerative diseases.J. Clin. Med.2023125170910.3390/jcm12051709 36902495
    [Google Scholar]
  5. CheslowL. SnookA.E. WaldmanS.A. Biomarkers for managing neurodegenerative diseases.Biomolecules202414439810.3390/biom14040398 38672416
    [Google Scholar]
  6. Chand DakalT. ChoudharyK. TiwariI. YadavV. Kumar MauryaP. SharmaN.K. Unraveling the triad: Hypoxia, oxidative stress and inflammation in neurodegenerative disorders.Neuroscience202455212614110.1016/j.neuroscience.2024.06.021 38936458
    [Google Scholar]
  7. OlufunmilayoE.O. Gerke-DuncanM.B. HolsingerR.M.D. Oxidative stress and antioxidants in neurodegenerative disorders.Antioxidants202312251710.3390/antiox12020517 36830075
    [Google Scholar]
  8. LiJ.O.W. LiW. JiangZ.G. GhanbariH. Oxidative stress and neurodegenerative disorders.Int. J. Mol. Sci.20131412244382447510.3390/ijms141224438 24351827
    [Google Scholar]
  9. ButterfieldD.A. Boyd-KimballD. Redox proteomics and amyloid β-peptide: Insights into Alzheimer disease.J. Neurochem.2019151445948710.1111/jnc.14589
    [Google Scholar]
  10. ButterfieldD.A. PerluigiM. Redox proteomics: A key tool for new insights into protein modification with relevance to disease.Antioxid. Redox Signal.201726727727910.1089/ars.2016.6919 27835924
    [Google Scholar]
  11. SonowalH. RamanaK.V. 4-hydroxy-trans-2-nonenal in the regulation of anti-oxidative and pro-inflammatory signaling pathways.Oxid. Med. Cell. Longev.2019201911710.1155/2019/5937326 31781341
    [Google Scholar]
  12. ShoebM. AnsariN. SrivastavaS. RamanaK. 4-hydroxynonenal in the pathogenesis and progression of human diseases.Curr. Med. Chem.201321223023710.2174/09298673113209990181 23848536
    [Google Scholar]
  13. LiY. ZhaoT. LiJ. XiaM. LiY. WangX. LiuC. ZhengT. ChenR. KanD. XieY. SongJ. FengY. YuT. SunP. Oxidative stress and 4-hydroxy-2-nonenal (4-HNE): Implications in the pathogenesis and treatment of aging-related diseases.J. Immunol. Res.2022202211210.1155/2022/2233906 35411309
    [Google Scholar]
  14. ButterfieldD.A. MattsonM.P. Apolipoprotein E and oxidative stress in brain with relevance to Alzheimer’s disease.Neurobiol. Dis.202013810479510.1016/j.nbd.2020.104795 32036033
    [Google Scholar]
  15. SpickettC.M. PittA.R. Modification of proteins by reactive lipid oxidation products and biochemical effects of lipoxidation.Essays Biochem.2020641193110.1042/EBC20190058 31867621
    [Google Scholar]
  16. CioffiF. AdamR.H.I. BansalR. BroersenK. A review of oxidative stress products and related genes in early Alzheimer’s disease.J. Alzheimers Dis.2021833977100110.3233/JAD‑210497 34420962
    [Google Scholar]
  17. AbeerM.I. AbdulhasanA. HaguarZ. NarayanaswamiV. Isoform-specific modification of apolipoprotein E by 4-hydroxynonenal: Protective role of apolipoprotein E3 against oxidative species.FEBS J.2023290113006302510.1111/febs.16729 36661393
    [Google Scholar]
  18. JaganjacM. MilkovicL. GegotekA. CindricM. ZarkovicK. SkrzydlewskaE. ZarkovicN. The relevance of pathophysiological alterations in redox signaling of 4-hydroxynonenal for pharmacological therapies of major stress-associated diseases.Free Radic. Biol. Med.202015712815310.1016/j.freeradbiomed.2019.11.023 31756524
    [Google Scholar]
  19. ArnettD. QuillinA. GeldenhuysW.J. MenzeM.A. KonkleM. 4-hydroxynonenal and 4-oxononenal differentially bind to the redox sensor MitoNEET.Chem. Res. Toxicol.201932697798110.1021/acs.chemrestox.9b00166 31117349
    [Google Scholar]
  20. KabutaC. KonoK. WadaK. KabutaT. 4-hydroxynonenal induces persistent insolubilization of TDP-43 and alters its intracellular localization.Biochem. Biophys. Res. Commun.20154631-2828710.1016/j.bbrc.2015.05.027 25998392
    [Google Scholar]
  21. DisatnikM.H. JoshiA.U. SawN.L. ShamlooM. LeavittB.R. QiX. Mochly-RosenD. Potential biomarkers to follow the progression and treatment response of Huntington’s disease.J. Exp. Med.2016213122655266910.1084/jem.20160776 27821553
    [Google Scholar]
  22. AyalaA. MuñozM.F. ArgüellesS. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal.Oxid. Med. Cell. Longev.2014201413110.1155/2014/360438 24999379
    [Google Scholar]
  23. ZarkovicK. JakovcevicA. ZarkovicN. Contribution of the HNE-immunohistochemistry to modern pathological concepts of major human diseases.Free Radic. Biol. Med.201711111012610.1016/j.freeradbiomed.2016.12.009 27993730
    [Google Scholar]
  24. ZhangH. FormanH.J. 4-hydroxynonenal-mediated signaling and aging.Free Radic. Biol. Med.201711121922510.1016/j.freeradbiomed.2016.11.032 27876535
    [Google Scholar]
  25. AdibhatlaR.M. HatcherJ.F. Altered lipid metabolism in brain injury and disorders.Subcell. Biochem.20084924126810.1007/978‑1‑4020‑8831‑5_9 18751914
    [Google Scholar]
  26. Di DomenicoF. TramutolaA. ButterfieldD.A. Role of 4-hydroxy-2-nonenal (HNE) in the pathogenesis of Alzheimer disease and other selected age-related neurodegenerative disorders.Free Radic. Biol. Med.201711125326110.1016/j.freeradbiomed.2016.10.490 27789292
    [Google Scholar]
  27. SultanaR. PerluigiM. ButterfieldD.A. Lipid peroxidation triggers neurodegeneration: A redox proteomics view into the Alzheimer disease brain.Free Radic. Biol. Med.20136215716910.1016/j.freeradbiomed.2012.09.027 23044265
    [Google Scholar]
  28. ŽarkovićN. GęgotekA. ŁuczajW. JaganjacM. ŠunjićS.B. ŽarkovićK. SkrzydlewskaE. Overview of the lipid peroxidation measurements in patients by the enzyme-linked immunosorbent assay specific for the 4-hydroxynonenal-protein adducts (4-HNE-ELISA). Front. Biosci. . (Landmark Ed), 202429415310.31083/j.fbl2904153
    [Google Scholar]
  29. BarreraG. PizzimentiS. CiamporceroE.S. DagaM. UllioC. ArcaroA. CetrangoloG.P. FerrettiC. DianzaniC. LeporeA. GentileF. Role of 4-hydroxynonenal-protein adducts in human diseases.Antioxid. Redox Signal.201522181681170210.1089/ars.2014.6166 25365742
    [Google Scholar]
  30. MilkovicL. ZarkovicN. MarusicZ. ZarkovicK. JaganjacM. The 4-hydroxynonenal-protein adducts and their biological relevance: Are some proteins preferred targets?Antioxidants202312485610.3390/antiox12040856 37107229
    [Google Scholar]
  31. CamporezD. BelcavelloL. AlmeidaJ.F.F. Silva-SenaG.G. PimassoniL.H.S. MorelatoR.L. do Carmo Pimentel BatitucciM. de PaulaF. Positive association of a Sirt1 variant and parameters of oxidative stress on Alzheimer’s disease.Neurol. Sci.20214251843185110.1007/s10072‑020‑04704‑y 32926246
    [Google Scholar]
  32. DelizJ.R. TannerC.M. Gonzalez-LatapiP. Epidemiology of Parkinson’s disease: An update.Curr. Neurol. Neurosci. Rep.202424616317910.1007/s11910‑024‑01339‑w 38642225
    [Google Scholar]
  33. PostumaR.B. BergD. SternM. PoeweW. OlanowC.W. OertelW. ObesoJ. MarekK. LitvanI. LangA.E. HallidayG. GoetzC.G. GasserT. DuboisB. ChanP. BloemB.R. AdlerC.H. DeuschlG. MDS clinical diagnostic criteria for Parkinson’s disease.Mov. Disord.201530121591160110.1002/mds.26424 26474316
    [Google Scholar]
  34. NabizadehF. SeyedmirzaeiH. RafieiN. Maryam VafaeiS. ShekouhD. MehrtabarE. MirzaaghazadehE. MirzaasgariZ. Global prevalence and incidence of young onset Parkinson’s disease: A systematic review and meta-analysis.J. Clin. Neurosci.2024125596710.1016/j.jocn.2024.05.015 38754241
    [Google Scholar]
  35. CaiP. WangJ. XuJ. ZhangM. YinX. HeS. ZhuangJ. V-set and immunoglobulin domain containing 4 inhibits oxidative stress, mitochondrial dysfunction, and inflammation to attenuate Parkinson’s disease progression by activating the JAK2/STAT3 pathway.J. Neuroimmunol.202439157834510.1016/j.jneuroim.2024.578345
    [Google Scholar]
  36. PfeiferG.P. DNA damage and Parkinson’s disease.Int. J. Mol. Sci.2024258418710.3390/ijms25084187 38673772
    [Google Scholar]
  37. SadeghianZ. Eyvari-BrooshghalanS. SabahiM. NourouziN. HaddadiR. Post treatment with Gastrodin suppresses oxidative stress and attenuates motor disorders following 6-OHDA induced Parkinson disease.Neurosci. Lett.202279013688410.1016/j.neulet.2022.136884 36162540
    [Google Scholar]
  38. ZhangJ. PerryG. SmithM.A. RobertsonD. OlsonS.J. GrahamD.G. MontineT.J. Parkinson’s disease is associated with oxidative damage to cytoplasmic DNA and RNA in substantia nigra neurons.Am. J. Pathol.199915451423142910.1016/S0002‑9440(10)65396‑5 10329595
    [Google Scholar]
  39. ShuklaD. GoelA. MandalP.K. JoonS. PunjabiK. AroraY. KumarR. MehtaV.S. SinghP. MaroonJ.C. BansalR. SandalK. RoyR.G. SamkariaA. SharmaS. SandhilyaS. GaurS. ParvathiS. JoshiM. Glutathione depletion and concomitant elevation of susceptibility in patients with Parkinson’s Disease: State-of-the-art MR spectroscopy and neuropsychological study.ACS Chem. Neurosci.202314244383439410.1021/acschemneuro.3c00717 38050970
    [Google Scholar]
  40. BharathS. HsuM. KaurD. RajagopalanS. AndersenJ.K. Glutathione, iron and Parkinson’s disease.Biochem. Pharmacol.2002645-61037104810.1016/S0006‑2952(02)01174‑7 12213603
    [Google Scholar]
  41. WangT. LiuW. ZhangQ. JiaoJ. WangZ. GaoG. YangH. 4-oxo-2-nonenal- and agitation-induced aggregates of α-synuclein and phosphorylated α-synuclein with distinct biophysical properties and biomedical applications.Cells202413973910.3390/cells13090739 38727274
    [Google Scholar]
  42. LinX.M. PanM.H. SunJ. WangM. HuangZ.H. WangG. WangR. GongH.B. HuangR.T. HuangF. SunW.Y. LiuH.Z. KuriharaH. LiY.F. DuanW.J. HeR.R. Membrane phospholipid peroxidation promotes loss of dopaminergic neurons in psychological stress‐induced Parkinson’s disease susceptibility.Aging Cell20232210e1397010.1111/acel.13970 37622525
    [Google Scholar]
  43. CaiY. LendelC. ÖsterlundL. KasrayanA. LannfeltL. IngelssonM. NikolajeffF. KarlssonM. BergströmJ. Changes in secondary structure of α-synuclein during oligomerization induced by reactive aldehydes.Biochem. Biophys. Res. Commun.2015464133634110.1016/j.bbrc.2015.06.154 26129771
    [Google Scholar]
  44. Almandoz-GilL. WelanderH. IhseE. KhoonsariP.E. MusunuriS. LendelC. SigvardsonJ. KarlssonM. IngelssonM. KultimaK. BergströmJ. Low molar excess of 4-oxo-2-nonenal and 4-hydroxy-2-nonenal promote oligomerization of alpha-synuclein through different pathways.Free Radic. Biol. Med.201711042143110.1016/j.freeradbiomed.2017.07.004 28690195
    [Google Scholar]
  45. NäsströmT. FagerqvistT. BarbuM. KarlssonM. NikolajeffF. KasrayanA. EkbergM. LannfeltL. IngelssonM. BergströmJ. The lipid peroxidation products 4-oxo-2-nonenal and 4-hydroxy-2-nonenal promote the formation of α-synuclein oligomers with distinct biochemical, morphological, and functional properties.Free Radic. Biol. Med.201150342843710.1016/j.freeradbiomed.2010.11.027 21130160
    [Google Scholar]
  46. AcostaG. RaceN. HerrS. FernandezJ. TangJ. RogersE. ShiR. Acrolein-mediated alpha-synuclein pathology involvement in the early post-injury pathogenesis of mild blast-induced Parkinsonian neurodegeneration.Mol. Cell. Neurosci.20199814015410.1016/j.mcn.2019.06.004 31201929
    [Google Scholar]
  47. WangY.T. LinH.C. ZhaoW.Z. HuangH.J. LoY.L. WangH.T. LinA.M.Y. Acrolein acts as a neurotoxin in the nigrostriatal dopaminergic system of rat: Involvement of α-synuclein aggregation and programmed cell death.Sci. Rep.2017714574110.1038/srep45741 28401906
    [Google Scholar]
  48. DexterD.T. CarterC.J. WellsF.R. Javoy-AgidF. AgidY. LeesA. JennerP. MarsdenC.D. Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease.J. Neurochem.198952238138910.1111/j.1471‑4159.1989.tb09133.x 2911023
    [Google Scholar]
  49. JennerP. DexterD.T. SianJ. SchapiraA.H. MarsdenC.D. Oxidative stress as a cause of nigral cell death in Parkinson’s disease and incidental Lewy body disease. The royal kings and queens Parkinson’s disease research group.Ann. Neurol.199232S1S82S8710.1002/ana.410320714
    [Google Scholar]
  50. FarooquiT. FarooquiA.A. Lipid-mediated oxidative stress and inflammation in the pathogenesis of Parkinson’s disease.Parkinsons Dis.201120111910.4061/2011/247467 21403820
    [Google Scholar]
  51. YoritakaA. HattoriN. UchidaK. TanakaM. StadtmanE.R. MizunoY. Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson disease.Proc. Natl. Acad. Sci. USA19969372696270110.1073/pnas.93.7.2696 8610103
    [Google Scholar]
  52. CastellaniR.J. PerryG. SiedlakS.L. NunomuraA. ShimohamaS. ZhangJ. MontineT. SayreL.M. SmithM.A. Hydroxynonenal adducts indicate a role for lipid peroxidation in neocortical and brainstem Lewy bodies in humans.Neurosci. Lett.20023191252810.1016/S0304‑3940(01)02514‑9 11814645
    [Google Scholar]
  53. MonroyC.A. DoornJ.A. RomanD.L. Modification and functional inhibition of regulator of G-protein signaling 4 (RGS4) by 4-hydroxy-2-nonenal.Chem. Res. Toxicol.201326121832183910.1021/tx400212q 24229325
    [Google Scholar]
  54. ShiL. LinY. JiaoY. HerrS.A. TangJ. RogersE. ChenZ. ShiR. Acrolein scavenger dimercaprol offers neuroprotection in an animal model of Parkinson’s disease: Implication of acrolein and TRPA1.Transl. Neurodegener.20211011310.1186/s40035‑021‑00239‑0 33910636
    [Google Scholar]
  55. van der BurgJ.M.M. BjörkqvistM. BrundinP. Beyond the brain: Widespread pathology in Huntington’s disease.Lancet Neurol.20098876577410.1016/S1474‑4422(09)70178‑4 19608102
    [Google Scholar]
  56. ShafieA. AshourA.A. AnwarS. AnjumF. HassanM.I. Exploring molecular mechanisms, therapeutic strategies, and clinical manifestations of Huntington’s disease.Arch. Pharm. Res.202447657159510.1007/s12272‑024‑01499‑w 38764004
    [Google Scholar]
  57. OosterlooM. TouzeA. ByrneL.M. AchenbachJ. AksoyH. ColemanA. LammertD. NanceM. NopoulosP. ReilmannR. SaftC. SantiniH. SquitieriF. TabriziS. BurgunderJ.M. QuarrellO. Pediatric Huntington disease working group of the European Huntington disease network. Clinical review of Juvenile Huntington’s disease.J. Huntingtons Dis.202413214916110.3233/JHD‑231523 38669553
    [Google Scholar]
  58. WellsR.G. NeilsonL.E. McHillA.W. HillerA.L. Dietary fasting and time-restricted eating in Huntington’s disease: therapeutic potential and underlying mechanisms.Transl. Neurodegener.20241311710.1186/s40035‑024‑00406‑z 38561866
    [Google Scholar]
  59. BrondaniM. RoginskiA.C. RibeiroR.T. de MedeirosM.P. HoffmannC.I.H. WajnerM. LeipnitzG. SeminottiB. Mitochondrial dysfunction, oxidative stress, ER stress and mitochondria-ER crosstalk alterations in a chemical rat model of Huntington’s disease: Potential benefits of bezafibrate.Toxicol. Lett.2023381485910.1016/j.toxlet.2023.04.011 37116597
    [Google Scholar]
  60. HariharanA. ShettyS. ShiroleT. JagtapA.G. Potential of protease inhibitor in 3-nitropropionic acid induced Huntington’s disease like symptoms: Mitochondrial dysfunction and neurodegeneration.Neurotoxicology20144513914810.1016/j.neuro.2014.10.004 25445565
    [Google Scholar]
  61. MaityS. KomalP. KumarV. SaxenaA. TungekarA. ChandrasekarV. Impact of ER stress and er-mitochondrial crosstalk in Huntington’s disease.Int. J. Mol. Sci.202223278010.3390/ijms23020780 35054963
    [Google Scholar]
  62. BrowneS.E. BealM.F. Oxidative damage in Huntington’s disease pathogenesis.Antioxid. Redox Signal.2006811-122061207310.1089/ars.2006.8.2061 17034350
    [Google Scholar]
  63. BrowneS.E. MitochondriaE. Mitochondria and Huntington’s disease pathogenesis: Insight from genetic and chemical models.Ann. N. Y. Acad. Sci.20081147135838210.1196/annals.1427.018 19076457
    [Google Scholar]
  64. RomanoA. ServiddioG. CalcagniniS. VillaniR. GiudettiA.M. CassanoT. GaetaniS. Linking lipid peroxidation and neuropsychiatric disorders: Focus on 4-hydroxy-2-nonenal.Free Radic. Biol. Med.201711128129310.1016/j.freeradbiomed.2016.12.046 28063940
    [Google Scholar]
  65. FotoohiA. MoloudiM.R. HosseiniS. HassanzadehK. FeligioniM. IzadpanahE. A novel pharmacological protective role for safranal in an animal model of Huntington’s disease.Neurochem. Res.20214661372137910.1007/s11064‑021‑03271‑8 33611726
    [Google Scholar]
  66. VermaM.K. GoelR. NandakumarK. NemmaniK.V.S. Bilateral quinolinic acid-induced lipid peroxidation, decreased striatal monoamine levels and neurobehavioral deficits are ameliorated by GIP receptor agonist D-Ala2 GIP in rat model of Huntington’s disease.Eur. J. Pharmacol.2018828314110.1016/j.ejphar.2018.03.034 29577894
    [Google Scholar]
  67. JohriA. BealM.F. Antioxidants in Huntington’s disease.Biochim. Biophys. Acta Mol. Basis Dis.20121822566467410.1016/j.bbadis.2011.11.014 22138129
    [Google Scholar]
  68. AlharbiK.S. Europinidin mitigates 3-NPA-induced Huntington’s disease symptoms in rats: A comprehensive analysis of oxidative stress, mitochondrial enzyme complex activity, pro-inflammatory markers and neurotransmitter alterations.Biomedicines202412362510.3390/biomedicines12030625 38540238
    [Google Scholar]
  69. D’EgidioF. CastelliV. CiminiA. d’AngeloM. Cell rearrangement and oxidant/antioxidant imbalance in Huntington’s disease.Antioxidants202312357110.3390/antiox12030571 36978821
    [Google Scholar]
  70. LeeJ. KosarasB. Del SignoreS.J. CormierK. McKeeA. RatanR.R. KowallN.W. RyuH. Modulation of lipid peroxidation and mitochondrial function improves neuropathology in Huntington’s disease mice.Acta Neuropathol.2011121448749810.1007/s00401‑010‑0788‑5 21161248
    [Google Scholar]
  71. TangQ. LiuH. ShiX.J. ChengY. Blood oxidative stress marker aberrations in patients with Huntington’s disease: A meta-analysis study.Oxid. Med. Cell. Longev.2020202011010.1155/2020/9187195 32963705
    [Google Scholar]
  72. ChenL. QinY. GuoT. ZhuW. LinJ. XingT. DuanX. ZhangY. RuanE. LiX. YinP. LiS. LiX.J. YangS. HAP40 modulates mutant Huntingtin aggregation and toxicity in Huntington’s disease mice.Cell Death Dis.202415533710.1038/s41419‑024‑06716‑4 38744826
    [Google Scholar]
  73. SaudouF. HumbertS. The biology of Huntingtin.Neuron201689591092610.1016/j.neuron.2016.02.003 26938440
    [Google Scholar]
  74. DavrancheA. AviolatH. Zeder-LutzG. BussoD. AltschuhD. TrottierY. KleinF.A.C. Huntingtin affinity for partners is not changed by polyglutamine length: Aggregation itself triggers aberrant interactions.Hum. Mol. Genet.201120142795280610.1093/hmg/ddr178 21518730
    [Google Scholar]
  75. ChenY. Al-NusaifM. LiS. TanX. YangH. CaiH. LeW. Progress on early diagnosing Alzheimer’s disease.Front. Med.202418344646410.1007/s11684‑023‑1047‑1 38769282
    [Google Scholar]
  76. HuS. YangC. LuoH. Current trends in blood biomarker detection and imaging for Alzheimer’s disease.Biosens. Bioelectron.202221011427810.1016/j.bios.2022.114278 35460969
    [Google Scholar]
  77. MiJ. LiuC. ChenH. QianY. ZhuJ. ZhangY. LiangY. WangL. TaD. Light on Alzheimer’s disease: From basic insights to preclinical studies.Front. Aging Neurosci.202416136345810.3389/fnagi.2024.1363458 38566826
    [Google Scholar]
  78. HuangW.J. ZhangX. ChenW.W. Role of oxidative stress in Alzheimer’s disease.Biomed. Rep.20164551952210.3892/br.2016.630 27123241
    [Google Scholar]
  79. SultanaR. RavagnaA. Mohmmad-AbdulH. CalabreseV. ButterfieldD.A. Ferulic acid ethyl ester protects neurons against amyloid β‐peptide(1-42)‐induced oxidative stress and neurotoxicity: Relationship to antioxidant activity.J. Neurochem.200592474975810.1111/j.1471‑4159.2004.02899.x 15686476
    [Google Scholar]
  80. YuN. PashaM. ChuaJ.J.E. Redox changes and cellular senescence in Alzheimer’s disease.Redox Biol.20247010304810.1016/j.redox.2024.103048 38277964
    [Google Scholar]
  81. MarkR.J. LovellM.A. MarkesberyW.R. UchidaK. MattsonM.P. A role for 4-hydroxynonenal, an aldehydic product of lipid peroxidation, in disruption of ion homeostasis and neuronal death induced by amyloid beta-peptide.J. Neurochem.199768125526410.1046/j.1471‑4159.1997.68010255.x 8978733
    [Google Scholar]
  82. YamashimaT. OtaT. MizukoshiE. NakamuraH. YamamotoY. KikuchiM. YamashitaT. KanekoS. Intake of ω-6 polyunsaturated fatty acid-rich vegetable oils and risk of lifestyle diseases.Adv. Nutr.20201161489150910.1093/advances/nmaa072 32623461
    [Google Scholar]
  83. YamashimaT. SeikeT. OikawaS. KobayashiH. KidoH. YanagiM. YamamiyaD. LiS. BoontemP. MizukoshiE. Hsp70.1 carbonylation induces lysosomal cell death for lifestyle-related diseases.Front. Mol. Biosci.20239106363210.3389/fmolb.2022.1063632 36819480
    [Google Scholar]
  84. YamashimaT. SeikeT. Mochly-RosenD. ChenC.H. KikuchiM. MizukoshiE. Implication of the cooking oil-peroxidation product “hydroxynonenal” for Alzheimer’s disease.Front. Aging Neurosci.202315121114110.3389/fnagi.2023.1211141 37693644
    [Google Scholar]
  85. ReedT.T. PierceW.M. MarkesberyW.R. ButterfieldD.A. Proteomic identification of HNE-bound proteins in early Alzheimer disease: Insights into the role of lipid peroxidation in the progression of AD.Brain Res.20091274667610.1016/j.brainres.2009.04.009 19374891
    [Google Scholar]
  86. WilliamsT.I. LynnB.C. MarkesberyW.R. LovellM.A. Increased levels of 4-hydroxynonenal and acrolein, neurotoxic markers of lipid peroxidation, in the brain in mild cognitive impairment and early Alzheimer’s disease.Neurobiol. Aging20062781094109910.1016/j.neurobiolaging.2005.06.004 15993986
    [Google Scholar]
  87. SinghM. NamD.T. ArseneaultM. RamassamyC. Role of by-products of lipid oxidation in Alzheimer’s disease brain: A focus on acrolein.J. Alzheimers Dis.201021374175610.3233/JAD‑2010‑100405 20634576
    [Google Scholar]
  88. ButterfieldD.A. SultanaR. Methionine-35 of aβ(1-42): Importance for oxidative stress in Alzheimer disease.J. Amino Acids2011201111010.4061/2011/198430 22312456
    [Google Scholar]
  89. BoonpramanN. YiS.S. NADPH oxidase 4 (NOX4) as a biomarker and therapeutic target in neurodegenerative diseases.Neural Regen. Res.20241991961196610.4103/1673‑5374.390973 38227522
    [Google Scholar]
  90. BoonpramanN. YoonS. KimC.Y. MoonJ.S. YiS.S. NOX4 as a critical effector mediating neuroinflammatory cytokines, myeloperoxidase and osteopontin, specifically in astrocytes in the hippocampus in Parkinson’s disease.Redox Biol.20236210269810.1016/j.redox.2023.102698 37058998
    [Google Scholar]
  91. LuengoE. Trigo-AlonsoP. Fernández-MendívilC. NuñezÁ. CampoM. PorreroC. García-MagroN. NegredoP. SenarS. Sánchez-RamosC. BernalJ.A. RábanoA. HoozemansJ. CasasA.I. SchmidtH.H.H.W. LópezM.G. Implication of type 4 NADPH oxidase (NOX4) in tauopathy.Redox Biol.20224910221010.1016/j.redox.2021.102210 34922273
    [Google Scholar]
  92. ParkM.W. ChaH.W. KimJ. KimJ.H. YangH. YoonS. BoonpramanN. YiS.S. YooI.D. MoonJ.S. NOX4 promotes ferroptosis of astrocytes by oxidative stress-induced lipid peroxidation via the impairment of mitochondrial metabolism in Alzheimer’s diseases.Redox Biol.20214110194710.1016/j.redox.2021.101947 33774476
    [Google Scholar]
  93. Renuka SanotraM. HuangW.C. SilverS. LinC.Y. ChangT.C. NguyenD.P.Q. LeeC.K. KaoS.H. Chang-Cheng ShiehJ. LinY.F. Serum levels of 4-hydroxynonenal adducts and responding autoantibodies correlate with the pathogenesis from hyperglycemia to Alzheimer’s disease.Clin. Biochem.2022101263410.1016/j.clinbiochem.2021.12.005 34933007
    [Google Scholar]
  94. SanotraM.R. KaoS.H. LeeC.K. HsuC.H. HuangW.C. ChangT.C. TuF.Y. HsuI.U. LinY.F. Acrolein adducts and responding autoantibodies correlate with metabolic disturbance in Alzheimer’s disease.Alzheimers Res. Ther.202315111510.1186/s13195‑023‑01261‑2 37349844
    [Google Scholar]
  95. FukudaM. KanouF. ShimadaN. SawabeM. SaitoY. MurayamaS. HashimotoM. MaruyamaN. IshigamiA. Elevated levels of 4-hydroxynonenal-histidine Michael adduct in the hippocampi of patients with Alzheimer’s disease.Biomed. Res.200930422723310.2220/biomedres.30.227 19729853
    [Google Scholar]
  96. WeiY. ZhongS. YangH. WangX. LvB. BianY. PeiY. XuC. ZhaoQ. WuY. LuoD. WangF. SunH. ChenY. Current therapy in amyotrophic lateral sclerosis (ALS): A review on past and future therapeutic strategies.Eur. J. Med. Chem.202427211649610.1016/j.ejmech.2024.116496 38759454
    [Google Scholar]
  97. GengeA. WainwrightS. Vande VeldeC. Amyotrophic lateral sclerosis: Exploring pathophysiology in the context of treatment.Amyotroph. Lateral Scler. Frontotemporal Degener.2024253-422523610.1080/21678421.2023.2278503 38001557
    [Google Scholar]
  98. HemerkováP. VališM. Role of oxidative stress in the pathogenesis of amyotrophic lateral sclerosis: Antioxidant metalloenzymes and therapeutic strategies.Biomolecules202111343710.3390/biom11030437 33809730
    [Google Scholar]
  99. WangX.X. ChenW.Z. LiC. XuR.S. Current potential pathogenic mechanisms of copper-zinc superoxide dismutase 1 (SOD1) in amyotrophic lateral sclerosis.Rev. Neurosci.202435554956310.1515/revneuro‑2024‑0010 38381656
    [Google Scholar]
  100. BarberS.C. ShawP.J. Oxidative stress in ALS: Key role in motor neuron injury and therapeutic target.Free Radic. Biol. Med.201048562964110.1016/j.freeradbiomed.2009.11.018 19969067
    [Google Scholar]
  101. Carrera-JuliáS. MorenoM.L. BarriosC. de la Rubia OrtíJ.E. DrehmerE. Antioxidant alternatives in the treatment of amyotrophic lateral sclerosis: A comprehensive review.Front. Physiol.2020116310.3389/fphys.2020.00063 32116773
    [Google Scholar]
  102. Carrera-JuliáS. EstrelaJ.M. ZacarésM. NavarroM.Á. Vega-BelloM.J. de la Rubia OrtíJ.E. MorenoM.L. DrehmerE. Effect of the Mediterranean diet supplemented with nicotinamide riboside and pterostilbene and/or coconut oil on anthropometric variables in amyotrophic lateral sclerosis. A pilot study.Front. Nutr.202310123218410.3389/fnut.2023.1232184 37810917
    [Google Scholar]
  103. Carrera-JuliáS. EstrelaJ.M. ZacarésM. NavarroM.Á. Vega-BelloM.J. de la Rubia OrtíJ.E. MorenoM.L. DrehmerE. Nutritional, clinical and sociodemographic profiles of spanish patients with amyotrophic lateral sclerosis.Nutrients202416335010.3390/nu16030350 38337635
    [Google Scholar]
  104. ShichiriM. The role of lipid peroxidation in neurological disorders.J. Clin. Biochem. Nutr.201454315116010.3164/jcbn.14‑10 24895477
    [Google Scholar]
  105. SchmittF. HussainG. DupuisL. LoefflerJ.P. HenriquesA. A plural role for lipids in motor neuron diseases: Energy, signaling and structure.Front. Cell. Neurosci.201482510.3389/fncel.2014.00025 24600344
    [Google Scholar]
  106. PedersenW.A. FuW. KellerJ.N. MarkesberyW.R. AppelS. SmithR.G. KasarskisE. MattsonM.P. Protein modification by the lipid peroxidation product 4‐hydroxynonenal in the spinal cords of amyotrophic lateral sclerosis patients.Ann. Neurol.199844581982410.1002/ana.410440518 9818940
    [Google Scholar]
  107. PerluigiM. Fai PoonH. HensleyK. PierceW.M. KleinJ.B. CalabreseV. De MarcoC. ButterfieldD.A. Proteomic analysis of 4-hydroxy-2-nonenal-modified proteins in G93A-SOD1 transgenic mice-A model of familial amyotrophic lateral sclerosis.Free Radic. Biol. Med.200538796096810.1016/j.freeradbiomed.2004.12.021 15749392
    [Google Scholar]
  108. SmithR.G. HenryY.K. MattsonM.P. AppelS.H. Presence of 4‐hydroxynonenal in cerebrospinal fluid of patients with sporadic amyotrophic lateral sclerosis.Ann. Neurol.199844469669910.1002/ana.410440419 9778272
    [Google Scholar]
  109. Chaves-FilhoA.B. PintoI.F.D. DantasL.S. XavierA.M. InagueA. FariaR.L. MedeirosM.H.G. GlezerI. YoshinagaM.Y. MiyamotoS. Alterations in lipid metabolism of spinal cord linked to amyotrophic lateral sclerosis.Sci. Rep.2019911164210.1038/s41598‑019‑48059‑7 31406145
    [Google Scholar]
  110. ZhaiJ. StrömA.L. KiltyR. VenkatakrishnanP. WhiteJ. EversonW.V. SmartE.J. ZhuH. Proteomic characterization of lipid raft proteins in amyotrophic lateral sclerosis mouse spinal cord.FEBS J.2009276123308332310.1111/j.1742‑4658.2009.07057.x 19438725
    [Google Scholar]
  111. FernÁndez-Eulate, G.; Ruiz-Sanz, J.I.; Riancho, J.; ZufirÍa, M.; GereÑu, G.; FernÁndez-TorrÓn, R.; Poza-Aldea, J.J.; Ondaro, J.; Espinal, J.B.; GonzÁlez-ChinchÓn, G.; Zulaica, M.; Ruiz-Larrea, M.B.; LÓpez De Munain, A.; Gil-Bea, F.J. A comprehensive serum lipidome profiling of amyotrophic lateral sclerosis.Amyotroph. Lateral Scler. Frontotemporal Degener.2020213-425226210.1080/21678421.2020.1730904 32106710
    [Google Scholar]
  112. PhanK. HeY. BhatiaS. PickfordR. McDonaldG. MazumderS. TimminsH.C. HodgesJ.R. PiguetO. DzamkoN. HallidayG.M. KiernanM.C. KimW.S. Multiple pathways of lipid dysregulation in amyotrophic lateral sclerosis.Brain Commun.202251fcac34010.1093/braincomms/fcac340 36632187
    [Google Scholar]
  113. AshizawaT. XiaG. Ataxia.Continuum (Minneap. Minn.)20162241208122610.1212/CON.0000000000000362 27495205
    [Google Scholar]
  114. PandolfoM. MantoM. Cerebellar and afferent ataxias.Continuum (Minneap. Minn.)2013191312134310.1212/01.CON.0000436158.39285.22 24092292
    [Google Scholar]
  115. MantoM. MarmolinoD. Cerebellar ataxias.Curr. Opin. Neurol.200922441942910.1097/WCO.0b013e32832b9897 19421057
    [Google Scholar]
  116. RudaksL.I. YeowD. NgK. DevesonI.W. KennersonM.L. KumarK.R. An update on the adult-onset hereditary cerebellar ataxias: Novel genetic causes and new diagnostic approaches.Cerebellum202410.1007/s12311‑024‑01703‑z 38760634
    [Google Scholar]
  117. EiselM.L.S. BurnsM. AshizawaT. ByrneB. CortiM. SubramonyS.H. Emerging therapies in hereditary ataxias.Trends Mol. Med.202410.1016/j.molmed.2024.07.008
    [Google Scholar]
  118. Soto-PiñaA.E. Pulido-AlvaradoC.C. DulskiJ. WszolekZ.K. MagañaJ.J. Specific biomarkers in spinocerebellar ataxia type 3: A systematic review of their potential uses in disease staging and treatment assessment.Int. J. Mol. Sci.20242515807410.3390/ijms25158074
    [Google Scholar]
  119. PandolfoM. Friedreich ataxia: The clinical picture.J. Neurol.2009256S13810.1007/s00415‑009‑1002‑3 19283344
    [Google Scholar]
  120. AlqurashiR.M. AladwaniA. AlosaimiT.H. YousefD.B. AlkhaldiM.H. AmerM.G. Awareness of the effect of vitamin B12 deficiency on the nervous system among the general population in Taif, Saudi Arabia.Cureus20231511e4934310.7759/cureus.49343 38143656
    [Google Scholar]
  121. OmuraY. OtaK. TakasuA. SuzukiT. Vitamin B1 deficiency identified from incidental detection of Hyperlactatemia: A case report.Medicina (Kaunas)202460571510.3390/medicina60050715 38792898
    [Google Scholar]
  122. LeeJ.H. Targeting the ATM pathway in cancer: Opportunities, challenges and personalized therapeutic strategies.Cancer Treat. Rev.202412910280810.1016/j.ctrv.2024.102808 39106770
    [Google Scholar]
  123. VaradhanV. ManikandanM.S. NagarajanA. PalaniyandiT. RaviM. SankareswaranS.K. BaskarG. WahabM.R.A. SurendranH. Ataxia-Telangiectasia Mutated (ATM) gene signaling pathways in human cancers and their therapeutic implications.Pathol. Res. Pract.202426015544710.1016/j.prp.2024.155447 38981349
    [Google Scholar]
  124. LeeJ.H. Oxidative stress and the multifaceted roles of ATM in maintaining cellular redox homeostasis.Redox Biol.20247510326910.1016/j.redox.2024.103269 39018798
    [Google Scholar]
  125. LeeJ.H. PaullT.T. Mitochondria at the crossroads of ATM-mediated stress signaling and regulation of reactive oxygen species.Redox Biol.20203210151110.1016/j.redox.2020.101511 32244177
    [Google Scholar]
  126. LeesonH.C. AguadoJ. Gómez-InclánC. ChaggarH.K. FardA.T. HunterZ. LavinM.F. Mackay-SimA. WolvetangE.J. Ataxia telangiectasia patient-derived neuronal and brain organoid models reveal mitochondrial dysfunction and oxidative stress.Neurobiol. Dis.202419910656210.1016/j.nbd.2024.106562 38876322
    [Google Scholar]
  127. Sanz-AlcázarA. BrittiE. DelaspreF. Medina-CarboneroM. Pazos-GilM. TamaritJ. RosJ. CabiscolE. Mitochondrial impairment, decreased sirtuin activity and protein acetylation in dorsal root ganglia in Friedreich Ataxia models.Cell. Mol. Life Sci.20248111210.1007/s00018‑023‑05064‑4 38129330
    [Google Scholar]
  128. LynchD.R. MathewsK.D. PerlmanS. ZesiewiczT. SubramonyS. OmidvarO. VogelA.P. KrtolicaA. LittermanN. van der PloegL. HeerinckxF. MilnerP. MideiM. Double blind trial of a deuterated form of linoleic acid (RT001) in Friedreich ataxia.J. Neurol.202327031615162310.1007/s00415‑022‑11501‑4 36462055
    [Google Scholar]
  129. La RosaP. PetrilloS. TurchiR. BerardinelliF. SchirinziT. VascoG. Lettieri-BarbatoD. FiorenzaM.T. BertiniE.S. AquilanoK. PiemonteF. The Nrf2 induction prevents ferroptosis in Friedreich’s Ataxia.Redox Biol.20213810179110.1016/j.redox.2020.101791 33197769
    [Google Scholar]
  130. AbetiR. ParkinsonM.H. HargreavesI.P. AngelovaP.R. SandiC. PookM.A. GiuntiP. AbramovA.Y. Mitochondrial energy imbalance and lipid peroxidation cause cell death in Friedreich’s ataxia.Cell Death Dis.201675e223710.1038/cddis.2016.111 27228352
    [Google Scholar]
  131. AbetiR. UzunE. RenganathanI. HondaT. PookM.A. GiuntiP. Targeting lipid peroxidation and mitochondrial imbalance in Friedreich’s ataxia.Pharmacol. Res.20159934435010.1016/j.phrs.2015.05.015 26141703
    [Google Scholar]
  132. BarreraG. PizzimentiS. DagaM. DianzaniC. ArcaroA. CetrangoloG.P. GiordanoG. CucciM.A. GrafM. GentileF. Lipid peroxidation-derived aldehydes, 4-hydroxynonenal and malondialdehyde in aging-related disorders.Antioxidants20187810210.3390/antiox7080102 30061536
    [Google Scholar]
  133. LeungT.C.S. FieldsE. RanaN. ShenR.Y.L. BernsteinA.E. CookA.A. PhillipsD.E. WattA.J. Mitochondrial damage and impaired mitophagy contribute to disease progression in SCA6.Acta Neuropathol.202414712610.1007/s00401‑023‑02680‑z 38286873
    [Google Scholar]
  134. ChenC. MerrillR.A. JongC.J. StrackS. Driving mitochondrial fission improves cognitive, but not motor deficits in a mouse model of ataxia of charlevoix-saguenay.Cerebellum202410.1007/s12311‑024‑01701‑1 38735882
    [Google Scholar]
  135. ChaudharyP. SharmaR. SahuM. VishwanathaJ.K. AwasthiS. AwasthiY.C. 4-Hydroxynonenal induces G2/M phase cell cycle arrest by activation of the ataxia telangiectasia mutated and Rad3-related protein (ATR)/checkpoint kinase 1 (Chk1) signaling pathway.J. Biol. Chem.201328828205322054610.1074/jbc.M113.467662 23733185
    [Google Scholar]
  136. BlignautM. HarriesS. LochnerA. HuisamenB. Ataxia telangiectasia mutated protein kinase: A potential master puppeteer of oxidative stress-induced metabolic recycling.Oxid. Med. Cell. Long.202111210.1155/2021/8850708
    [Google Scholar]
  137. MaciejczykM. Heropolitanska-PliszkaE. PietruchaB. Sawicka-PowierzaJ. BernatowskaE. Wolska-KusnierzB. PacM. CarH. ZalewskaA. MikolucB. Antioxidant defense, redox homeostasis, and oxidative damage in children with Ataxia telangiectasia and Nijmegen breakage syndrome.Front. Immunol.201910232210.3389/fimmu.2019.02322 31611883
    [Google Scholar]
  138. AndradeI.G.A. Suano-SouzaF.I. FonsecaF.L.A. LagoC.S.A. SarniR.O.S. Selenium levels and glutathione peroxidase activity in patients with ataxia-telangiectasia: Association with oxidative stress and lipid status biomarkers.Orphanet J. Rare Dis.20211618310.1186/s13023‑021‑01732‑5 33579341
    [Google Scholar]
  139. ZhangS. EitanE. WuT.Y. MattsonM.P. Intercellular transfer of pathogenic α-synuclein by extracellular vesicles is induced by the lipid peroxidation product 4-hydroxynonenal.Neurobiol. Aging201861526510.1016/j.neurobiolaging.2017.09.016 29035751
    [Google Scholar]
  140. BaeE.J. HoD.H. ParkE. JungJ.W. ChoK. HongJ.H. LeeH.J. KimK.P. LeeS.J. Lipid peroxidation product 4-hydroxy-2-nonenal promotes seeding-capable oligomer formation and cell-to-cell transfer of α-synuclein.Antioxid. Redox Signal.201318777078310.1089/ars.2011.4429 22867050
    [Google Scholar]
  141. QinZ. HuD. HanS. ReaneyS.H. Di MonteD.A. FinkA.L. Effect of 4-hydroxy-2-nonenal modification on alpha-synuclein aggregation.J. Biol. Chem.200728285862587010.1074/jbc.M608126200
    [Google Scholar]
  142. DeasE. CremadesN. AngelovaP.R. LudtmannM.H.R. YaoZ. ChenS. HorrocksM.H. BanushiB. LittleD. DevineM.J. GissenP. KlenermanD. DobsonC.M. WoodN.W. GandhiS. AbramovA.Y. Alpha-synuclein oligomers interact with metal ions to induce oxidative stress and neuronal death in Parkinson’s disease.Antioxid. Redox Signal.201624737639110.1089/ars.2015.6343 26564470
    [Google Scholar]
  143. TabnerB.J. TurnbullS. El-AgnafO. AllsopD. Production of reactive oxygen species from aggregating proteins implicated in Alzheimer’s disease, Parkinson’s disease and other neurodegenerative diseases.Curr. Top. Med. Chem.20011650751710.2174/1568026013394822 11895127
    [Google Scholar]
  144. Di MaioR. BarrettP.J. HoffmanE.K. BarrettC.W. ZharikovA. BorahA. HuX. McCoyJ. ChuC.T. BurtonE.A. HastingsT.G. GreenamyreJ.T. α-synuclein binds to TOM20 and inhibits mitochondrial protein import in Parkinson’s disease.Sci. Transl. Med.20168342342ra7810.1126/scitranslmed.aaf3634 27280685
    [Google Scholar]
  145. RaniP. KrishnanS. Rani CathrineC. Study on analysis of peripheral biomarkers for Alzheimer’s disease diagnosis.Front. Neurol.2017832810.3389/fneur.2017.00328 28769864
    [Google Scholar]
  146. MarkesberyW.R. LovellM.A. Four-hydroxynonenal, a product of lipid peroxidation, is increased in the brain in Alzheimer’s disease.Neurobiol. Aging1998191333610.1016/S0197‑4580(98)00009‑8 9562500
    [Google Scholar]
  147. EdzeameyF.J. RamchunderZ. PourzandC. Anjomani VirmouniS. Emerging antioxidant therapies in Friedreich’s ataxia.Front. Pharmacol.202415135961810.3389/fphar.2024.1359618 38379897
    [Google Scholar]
  148. LanaJ.V. RiosA. TakeyamaR. SantosN. PiresL. SantosG.S. RodriguesI.J. JeyaramanM. PuritaJ. LanaJ.F. Nebulized glutathione as a key antioxidant for the treatment of oxidative stress in neurodegenerative conditions.Nutrients20241615247610.3390/nu16152476 39125356
    [Google Scholar]
  149. UpadhayayS. KumarP. Mitochondrial targeted antioxidants as potential therapy for Huntington’s disease.Pharmacol. Rep.202476469371310.1007/s43440‑024‑00619‑z 38982016
    [Google Scholar]
  150. PeiJ. PalanisamyC.P. NatarajanP.M. UmapathyV.R. RoyJ.R. SrinivasanG.P. PanagalM. JayaramanS. Curcumin-loaded polymeric nanomaterials as a novel therapeutic strategy for Alzheimer’s disease: A comprehensive review.Ageing Res. Rev.20249910239310.1016/j.arr.2024.102393 38925479
    [Google Scholar]
  151. SheaM.K. XuanA.Y. BoothS.L. VitaminD. VitaminD. Alzheimer’s disease and related dementia.Adv. Food Nutr. Res.202410918521910.1016/bs.afnr.2023.12.003 38777413
    [Google Scholar]
  152. KumarR.R. SinghL. ThakurA. SinghS. KumarB. Role of vitamins in neurodegenerative diseases: A review.CNS Neurol. Disord. Drug Targets202221976677310.2174/1871527320666211119122150 34802410
    [Google Scholar]
  153. IcerM.A. ArslanN. Gezmen-KaradagM. Effects of vitamin E on neurodegenerative diseases: An update.Acta Neurobiol. Exp. (Warsz.)2021811213310.21307/ane‑2021‑003 33949169
    [Google Scholar]
  154. MartinelliC. PucciC. BattagliniM. MarinoA. CiofaniG. Antioxidants and nanotechnology: Promises and limits of potentially disruptive approaches in the treatment of central nervous system diseases.Adv. Healthc. Mater.202093190158910.1002/adhm.201901589 31854132
    [Google Scholar]
/content/journals/cn/10.2174/011570159X342720241014164650
Loading
/content/journals/cn/10.2174/011570159X342720241014164650
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test