Skip to content
2000
image of Neuropsychopharmacology: Shaping Neuroplasticity through Arc/ Arg3.1 Modulation

Abstract

Activity-regulated cytoskeleted-associated protein (aka activity-regulated gene Arg3.1) belongs to the effector gene family of the immediate early genes. This family encodes effector proteins, which act directly on cellular homeostasis and function. Arc/Arg3.1 is localized at dendritic processes, allowing the protein local synthesis on demand, and it is considered a reliable index of activity-dependent synaptic changes. Evidence also exists showing the critical role of Arc/Arg3.1 in memory processes. The high sensitivity to changes in neuronal activity, its specific localization as well as its involvement in long-term synaptic plasticity indeed make this effector gene a potential, critical target of the action of psychotropic drugs. In this review, we focus on antipsychotic and antidepressant drugs as well as on psychostimulants, which belong to the category of drugs of abuse but can also be used as drugs for specific disorders of the central nervous system (., Attention Deficit Hyperactivity Disorder). It is demonstrated that psychotropic drugs with different mechanisms of action converge on Arc/Arg3.1, providing a means whereby Arc/Arg3.1 synaptic modulation may contribute to their therapeutic activity. The potential translational implications for different neuropsychiatric conditions are also discussed, recognizing that the treatment of these disorders is indeed complex and involves the simultaneous regulation of several dysfunctional mechanisms.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X338335240903075655
2024-10-25
2025-01-18
Loading full text...

Full text loading...

References

  1. Lyford G.L. Yamagata K. Kaufmann W.E. Barnes C.A. Sanders L.K. Copeland N.G. Gilbert D.J. Jenkins N.A. Lanahan A.A. Worley P.F. Arc, a growth factor and activity-regulated gene, encodes a novel cytoskeleton-associated protein that is enriched in neuronal dendrites. Neuron 1995 14 2 433 445 10.1016/0896‑6273(95)90299‑6 7857651
    [Google Scholar]
  2. Clayton D.F. The genomic action potential. Neurobiol. Learn. Mem. 2000 74 3 185 216 10.1006/nlme.2000.3967 11031127
    [Google Scholar]
  3. Steward O. Wallace C.S. Lyford G.L. Worley P.F. Synaptic activation causes the mRNA for the IEG Arc to localize selectively near activated postsynaptic sites on dendrites. Neuron 1998 21 4 741 751 10.1016/S0896‑6273(00)80591‑7 9808461
    [Google Scholar]
  4. Wallace C.S. Lyford G.L. Worley P.F. Steward O. Differential intracellular sorting of immediate early gene mRNAs depends on signals in the mRNA sequence. J. Neurosci. 1998 18 1 26 35 10.1523/JNEUROSCI.18‑01‑00026.1998 9412483
    [Google Scholar]
  5. Huang F. Chotiner J.K. Steward O. Actin polymerization and ERK phosphorylation are required for Arc/Arg3.1 mRNA targeting to activated synaptic sites on dendrites. J. Neurosci. 2007 27 34 9054 9067 10.1523/JNEUROSCI.2410‑07.2007 17715342
    [Google Scholar]
  6. Steward O. Worley P.F. A cellular mechanism for targeting newly synthesized mRNAs to synaptic sites on dendrites. Proc. Natl. Acad. Sci. USA 2001 98 13 7062 7068 10.1073/pnas.131146398 11416188
    [Google Scholar]
  7. Farris S. Lewandowski G. Cox C.D. Steward O. Selective localization of arc mRNA in dendrites involves activity- and translation- dependent mRNA degradation. J. Neurosci. 2014 34 13 4481 4493 10.1523/JNEUROSCI.4944‑13.2014 24671994
    [Google Scholar]
  8. Greer P.L. Hanayama R. Bloodgood B.L. Mardinly A.R. Lipton D.M. Flavell S.W. Kim T.K. Griffith E.C. Waldon Z. Maehr R. Ploegh H.L. Chowdhury S. Worley P.F. Steen J. Greenberg M.E. The Angelman Syndrome protein Ube3A regulates synapse development by ubiquitinating arc. Cell 2010 140 5 704 716 10.1016/j.cell.2010.01.026 20211139
    [Google Scholar]
  9. Okuno H. Akashi K. Ishii Y. Yagishita-Kyo N. Suzuki K. Nonaka M. Kawashima T. Fujii H. Takemoto-Kimura S. Abe M. Natsume R. Chowdhury S. Sakimura K. Worley P.F. Bito H. Inverse synaptic tagging of inactive synapses via dynamic interaction of Arc/Arg3.1 with CaMKIIβ. Cell 2012 149 4 886 898 10.1016/j.cell.2012.02.062 22579289
    [Google Scholar]
  10. Chowdhury S. Shepherd J.D. Okuno H. Lyford G. Petralia R.S. Plath N. Kuhl D. Huganir R.L. Worley P.F. Arc/Arg3.1 interacts with the endocytic machinery to regulate AMPA receptor trafficking. Neuron 2006 52 3 445 459 10.1016/j.neuron.2006.08.033 17088211
    [Google Scholar]
  11. Rial Verde E.M. Lee-Osbourne J. Worley P.F. Malinow R. Cline H.T. Increased expression of the immediate-early gene arc/arg3.1 reduces AMPA receptor-mediated synaptic transmission. Neuron 2006 52 3 461 474 10.1016/j.neuron.2006.09.031 17088212
    [Google Scholar]
  12. Shepherd J.D. Rumbaugh G. Wu J. Chowdhury S. Plath N. Kuhl D. Huganir R.L. Worley P.F. Arc/Arg3.1 mediates homeostatic synaptic scaling of AMPA receptors. Neuron 2006 52 3 475 484 10.1016/j.neuron.2006.08.034 17088213
    [Google Scholar]
  13. Rodríguez J.J. Davies H.A. Errington M.L. Verkhratsky A. Bliss T.V.P. Stewart M.G. ARG3.1/ARC expression in hippocampal dentate gyrus astrocytes: ultrastructural evidence and colocalization with glial fibrillary acidic protein. J. Cell. Mol. Med. 2008 12 2 671 678 10.1111/j.1582‑4934.2007.00105.x 18419604
    [Google Scholar]
  14. Rodríguez J.J. Davies H.A. Silva A.T. De Souza I.E.J. Peddie C.J. Colyer F.M. Lancashire C.L. Fine A. Errington M.L. Bliss T.V.P. Stewart M.G. Long‐term potentiation in the rat dentate gyrus is associated with enhanced Arc/Arg3.1 protein expression in spines, dendrites and glia. Eur. J. Neurosci. 2005 21 9 2384 2396 10.1111/j.1460‑9568.2005.04068.x 15932597
    [Google Scholar]
  15. Fernández E. Collins M.O. Frank R.A.W. Zhu F. Kopanitsa M.V. Nithianantharajah J. Lemprière S.A. Fricker D. Elsegood K.A. McLaughlin C.L. Croning M.D.R. Mclean C. Armstrong J.D. Hill W.D. Deary I.J. Cencelli G. Bagni C. Fromer M. Purcell S.M. Pocklington A.J. Choudhary J.S. Komiyama N.H. Grant S.G.N. Arc requires PSD95 for assembly into postsynaptic complexes involved with neural dysfunction and intelligence. Cell Rep. 2017 21 3 679 691 10.1016/j.celrep.2017.09.045 29045836
    [Google Scholar]
  16. Avallone M. Pardo J. Mergiya T.F. Rájová J. Räsänen A. Davidsson M. Åkerblom M. Quintino L. Kumar D. Bramham C.R. Björklund T. Visualizing Arc protein dynamics and localization in the mammalian brain using AAV-mediated in situ gene labeling. Front. Mol. Neurosci. 2023 16 1140785 10.3389/fnmol.2023.1140785 37415832
    [Google Scholar]
  17. Korb E. Wilkinson C.L. Delgado R.N. Lovero K.L. Finkbeiner S. Arc in the nucleus regulates PML-dependent GluA1 transcription and homeostatic plasticity. Nat. Neurosci. 2013 16 7 874 883 10.1038/nn.3429 23749147
    [Google Scholar]
  18. Bloomer W.A.C. VanDongen H.M.A. VanDongen A.M.J. Activity- regulated cytoskeleton-associated protein Arc/Arg3.1 binds to spectrin and associates with nuclear promyelocytic leukemia (PML) bodies. Brain Res. 2007 1153 20 33 10.1016/j.brainres.2007.03.079 17466953
    [Google Scholar]
  19. Chuang Y.A. Hu T.M. Chen C.H. Hsu S.H. Tsai H.Y. Cheng M.C. Rare mutations and hypermethylation of the ARC gene associated with schizophrenia. Schizophr. Res 2016 176 2-3 106 113 10.1016/j.schres.2016.07.019 27464451
    [Google Scholar]
  20. Gallo F.T. Katche C. Morici J.F. Medina J.H. Weisstaub N.V. Immediate early genes, memory and psychiatric disorders: Focus on c-Fos, Egr1 and Arc. Front. Behav. Neurosci. 2018 12 79 10.3389/fnbeh.2018.00079 29755331
    [Google Scholar]
  21. Yakout D.W. Shree N. Mabb A.M. Effect of pharmacological manipulations on Arc function. CRPHAR 2021 2 100013 10.1016/j.crphar.2020.100013 34909648
    [Google Scholar]
  22. Wu J. Petralia R.S. Kurushima H. Patel H. Jung M. Volk L. Chowdhury S. Shepherd J.D. Dehoff M. Li Y. Kuhl D. Huganir R.L. Price D.L. Scannevin R. Troncoso J.C. Wong P.C. Worley P.F. Arc/Arg3.1 regulates an endosomal pathway essential for activity-dependent β-amyloid generation. Cell 2011 147 3 615 628 10.1016/j.cell.2011.09.036 22036569
    [Google Scholar]
  23. Chen Y. Wang X. Xiao B. Luo Z. Long H. Mechanisms and functions of activity-regulated cytoskeleton-associated protein in synaptic plasticity. Mol. Neurobiol. 2023 60 10 5738 5754 10.1007/s12035‑023‑03442‑4 37338805
    [Google Scholar]
  24. Fumagalli F. Bedogni F. Frasca A. Di Pasquale L. Racagni G. Riva M.A. Corticostriatal up-regulation of activity-regulated cytoskeletal-associated protein expression after repeated exposure to cocaine. Mol. Pharmacol. 2006 70 5 1726 1734 10.1124/mol.106.026302 16908598
    [Google Scholar]
  25. Zhang H. Bramham C.R. Arc/Arg3.1 function in long‐term synaptic plasticity: Emerging mechanisms and unresolved issues. Eur. J. Neurosci. 2021 54 8 6696 6712 10.1111/ejn.14958 32888346
    [Google Scholar]
  26. Eriksen M.S. Bramham C.R. Molecular physiology of Arc/Arg3.1: The oligomeric state hypothesis of synaptic plasticity. Acta Physiol. 2022 236 3 e13886 10.1111/apha.13886 36073248
    [Google Scholar]
  27. Kuipers S.D. Trentani A. Tiron A. Mao X. Kuhl D. Bramham C.R. BDNF-induced LTP is associated with rapid Arc/Arg3.1-dependent enhancement in adult hippocampal neurogenesis. Sci. Rep. 2016 6 1 21222 10.1038/srep21222 26888068
    [Google Scholar]
  28. Messaoudi E. Kanhema T. Soulé J. Tiron A. Dagyte G. da Silva B. Bramham C.R. Sustained Arc/Arg3.1 synthesis controls long-term potentiation consolidation through regulation of local actin polymerization in the dentate gyrus in vivo. J. Neurosci. 2007 27 39 10445 10455 10.1523/JNEUROSCI.2883‑07.2007 17898216
    [Google Scholar]
  29. Waung M.W. Pfeiffer B.E. Nosyreva E.D. Ronesi J.A. Huber K.M. Rapid translation of Arc/Arg3.1 selectively mediates mGluRdependent LTD through persistent increases in AMPAR endocytosis rate. Neuron 2008 59 1 84 97 10.1016/j.neuron.2008.05.014 18614031
    [Google Scholar]
  30. Bramham C.R. Alme M.N. Bittins M. Kuipers S.D. Nair R.R. Pai B. Panja D. Schubert M. Soule J. Tiron A. Wibrand K. The Arc of synaptic memory. Exp. Brain Res. 2010 200 2 125 140 10.1007/s00221‑009‑1959‑2 19690847
    [Google Scholar]
  31. Ren M. Cao V. Ye Y. Manji H.K. Wang K.H. Arc regulates experience-dependent persistent firing patterns in frontal cortex. J. Neurosci. 2014 34 19 6583 6595 10.1523/JNEUROSCI.0167‑14.2014 24806683
    [Google Scholar]
  32. Gao X. Castro-Gomez S. Grendel J. Graf S. Süsens U. Binkle L. Mensching D. Isbrandt D. Kuhl D. Ohana O. Arc/Arg3.1 mediates a critical period for spatial learning and hippocampal networks. Proc. Natl. Acad. Sci. USA 2018 115 49 12531 12536 10.1073/pnas.1810125115 30442670
    [Google Scholar]
  33. Plath N. Ohana O. Dammermann B. Errington M.L. Schmitz D. Gross C. Mao X. Engelsberg A. Mahlke C. Welzl H. Kobalz U. Stawrakakis A. Fernandez E. Waltereit R. Bick- Sander, A.; Therstappen, E.; Cooke, S.F.; Blanquet, V.; Wurst, W.; Salmen, B.; Bösl, M.R.; Lipp, H.P.; Grant, S.G.N.; Bliss, T.V.P.; Wolfer, D.P.; Kuhl, D. Arc/Arg3.1 is essential for the consolidation of synaptic plasticity and memories. Neuron 2006 52 3 437 444 10.1016/j.neuron.2006.08.024 17088210
    [Google Scholar]
  34. Guzowski J.F. Lyford G.L. Stevenson G.D. Houston F.P. McGaugh J.L. Worley P.F. Barnes C.A. Inhibition of activitydependent arc protein expression in the rat hippocampus impairs the maintenance of long-term potentiation and the consolidation of long-term memory. J. Neurosci 2000 20 11 3993 4001 10.1523/JNEUROSCI.20‑11‑03993.2000 10818134
    [Google Scholar]
  35. Newpher T.M. Harris S. Pringle J. Hamilton C. Soderling S. Regulation of spine structural plasticity by Arc/Arg3.1. Semin. Cell Dev. Biol. 2018 77 25 32 10.1016/j.semcdb.2017.09.022 28943393
    [Google Scholar]
  36. Pastuzyn E.D. Day C.E. Kearns R.B. Kyrke-Smith M. Taibi A.V. McCormick J. Yoder N. Belnap D.M. Erlendsson S. Morado D.R. Briggs J.A.G. Feschotte C. Shepherd J.D. The neuronal gene arc encodes a repurposed retrotransposon gag protein that mediates intercellular RNA transfer. Cell 2018 172 1-2 275 288.e18 10.1016/j.cell.2017.12.024 29328916
    [Google Scholar]
  37. Jenks K.R. Kim T. Pastuzyn E.D. Okuno H. Taibi A.V. Bito H. Bear M.F. Shepherd J.D. Arc restores juvenile plasticity in adult mouse visual cortex. Proc. Natl. Acad. Sci. USA 2017 114 34 9182 9187 10.1073/pnas.1700866114 28790183
    [Google Scholar]
  38. Cooke S.F. Bear M.F. How the mechanisms of long-term synaptic potentiation and depression serve experience-dependent plasticity in primary visual cortex. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014 369 1633 20130284 10.1098/rstb.2013.0284 24298166
    [Google Scholar]
  39. Maya Vetencourt J.F. Sale A. Viegi A. Baroncelli L. De Pasquale R. O’Leary O.F. Castrén E. Maffei L. The antidepressant fluoxetine restores plasticity in the adult visual cortex. Science 2008 320 5874 385 388 10.1126/science.1150516 18420937
    [Google Scholar]
  40. Chia C. Otto T. Hippocampal Arc (Arg3.1) expression is induced by memory recall and required for memory reconsolidation in trace fear conditioning. Neurobiol. Learn. Mem. 2013 106 48 55 10.1016/j.nlm.2013.06.021 23872190
    [Google Scholar]
  41. Nakayama D. Iwata H. Teshirogi C. Ikegaya Y. Matsuki N. Nomura H. Long-delayed expression of the immediate early gene Arc/Arg3.1 refines neuronal circuits to perpetuate fear memory. J. Neurosci. 2015 35 2 819 830 10.1523/JNEUROSCI.2525‑14.2015 25589774
    [Google Scholar]
  42. Gheidi A. Damphousse C.C. Marrone D.F. Experiencedependent persistent Arc expression is reduced in the aged hippocampus. Neurobiol. Aging 2020 95 225 230 10.1016/j.neurobiolaging.2020.07.032 32861833
    [Google Scholar]
  43. Ploski J.E. Pierre V.J. Smucny J. Park K. Monsey M.S. Overeem K.A. Schafe G.E. The activity-regulated cytoskeletalassociated protein (Arc/Arg3.1) is required for memory consolidation of pavlovian fear conditioning in the lateral amygdala. J. Neurosci. 2008 28 47 12383 12395 10.1523/JNEUROSCI.1662‑08.2008 19020031
    [Google Scholar]
  44. Myrum C. Giddaluru S. Jacobsen K. Espeseth T. Nyberg L. Lundervold A.J. Haavik J. Nilsson L.G. Reinvang I. Steen V.M. Johansson S. Wibrand K. Le Hellard S. Bramham C.R. Common variants in the ARC gene are not associated with cognitive abilities. Brain Behav. 2015 5 10 e00376 10.1002/brb3.376 26516611
    [Google Scholar]
  45. Purcell S.M. Moran J.L. Fromer M. Ruderfer D. Solovieff N. Roussos P. O’Dushlaine C. Chambert K. Bergen S.E. Kähler A. Duncan L. Stahl E. Genovese G. Fernández E. Collins M.O. Komiyama N.H. Choudhary J.S. Magnusson P.K.E. Banks E. Shakir K. Garimella K. Fennell T. DePristo M. Grant S.G.N. Haggarty S.J. Gabriel S. Scolnick E.M. Lander E.S. Hultman C.M. Sullivan P.F. McCarroll S.A. Sklar P. A polygenic burden of rare disruptive mutations in schizophrenia. Nature 2014 506 7487 185 190 10.1038/nature12975 24463508
    [Google Scholar]
  46. Fromer M. Pocklington A.J. Kavanagh D.H. Williams H.J. Dwyer S. Gormley P. Georgieva L. Rees E. Palta P. Ruderfer D.M. Carrera N. Humphreys I. Johnson J.S. Roussos P. Barker D.D. Banks E. Milanova V. Grant S.G. Hannon E. Rose S.A. Chambert K. Mahajan M. Scolnick E.M. Moran J.L. Kirov G. Palotie A. McCarroll S.A. Holmans P. Sklar P. Owen M.J. Purcell S.M. O’Donovan M.C. De novo mutations in schizophrenia implicate synaptic networks. Nature 2014 506 7487 179 184 10.1038/nature12929 24463507
    [Google Scholar]
  47. Zhang W. Wu J. Ward M.D. Yang S. Chuang Y.A. Xiao M. Li R. Leahy D.J. Worley P.F. Structural basis of arc binding to synaptic proteins: Implications for cognitive disease. Neuron 2015 86 2 490 500 10.1016/j.neuron.2015.03.030 25864631
    [Google Scholar]
  48. Guillozet-Bongaarts A.L. Hyde T.M. Dalley R.A. Hawrylycz M.J. Henry A. Hof P.R. Hohmann J. Jones A.R. Kuan C.L. Royall J. Shen E. Swanson B. Zeng H. Kleinman J.E. Altered gene expression in the dorsolateral prefrontal cortex of individuals with schizophrenia. Mol. Psychiatry 2014 19 4 478 485 10.1038/mp.2013.30 23528911
    [Google Scholar]
  49. Huentelman M.J. Muppana L. Corneveaux J.J. Dinu V. Pruzin J.J. Reiman R. Borish C.N. De Both M. Ahmed A. Todorov A. Cloninger C.R. Zhang R. Ma J. Gallitano A.L. Association of SNPs in EGR3 and ARC with Schizophrenia Supports a Biological Pathway for Schizophrenia Risk. PLoS One 2015 10 10 e0135076 10.1371/journal.pone.0135076 26474411
    [Google Scholar]
  50. Marshall C.R. Howrigan D.P. Merico D. Thiruvahindrapuram B. Wu W. Greer D.S. Antaki D. Shetty A. Holmans P.A. Pinto D. Gujral M. Brandler W.M. Malhotra D. Wang Z. Fajarado K.V.F. Maile M.S. Ripke S. Agartz I. Albus M. Alexander M. Amin F. Atkins J. Bacanu S.A. Belliveau R.A. Jr Bergen S.E. Bertalan M. Bevilacqua E. Bigdeli T.B. Black D.W. Bruggeman R. Buccola N.G. Buckner R.L. Bulik- Sullivan, B.; Byerley, W.; Cahn, W.; Cai, G.; Cairns, M.J.; Campion, D.; Cantor, R.M.; Carr, V.J.; Carrera, N.; Catts, S.V.; Chambert, K.D.; Cheng, W.; Cloninger, C.R.; Cohen, D.; Cormican, P.; Craddock, N.; Crespo-Facorro, B.; Crowley, J.J.; Curtis, D.; Davidson, M.; Davis, K.L.; Degenhardt, F.; Del Favero, J.; DeLisi, L.E.; Dikeos, D.; Dinan, T.; Djurovic, S.; Donohoe, G.; Drapeau, E.; Duan, J.; Dudbridge, F.; Eichhammer, P.; Eriksson, J.; Escott- Price, V.; Essioux, L.; Fanous, A.H.; Farh, K.H.; Farrell, M.S.; Frank, J.; Franke, L.; Freedman, R.; Freimer, N.B.; Friedman, J.I.; Forstner, A.J.; Fromer, M.; Genovese, G.; Georgieva, L.; Gershon, E.S.; Giegling, I.; Giusti-Rodríguez, P.; Godard, S.; Goldstein, J.I.; Gratten, J.; de Haan, L.; Hamshere, M.L.; Hansen, M.; Hansen, T.; Haroutunian, V.; Hartmann, A.M.; Henskens, F.A.; Herms, S.; Hirschhorn, J.N.; Hoffmann, P.; Hofman, A.; Huang, H.; Ikeda, M.; Joa, I.; Kähler, A.K.; Kahn, R.S.; Kalaydjieva, L.; Karjalainen, J.; Kavanagh, D.; Keller, M.C.; Kelly, B.J.; Kennedy, J.L.; Kim, Y.; Knowles, J.A.; Konte, B.; Laurent, C.; Lee, P.; Lee, S.H.; Legge, S.E.; Lerer, B.; Levy, D.L.; Liang, K.Y.; Lieberman, J.; Lönnqvist, J.; Loughland, C.M.; Magnusson, P.K.E.; Maher, B.S.; Maier, W.; Mallet, J.; Mattheisen, M.; Mattingsdal, M.; McCarley, R.W.; McDonald, C.; McIntosh, A.M.; Meier, S.; Meijer, C.J.; Melle, I.; Mesholam-Gately, R.I.; Metspalu, A.; Michie, P.T.; Milani, L.; Milanova, V.; Mokrab, Y.; Morris, D.W.; Müller-Myhsok, B.; Murphy, K.C.; Murray, R.M.; Myin-Germeys, I.; Nenadic, I.; Nertney, D.A.; Nestadt, G.; Nicodemus, K.K.; Nisenbaum, L.; Nordin, A.; O’Callaghan, E.; O’Dushlaine, C.; Oh, S.Y.; Olincy, A.; Olsen, L.; O’Neill, F.A.; Van Os, J.; Pantelis, C.; Papadimitriou, G.N.; Parkhomenko, E.; Pato, M.T.; Paunio, T.; Perkins, D.O.; Pers, T.H.; Pietiläinen, O.; Pimm, J.; Pocklington, A.J.; Powell, J.; Price, A.; Pulver, A.E.; Purcell, S.M.; Quested, D.; Rasmussen, H.B.; Reichenberg, A.; Reimers, M.A.; Richards, A.L.; Roffman, J.L.; Roussos, P.; Ruderfer, D.M.; Salomaa, V.; Sanders, A.R.; Savitz, A.; Schall, U.; Schulze, T.G.; Schwab, S.G.; Scolnick, E.M.; Scott, R.J.; Seidman, L.J.; Shi, J.; Silverman, J.M.; Smoller, J.W.; Söderman, E.; Spencer, C.C.A.; Stahl, E.A.; Strengman, E.; Strohmaier, J.; Stroup, T.S.; Suvisaari, J.; Svrakic, D.M.; Szatkiewicz, J.P.; Thirumalai, S.; Tooney, P.A.; Veijola, J.; Visscher, P.M.; Waddington, J.; Walsh, D.; Webb, B.T.; Weiser, M.; Wildenauer, D.B.; Williams, N.M.; Williams, S.; Witt, S.H.; Wolen, A.R.; Wormley, B.K.; Wray, N.R.; Wu, J.Q.; Zai, C.C.; Adolfsson, R.; Andreassen, O.A.; Blackwood, D.H.R.; Bramon, E.; Buxbaum, J.D.; Cichon, S.; Collier, D.A.; Corvin, A.; Daly, M.J.; Darvasi, A.; Domenici, E.; Esko, T.; Gejman, P.V.; Gill, M.; Gurling, H.; Hultman, C.M.; Iwata, N.; Jablensky, A.V.; Jönsson, E.G.; Kendler, K.S.; Kirov, G.; Knight, J.; Levinson, D.F.; Li, Q.S.; McCarroll, S.A.; McQuillin, A.; Moran, J.L.; Mowry, B.J.; Nöthen, M.M.; Ophoff, R.A.; Owen, M.J.; Palotie, A.; Pato, C.N.; Petryshen, T.L.; Posthuma, D.; Rietschel, M.; Riley, B.P.; Rujescu, D.; Sklar, P.; St Clair, D.; Walters, J.T.R.; Werge, T.; Sullivan, P.F.; O’Donovan, M.C.; Scherer, S.W.; Neale, B.M.; Sebat, J. Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nat. Genet. 2017 49 1 27 35 10.1038/ng.3725 27869829
    [Google Scholar]
  51. Takagi S. Balu D.T. Coyle J.T. Subchronic pharmacological and chronic genetic NMDA receptor hypofunction differentially regulate the Akt signaling pathway and Arc expression in juvenile and adult mice. Schizophr. Res. 2015 162 1-3 216 221 10.1016/j.schres.2014.12.034 25592804
    [Google Scholar]
  52. Thomsen M.S. Hansen H.H. Mikkelsen J.D. Opposite effect of phencyclidine on activity-regulated cytoskeleton-associated protein (Arc) in juvenile and adult limbic rat brain regions. Neurochem. Int. 2010 56 2 270 275 10.1016/j.neuint.2009.10.011 19897002
    [Google Scholar]
  53. Managò F. Mereu M. Mastwal S. Mastrogiacomo R. Scheggia D. Emanuele M. De Luca M.A. Weinberger D.R. Wang K.H. Papaleo F. Genetic disruption of Arc/Arg3.1 in mice causes alterations in dopamine and neurobehavioral phenotypes related to schizophrenia. Cell Rep. 2016 16 8 2116 2128 10.1016/j.celrep.2016.07.044 27524619
    [Google Scholar]
  54. Fumagalli F. Frasca A. Racagni G. Riva M.A. Antipsychotic drugs modulate Arc expression in the rat brain. Eur. Neuropsychopharmacol. 2009 19 2 109 115 10.1016/j.euroneuro.2008.09.001 18947986
    [Google Scholar]
  55. Zheng P. Hu M. Xie Y. Yu Y. Jaaro-Peled H. Huang X.F. Aripiprazole and haloperidol protect neurite lesions via reducing excessive D2R-DISC1 complex formation. Prog. Neuropsychopharmacol. Biol. Psychiatry 2019 92 59 69 10.1016/j.pnpbp.2018.12.007 30597182
    [Google Scholar]
  56. Managò F. Papaleo F. Schizophrenia: What’s Arc Got to Do with It? Front. Behav. Neurosci. 2017 11 181 10.3389/fnbeh.2017.00181 28979198
    [Google Scholar]
  57. Bamford N.S. Zhang H. Schmitz Y. Wu N.P. Cepeda C. Levine M.S. Schmauss C. Zakharenko S.S. Zablow L. Sulzer D. Heterosynaptic dopamine neurotransmission selects sets of corticostriatal terminals. Neuron 2004 42 4 653 663 10.1016/S0896‑6273(04)00265‑X 15157425
    [Google Scholar]
  58. Yin H.H. Lovinger D.M. Frequency-specific and D2 receptormediated inhibition of glutamate release by retrograde endocannabinoid signaling. Proc. Natl. Acad. Sci. USA 2006 103 21 8251 8256 10.1073/pnas.0510797103 16698932
    [Google Scholar]
  59. Surmeier D.J. Ding J. Day M. Wang Z. Shen W. D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci. 2007 30 5 228 235 10.1016/j.tins.2007.03.008 17408758
    [Google Scholar]
  60. Cepeda C. Levine M.S. Dopamine and N-methyl-D-aspartate receptor interactions in the neostriatum. Dev. Neurosci. 1998 20 1 1 18 10.1159/000017294 9600386
    [Google Scholar]
  61. Pettersson F. Pontén H. Waters N. Waters S. Sonesson C. Synthesis and evaluation of a set of 4-phenylpiperidines and 4- phenylpiperazines as D2 receptor ligands and the discovery of the dopaminergic stabilizer 4-[3-(methylsulfonyl)phenyl]-1- propylpiperidine (huntexil, pridopidine, ACR16). J. Med. Chem. 2010 53 6 2510 2520 10.1021/jm901689v 20155917
    [Google Scholar]
  62. Waters S. Ponten H. Edling M. Svanberg B. Klamer D. Waters N. The dopaminergic stabilizers pridopidine and ordopidine enhance cortico-striatal Arc gene expression. J. Neural Transm. 2014 121 11 1337 1347 10.1007/s00702‑014‑1231‑1 24817271
    [Google Scholar]
  63. Gronier B. Waters S. Ponten H. The dopaminergic stabilizer pridopidine increases neuronal activity of pyramidal neurons in the prefrontal cortex. J. Neural Transm. 2013 120 9 1281 1294 10.1007/s00702‑013‑1002‑4 23468085
    [Google Scholar]
  64. Seamans J.K. Durstewitz D. Christie B.R. Stevens C.F. Sejnowski T.J. Dopamine D1/D5 receptor modulation of excitatory synaptic inputs to layer V prefrontal cortex neurons. Proc. Natl. Acad. Sci. USA 2001 98 1 301 306 10.1073/pnas.98.1.301 11134516
    [Google Scholar]
  65. Solmi M. Murru A. Pacchiarotti I. Undurraga J. Veronese N. Fornaro M. Stubbs B. Monaco F. Vieta E. Seeman M. Correll C. Carvalho A. Safety, tolerability, and risks associated with first- and second-generation antipsychotics: A state-of-the-art clinical review. Ther. Clin. Risk Manag. 2017 13 757 777 10.2147/TCRM.S117321 28721057
    [Google Scholar]
  66. Kapur S. Seeman P. Antipsychotic agents differ in how fast they come off the dopamine D2 receptors. Implications for atypical antipsychotic action. J. Psychiatry Neurosci. 2000 25 2 161 166 10740989
    [Google Scholar]
  67. Homayoun H. Moghaddam B. Fine-tuning of awake prefrontal cortex neurons by clozapine: Comparison with haloperidol and Ndesmethylclozapine. Biol. Psychiatry 2007 61 5 679 687 10.1016/j.biopsych.2006.05.016 17046721
    [Google Scholar]
  68. Lecrubier Y. Is amisulpride an ‘atypical’ atypical antipsychotic agent? Int. Clin. Psychopharmacol. 2000 15 Suppl. 4 S21 S26 11252520
    [Google Scholar]
  69. de Bartolomeis A. Marmo F. Buonaguro E.F. Rossi R. Tomasetti C. Iasevoli F. Imaging brain gene expression profiles by antipsychotics: Region-specific action of amisulpride on postsynaptic density transcripts compared to haloperidol. Eur. Neuropsychopharmacol. 2013 23 11 1516 1529 10.1016/j.euroneuro.2012.11.014 23357084
    [Google Scholar]
  70. Luoni A. Rocha F.F. Riva M.A. Anatomical specificity in the modulation of activity-regulated genes after acute or chronic lurasidone treatment. Prog. Neuropsychopharmacol. Biol. Psychiatry 2014 50 94 101 10.1016/j.pnpbp.2013.12.008 24361635
    [Google Scholar]
  71. Shahid M. Walker G.B. Zorn S.H. Wong E. Asenapine: A novel psychopharmacologic agent with a unique human receptor signature. J. Psychopharmacol. 2009 23 1 65 73 10.1177/0269881107082944 18308814
    [Google Scholar]
  72. de Bartolomeis A. Iasevoli F. Marmo F. Buonaguro E.F. Eramo A. Rossi R. Avvisati L. Latte G. Tomasetti C. Progressive recruitment of cortical and striatal regions by inducible postsynaptic density transcripts after increasing doses of antipsychotics with different receptor profiles: Insights for psychosis treatment. Eur. Neuropsychopharmacol. 2015 25 4 566 582 10.1016/j.euroneuro.2015.01.003 25649681
    [Google Scholar]
  73. Frånberg O. Marcus M.M. Ivanov V. Schilström B. Shahid M. Svensson T.H. Asenapine elevates cortical dopamine, noradrenaline and serotonin release. Evidence for activation of cortical and subcortical dopamine systems by different mechanisms. Psychopharmacology 2009 204 2 251 264 10.1007/s00213‑008‑1456‑5 19198810
    [Google Scholar]
  74. Arnt J. Skarsfeldt T. Do novel antipsychotics have similar pharmacological characteristics? A review of the evidence. Neuropsychopharmacology 1998 18 2 63 101 10.1016/S0893‑133X(97)00112‑7 9430133
    [Google Scholar]
  75. Iasevoli F. Tomasetti C. Marmo F. Bravi D. Arnt J. de Bartolomeis A. Divergent acute and chronic modulation of glutamatergic postsynaptic density genes expression by the antipsychotics haloperidol and sertindole. Psychopharmacology 2010 212 3 329 344 10.1007/s00213‑010‑1954‑0 20652539
    [Google Scholar]
  76. Dedic N. Jones P.G. Hopkins S.C. Lew R. Shao L. Campbell J.E. Spear K.L. Large T.H. Campbell U.C. Hanania T. Leahy E. Koblan K.S. SEP-363856, a novel psychotropic agent with a unique, non-D2 receptor mechanism of action. J. Pharmacol. Exp. Ther. 2019 371 1 1 14 10.1124/jpet.119.260281 31371483
    [Google Scholar]
  77. Begni V. Sanson A. Luoni A. Sensini F. Grayson B. Munni S. Neill J.C. Riva M.A. Towards novel treatments for Schizophrenia: Molecular and behavioural signatures of the psychotropic agent SEP-363856. Int. J. Mol. Sci. 2021 22 8 4119 10.3390/ijms22084119 33923479
    [Google Scholar]
  78. Bruins Slot L.A. Lestienne F. Grevoz-Barret C. Newman-Tancredi, A.; Cussac, D. F15063, a potential antipsychotic with dopamine D2/D3 receptor antagonist and 5-HT1A receptor agonist properties: Influence on immediate-early gene expression in rat prefrontal cortex and striatum. Eur. J. Pharmacol. 2009 620 1-3 27 35 10.1016/j.ejphar.2009.08.019 19695244
    [Google Scholar]
  79. Collins C.M. Wood M.D. Elliott J.M. Chronic administration of haloperidol and clozapine induces differential effects on the expression of Arc and c-Fos in rat brain. J. Psychopharmacol. 2014 28 10 947 954 10.1177/0269881114536788 24989643
    [Google Scholar]
  80. Buonaguro E.F. Iasevoli F. Marmo F. Eramo A. Latte G. Avagliano C. Tomasetti C. de Bartolomeis A. Re-arrangements of gene transcripts at glutamatergic synapses after prolonged treatments with antipsychotics: A putative link with synaptic remodeling. Prog. Neuropsychopharmacol. Biol. Psychiatry 2017 76 29 41 10.1016/j.pnpbp.2017.02.012 28235555
    [Google Scholar]
  81. Fumagalli F. Frasca A. Racagni G. Riva M.A. Dynamic regulation of glutamatergic postsynaptic activity in rat prefrontal cortex by repeated administration of antipsychotic drugs. Mol. Pharmacol. 2008 73 5 1484 1490 10.1124/mol.107.043786 18250147
    [Google Scholar]
  82. Pei Q. Tordera R. Sprakes M. Sharp T. Glutamate receptor activation is involved in 5-HT2 agonist-induced Arc gene expression in the rat cortex. Neuropharmacology 2004 46 3 331 339 10.1016/j.neuropharm.2003.09.017 14975688
    [Google Scholar]
  83. Kessler R.M. Ansari M.S. Riccardi P. Li R. Jayathilake K. Dawant B. Meltzer H.Y. Occupancy of striatal and extrastriatal dopamine D2 receptors by clozapine and quetiapine. Neuropsychopharmacology 2006 31 9 1991 2001 10.1038/sj.npp.1301108 16738543
    [Google Scholar]
  84. Donai H. Sugiura H. Ara D. Yoshimura Y. Yamagata K. Yamauchi T. Interaction of Arc with CaM kinase II and stimulation of neurite extension by Arc in neuroblastoma cells expressing CaM kinase II. Neurosci. Res. 2003 47 4 399 408 10.1016/j.neures.2003.08.004 14630344
    [Google Scholar]
  85. Vazdarjanova A. Ramirez-Amaya V. Insel N. Plummer T.K. Rosi S. Chowdhury S. Mikhael D. Worley P.F. Guzowski J.F. Barnes C.A. Spatial exploration induces ARC, a plasticityrelated immediate‐early gene, only in calcium/calmodulindependent protein kinase II‐positive principal excitatory and inhibitory neurons of the rat forebrain. J. Comp. Neurol. 2006 498 3 317 329 10.1002/cne.21003 16871537
    [Google Scholar]
  86. Gardoni F. Frasca A. Zianni E. Riva M.A. Di Luca M. Fumagalli F. Repeated treatment with haloperidol, but not olanzapine, alters synaptic NMDA receptor composition in rat striatum. Eur. Neuropsychopharmacol. 2008 18 7 531 534 10.1016/j.euroneuro.2007.10.004 18061412
    [Google Scholar]
  87. Luoni A. Fumagalli F. Racagni G. Riva M.A. Repeated aripiprazole treatment regulates Bdnf, Arc and Npas4 expression under basal condition as well as after an acute swim stress in the rat brain. Pharmacol. Res. 2014 80 1 8 10.1016/j.phrs.2013.11.008 24309096
    [Google Scholar]
  88. Molteni R. Calabrese F. Racagni G. Fumagalli F. Riva M.A. Antipsychotic drug actions on gene modulation and signaling mechanisms. Pharmacol. Ther. 2009 124 1 74 85 10.1016/j.pharmthera.2009.06.001 19540875
    [Google Scholar]
  89. Iasevoli F. Tomasetti C. de Bartolomeis A. Scaffolding proteins of the post-synaptic density contribute to synaptic plasticity by regulating receptor localization and distribution: Relevance for neuropsychiatric diseases. Neurochem. Res. 2013 38 1 1 22 10.1007/s11064‑012‑0886‑y 22991141
    [Google Scholar]
  90. Bymaster F.P. Hemrick-Luecke S.K. Perry K.W. Fuller R.W. Neurochemical evidence for antagonism by olanzapine of dopamine, serotonin, α1-adrenergic and muscarinic receptors in vivo in rats. Psychopharmacology 1996 124 1-2 87 94 10.1007/BF02245608 8935803
    [Google Scholar]
  91. Tarazi F.I. Stahl S.M. Iloperidone, asenapine and lurasidone: A primer on their current status. Expert Opin. Pharmacother. 2012 13 13 1911 1922 10.1517/14656566.2012.712114 22849428
    [Google Scholar]
  92. Tokarski K. Bobula B. Grzegorzewska-Hiczwa M. Kusek M. Hess G. Stress- and antidepressant treatment-induced modifications of 5-HT7 receptor functions in the rat brain. Pharmacol. Rep. 2012 64 6 1305 1315 10.1016/S1734‑1140(12)70928‑3 23406741
    [Google Scholar]
  93. Pei Q. Zetterström T.S.C. Sprakes M. Tordera R. Sharp T. Antidepressant drug treatment induces Arc gene expression in the rat brain. Neuroscience 2003 121 4 975 982 10.1016/S0306‑4522(03)00504‑9 14580947
    [Google Scholar]
  94. Molteni R. Calabrese F. Mancini M. Racagni G. Riva M.A. Basal and stress-induced modulation of activity-regulated cytoskeletal associated protein (Arc) in the rat brain following duloxetine treatment. Psychopharmacology 2008 201 2 285 292 10.1007/s00213‑008‑1276‑7 18704370
    [Google Scholar]
  95. Fumagalli F. Calabrese F. Luoni A. Bolis F. Racagni G. Riva M.A. Modulation of BDNF expression by repeated treatment with the novel antipsychotic lurasidone under basal condition and in response to acute stress. Int. J. Neuropsychopharmacol. 2012 15 2 235 246 10.1017/S1461145711000150 21349227
    [Google Scholar]
  96. Kishi T. Matsuda Y. Nakamura H. Iwata N. Blonanserin for schizophrenia: Systematic review and meta-analysis of doubleblind, randomized, controlled trials. J. Psychiatr. Res. 2013 47 2 149 154 10.1016/j.jpsychires.2012.10.011 23131856
    [Google Scholar]
  97. Paladini M.S. Spero V. Begni V. Marchisella F. Guidi A. Gruca P. Lason M. Litwa E. Papp M. Riva M.A. Molteni R. Behavioral and molecular effects of the antipsychotic drug blonanserin in the chronic mild stress model. Pharmacol. Res. 2021 163 105330 10.1016/j.phrs.2020.105330 33276101
    [Google Scholar]
  98. Marchisella F. Paladini M.S. Guidi A. Begni V. Brivio P. Spero V. Calabrese F. Molteni R. Riva M.A. Chronic treatment with the antipsychotic drug blonanserin modulates the responsiveness to acute stress with anatomical selectivity. Psychopharmacology 2020 237 6 1783 1793 10.1007/s00213‑020‑05498‑9 32296859
    [Google Scholar]
  99. Nakahara T. Kuroki T. Hashimoto K. Hondo H. Tsutsumi T. Motomura K. Ueki H. Hirano M. Uchimura H. Effect of atypical antipsychotics on phencyclidine-induced expression of arc in rat brain. Neuroreport 2000 11 3 551 555 10.1097/00001756‑200002280‑00025 10718313
    [Google Scholar]
  100. Fumagalli F. Molteni R. Roceri M. Bedogni F. Santero R. Fossati C. Gennarelli M. Racagni G. Riva M.A. Effect of antipsychotic drugs on brain‐derived neurotrophic factor expression under reduced N‐methyl‐D‐aspartate receptor activity. J. Neurosci. Res. 2003 72 5 622 628 10.1002/jnr.10609 12749027
    [Google Scholar]
  101. Molteni R. Calabrese F. Maj P.F. Olivier J.D.A. Racagni G. Ellenbroek B.A. Riva M.A. Altered expression and modulation of activity-regulated cytoskeletal associated protein (Arc) in serotonin transporter knockout rats. Eur. Neuropsychopharmacol. 2009 19 12 898 904 10.1016/j.euroneuro.2009.06.008 19576731
    [Google Scholar]
  102. Eriksson T.M. Delagrange P. Spedding M. Popoli M. Mathé A.A. Ögren S.O. Svenningsson P. Emotional memory impairments in a genetic rat model of depression: involvement of 5-HT/MEK/Arc signaling in restoration. Mol. Psychiatry 2012 17 2 173 184 10.1038/mp.2010.131 21242991
    [Google Scholar]
  103. Gammie S.C. Evaluation of animal model congruence to human depression based on large-scale gene expression patterns of the CNS. Sci. Rep. 2022 12 1 108 10.1038/s41598‑021‑04020‑1 34997033
    [Google Scholar]
  104. de Foubert G. Carney S.L. Robinson C.S. Destexhe E.J. Tomlinson R. Hicks C.A. Murray T.K. Gaillard J.P. Deville C. Xhenseval V. Thomas C.E. O’Neill M.J. Zetterström T.S.C. Fluoxetine-induced change in rat brain expression of brain-derived neurotrophic factor varies depending on length of treatment. Neuroscience 2004 128 3 597 604 10.1016/j.neuroscience.2004.06.054 15381288
    [Google Scholar]
  105. Alme M.N. Wibrand K. Dagestad G. Bramham C.R. Chronic fluoxetine treatment induces brain region-specific upregulation of genes associated with BDNF-induced long-term potentiation. Neural Plast. 2007 2007 1 9 10.1155/2007/26496 18301726
    [Google Scholar]
  106. Bang-Andersen B. Ruhland T. Jørgensen M. Smith G. Frederiksen K. Jensen K.G. Zhong H. Nielsen S.M. Hogg S. Mørk A. Stensbøl T.B. Discovery of 1-] [2-(2,4-dimethylphenylsulfanyl)- phenyl]piperazine (Lu AA21004): A novel multimodal compound for the treatment of major depressive disorder. J. Med. Chem. 2011 54 9 3206 3221 10.1021/jm101459g 21486038
    [Google Scholar]
  107. Brivio P. Corsini G. Riva M.A. Calabrese F. Chronic vortioxetine treatment improves the responsiveness to an acute stress acting through the ventral hippocampus in a glucocorticoid-dependent way. Pharmacol. Res. 2019 142 14 21 10.1016/j.phrs.2019.02.006 30735803
    [Google Scholar]
  108. Henke P.G. Hippocampal pathway to the amygdala and stress ulcer development. Brain Res. Bull. 1990 25 5 691 695 10.1016/0361‑9230(90)90044‑Z 2289157
    [Google Scholar]
  109. El Mansari M. Lecours M. Blier P. Effects of acute and sustained administration of vortioxetine on the serotonin system in the hippocampus: Electrophysiological studies in the rat brain. Psychopharmacology 2015 232 13 2343 2352 10.1007/s00213‑015‑3870‑9 25665528
    [Google Scholar]
  110. Pehrson A.L. Cremers T. Bétry C. van der Hart M.G.C. Jørgensen L. Madsen M. Haddjeri N. Ebert B. Sanchez C. Lu AA21004, a novel multimodal antidepressant, produces regionally selective increases of multiple neurotransmitters—A rat microdialysis and electrophysiology study. Eur. Neuropsychopharmacol. 2013 23 2 133 145 10.1016/j.euroneuro.2012.04.006 22612991
    [Google Scholar]
  111. Castrén E. Is mood chemistry? Nat. Rev. Neurosci. 2005 6 3 241 246 10.1038/nrn1629 15738959
    [Google Scholar]
  112. Kugathasan P. Waller J. Westrich L. Abdourahman A. Tamm J.A. Pehrson A.L. Dale E. Gulinello M. Sanchez C. Li Y. In vivo and in vitro effects of vortioxetine on molecules associated with neuroplasticity. J. Psychopharmacol. 2017 31 3 365 376 10.1177/0269881116667710 27678087
    [Google Scholar]
  113. Dale E. Zhang H. Leiser S.C. Xiao Y. Lu D. Yang C.R. Plath N. Sanchez C. Vortioxetine disinhibits pyramidal cell function and enhances synaptic plasticity in the rat hippocampus. J. Psychopharmacol. 2014 28 10 891 902 10.1177/0269881114543719 25122043
    [Google Scholar]
  114. Li Y. Pehrson A.L. Waller J.A. Dale E. Sanchez C. Gulinello M. A critical evaluation of the activity-regulated cytoskeletonassociated protein (Arc/Arg3.1)'s putative role in regulating dendritic plasticity, cognitive processes, and mood in animal models of depression. Front. Neurosci. 2015 9 279 10.3389/fnins.2015.00279 26321903
    [Google Scholar]
  115. Sanchez C. Asin K.E. Artigas F. Vortioxetine, a novel antidepressant with multimodal activity: Review of preclinical and clinical data. Pharmacol. Ther. 2015 145 43 57 10.1016/j.pharmthera.2014.07.001 25016186
    [Google Scholar]
  116. Bymaster F. Lee T. Knadler M. Detke M. Iyengar S. The dual transporter inhibitor duloxetine: A review of its preclinical pharmacology, pharmacokinetic profile, and clinical results in depression. Curr. Pharm. Des. 2005 11 12 1475 1493 10.2174/1381612053764805 15892657
    [Google Scholar]
  117. Coutens B. Yrondi A. Rampon C. Guiard B.P. Psychopharmacological properties and therapeutic profile of the antidepressant venlafaxine. Psychopharmacology 2022 239 9 2735 2752 10.1007/s00213‑022‑06203‑8 35947166
    [Google Scholar]
  118. Serres F. Millan M.J. Sharp T. Molecular adaptation to chronic antidepressant treatment: evidence for a more rapid response to the novel α2-adrenoceptor antagonist/5-HT-noradrenaline reuptake inhibitor (SNRI), S35966, compared to the SNRI, venlafaxine. Int. J. Neuropsychopharmacol. 2012 15 5 617 629 10.1017/S1461145711000733 21733241
    [Google Scholar]
  119. Benedetti F. Radaelli D. Bernasconi A. Dallaspezia S. Colombo C. Smeraldi E. Changes in medial prefrontal cortex neural responses parallel successful antidepressant combination of venlafaxine and light therapy. Arch. Ital. Biol. 2009 147 3 83 93 20014654
    [Google Scholar]
  120. Liu R.J. Aghajanian G.K. Stress blunts serotonin- and hypocretin-evoked EPSCs in prefrontal cortex: Role of corticosterone- mediated apical dendritic atrophy. Proc. Natl. Acad. Sci. USA 2008 105 1 359 364 10.1073/pnas.0706679105 18172209
    [Google Scholar]
  121. Brivio P. Gallo M.T. Gruca P. Lason M. Litwa E. Fumagalli F. Papp M. Calabrese F. Chronic N-acetyl-cysteine treatment enhances the expression of the immediate early gene nr4a1 in response to an acute challenge in male rats: Comparison with the antidepressant venlafaxine. Int. J. Mol. Sci. 2023 24 8 7321 10.3390/ijms24087321 37108481
    [Google Scholar]
  122. Calabrese F. Molteni R. Gabriel C. Mocaer E. Racagni G. Riva M.A. Modulation of neuroplastic molecules in selected brain regions after chronic administration of the novel antidepressant agomelatine. Psychopharmacology 2011 215 2 267 275 10.1007/s00213‑010‑2129‑8 21181122
    [Google Scholar]
  123. Boulle F. Massart R. Stragier E. Païzanis E. Zaidan L. Marday S. Gabriel C. Mocaer E. Mongeau R. Lanfumey L. Hippocampal and behavioral dysfunctions in a mouse model of environmental stress: Normalization by agomelatine. Transl. Psychiatry 2014 4 11 e485 e485 10.1038/tp.2014.125 25423137
    [Google Scholar]
  124. Marballi K.K. Gallitano A.L. Immediate early genes anchor a biological pathway of proteins required for memory formation, long-term depression and risk for schizophrenia. Front. Behav. Neurosci. 2018 12 23 10.3389/fnbeh.2018.00023 29520222
    [Google Scholar]
  125. Na Y. Park S. Lee C. Kim D.K. Park J.M. Sockanathan S. Huganir R.L. Worley P.F. Real-time imaging reveals properties of glutamate-induced arc/arg 3.1 translation in neuronal dendrites. Neuron 2016 91 3 561 573 10.1016/j.neuron.2016.06.017 27397520
    [Google Scholar]
  126. Pham K. Nacher J. Hof P.R. McEwen B.S. Repeated restraint stress suppresses neurogenesis and induces biphasic PSA‐NCAM expression in the adult rat dentate gyrus. Eur. J. Neurosci. 2003 17 4 879 886 10.1046/j.1460‑9568.2003.02513.x 12603278
    [Google Scholar]
  127. Mirescu C. Gould E. Stress and adult neurogenesis. Hippocampus 2006 16 3 233 238 10.1002/hipo.20155 16411244
    [Google Scholar]
  128. Santarelli L. Saxe M. Gross C. Surget A. Battaglia F. Dulawa S. Weisstaub N. Lee J. Duman R. Arancio O. Belzung C. Hen R. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 2003 301 5634 805 809 10.1126/science.1083328 12907793
    [Google Scholar]
  129. Casarotto P.C. Girych M. Fred S.M. Kovaleva V. Moliner R. Enkavi G. Biojone C. Cannarozzo C. Sahu M.P. Kaurinkoski K. Brunello C.A. Steinzeig A. Winkel F. Patil S. Vestring S. Serchov T. Diniz C.R.A.F. Laukkanen L. Cardon I. Antila H. Rog T. Piepponen T.P. Bramham C.R. Normann C. Lauri S.E. Saarma M. Vattulainen I. Castrén E. Antidepressant drugs act by directly binding to TRKB neurotrophin receptors. Cell 2021 184 5 1299 1313.e19 10.1016/j.cell.2021.01.034 33606976
    [Google Scholar]
  130. Reynolds J.N. Baskys A. Carlen P.L. The effects of serotonin on N-methyl-d-aspartate and synaptically evoked depolarizations in rat neocortical neurons. Brain Res. 1988 456 2 286 292 10.1016/0006‑8993(88)90230‑2 3061564
    [Google Scholar]
  131. Chen T. Zhu J. Yang L.K. Feng Y. Lin W. Wang Y.H. Glutamate-induced rapid induction of Arc/Arg3.1 requires NMDA receptor-mediated phosphorylation of ERK and CREB Neurosci. Lett. 2017 661 23 28 10.1016/j.neulet.2017.09.024 28919534
    [Google Scholar]
  132. Réus G.Z. Abelaira H.M. Agostinho F.R. Ribeiro K.F. Vitto M.F. Luciano T.F. de Souza C.T. Quevedo J. The administration of olanzapine and fluoxetine has synergistic effects on intracellular survival pathways in the rat brain. J. Psychiatr. Res. 2012 46 8 1029 1035 10.1016/j.jpsychires.2012.04.016 22575330
    [Google Scholar]
  133. Caffino L. Mottarlini F. Piva A. Rizzi B. Fumagalli F. Chiamulera C. Temporal dynamics of BDNF signaling recruitment in the rat prefrontal cortex and hippocampus following a single infusion of a translational dose of ketamine. Neuropharmacology 2024 242 109767 10.1016/j.neuropharm.2023.109767 37858883
    [Google Scholar]
  134. Park S. Park J.M. Kim S. Kim J.A. Shepherd J.D. Smith- Hicks, C.L.; Chowdhury, S.; Kaufmann, W.; Kuhl, D.; Ryazanov, A.G.; Huganir, R.L.; Linden, D.J.; Worley, P.F. Elongation factor 2 and fragile X mental retardation protein control the dynamic translation of Arc/Arg3.1 essential for mGluR-LTD. Neuron 2008 59 1 70 83 10.1016/j.neuron.2008.05.023 18614030
    [Google Scholar]
  135. Racagni G. Riva M.A. Molteni R. Musazzi L. Calabrese F. Popoli M. Tardito D. Mode of action of agomelatine: Synergy between melatonergic and 5-HT 2C receptors. World J. Biol. Psychiatry 2011 12 8 574 587 10.3109/15622975.2011.595823 21999473
    [Google Scholar]
  136. Caffino L. Messa G. Fumagalli F. A single cocaine administration alters dendritic spine morphology and impairs glutamate receptor synaptic retention in the medial prefrontal cortex of adolescent rats. Neuropharmacology 2018 140 209 216 10.1016/j.neuropharm.2018.08.006 30092246
    [Google Scholar]
  137. Caffino L. Giannotti G. Racagni G. Fumagalli F. A single cocaine exposure disrupts actin dynamics in the cortico-accumbal pathway of adolescent rats: modulation by a second cocaine injection. Psychopharmacology 2017 234 8 1217 1222 10.1007/s00213‑017‑4559‑z 28204841
    [Google Scholar]
  138. Salery M. Dos Santos M. Saint-Jour E. Moumné L. Pagès C. Kappès V. Parnaudeau S. Caboche J. Vanhoutte P. Activityregulated cytoskeleton-associated protein accumulates in the nucleus in response to cocaine and acts as a brake on chromatin remodeling and long-term behavioral alterations. Biol. Psychiatry 2017 81 7 573 584 10.1016/j.biopsych.2016.05.025 27567310
    [Google Scholar]
  139. Caffino L. Giannotti G. Mottarlini F. Racagni G. Fumagalli F. Developmental exposure to cocaine dynamically dysregulates cortical Arc/Arg3.1 modulation in response to a challenge. Neurotox. Res. 2017 31 2 289 297 10.1007/s12640‑016‑9683‑8 27832448
    [Google Scholar]
  140. Caffino L. Calabrese F. Giannotti G. Barbon A. Verheij M.M.M. Racagni G. Fumagalli F. Stress rapidly dysregulates the glutamatergic synapse in the prefrontal cortex of cocainewithdrawn adolescent rats. Addict. Biol. 2015 20 1 158 169 10.1111/adb.12089 24102978
    [Google Scholar]
  141. Bhat R.V. Baraban J.M. Activation of transcription factor genes in striatum by cocaine: Role of both serotonin and dopamine systems. J. Pharmacol. Exp. Ther. 1993 267 1 496 505 8229780
    [Google Scholar]
  142. Covington H.E. III Kikusui T. Goodhue J. Nikulina E.M. Hammer R.P. Jr Miczek K.A. Brief social defeat stress: Long lasting effects on cocaine taking during a binge and zif268 mRNA expression in the amygdala and prefrontal cortex. Neuropsychopharmacology 2005 30 2 310 321 10.1038/sj.npp.1300587 15496936
    [Google Scholar]
  143. Fumagalli F. Caffino L. Racagni G. Riva M.A. Repeated stress prevents cocaine-induced activation of BDNF signaling in rat prefrontal cortex. Eur. Neuropsychopharmacol. 2009 19 6 402 408 10.1016/j.euroneuro.2009.01.003 19223270
    [Google Scholar]
  144. Arnsten A.F.T. Stress signalling pathways that impair prefrontal cortex structure and function. Nat. Rev. Neurosci. 2009 10 6 410 422 10.1038/nrn2648 19455173
    [Google Scholar]
  145. Caffino L. Racagni G. Fumagalli F. Stress and cocaine interact to modulate Arc/Arg3.1 expression in rat brain. Psychopharmacology 2011 218 1 241 248 10.1007/s00213‑011‑2331‑3 21590283
    [Google Scholar]
  146. Falk J. Feingold D. Environmental and cultural factors in the behavioral action of drugs. Psychopharmacology: The Third Generation of Progress. Meltzer H. New York, NY Raven Press 1987 1503 1510
    [Google Scholar]
  147. Badiani A. Browman K.E. Robinson T.E. Influence of novel versus home environments on sensitization to the psychomotor stimulant effects of cocaine and amphetamine. Brain Res. 1995 674 2 291 298 10.1016/0006‑8993(95)00028‑O 7796109
    [Google Scholar]
  148. Klebaur J.E. Ostrander M.M. Norton C.S. Watson S.J. Akil H. Robinson T.E. The ability of amphetamine to evoke arc (Arg 3.1) mRNA expression in the caudate, nucleus accumbens and neocortex is modulated by environmental context. Brain Res. 2002 930 1-2 30 36 10.1016/S0006‑8993(01)03400‑X 11879792
    [Google Scholar]
  149. Penrod R.D. Thomsen M. Taniguchi M. Guo Y. Cowan C.W. Smith L.N. The activity-regulated cytoskeleton-associated protein, Arc/Arg3.1, influences mouse cocaine self-administration. Pharmacol. Biochem. Behav. 2020 188 172818 10.1016/j.pbb.2019.172818 31682894
    [Google Scholar]
  150. Fumagalli F. Franchi C. Caffino L. Racagni G. Riva M.A. Cervo L. Single session of cocaine intravenous self-administration shapes goal-oriented behaviours and up-regulates Arc mRNA levels in rat medial prefrontal cortex. Int. J. Neuropsychopharmacol. 2009 12 3 423 429 10.1017/S1461145708009681 19025723
    [Google Scholar]
  151. Zavala A.R. Osredkar T. Joyce J.N. Neisewander J.L. Upregulation of Arc mRNA expression in the prefrontal cortex following cue‐induced reinstatement of extinguished cocaine‐seeking behavior. Synapse 2008 62 6 421 431 10.1002/syn.20502 18361437
    [Google Scholar]
  152. Schiltz C.A. Kelley A.E. Landry C.F. Contextual cues associated with nicotine administration increase arc mRNA expression in corticolimbic areas of the rat brain. Eur. J. Neurosci. 2005 21 6 1703 1711 10.1111/j.1460‑9568.2005.04001.x 15845097
    [Google Scholar]
  153. Schiltz C.A. Bremer Q.Z. Landry C.F. Kelley A.E. Foodassociated cues alter forebrain functional connectivity as assessed with immediate early gene and proenkephalin expression. BMC Biol. 2007 5 1 16 10.1186/1741‑7007‑5‑16 17462082
    [Google Scholar]
  154. Caffino L. Giannotti G. Malpighi C. Racagni G. Filip M. Fumagalli F. Long-term abstinence from developmental cocaine exposure alters Arc/Arg3.1 modulation in the rat medial prefrontal cortex. Neurotox. Res. 2014 26 3 299 306 10.1007/s12640‑014‑9472‑1 24810662
    [Google Scholar]
  155. Contarino A. Kitchener P. Vallée M. Papaleo F. Piazza P.V. CRF1 receptor-deficiency increases cocaine reward. Neuropharmacology 2017 117 41 48 10.1016/j.neuropharm.2017.01.024 28137450
    [Google Scholar]
  156. Shi X. von Weltin E. Fitzsimmons E. Do C. Caban Rivera C. Chen C. Liu-Chen L.Y. Unterwald E.M. Reactivation of cocaine contextual memory engages mechanistic target of rapamycin/S6 kinase 1 signaling. Front. Pharmacol. 2022 13 976932 10.3389/fphar.2022.976932 36238569
    [Google Scholar]
  157. Alaghband Y. O’Dell S.J. Azarnia S. Khalaj A.J. Guzowski J.F. Marshall J.F. Retrieval-induced NMDA receptor-dependent Arc expression in two models of cocaine-cue memory. Neurobiol. Learn. Mem. 2014 116 79 89 10.1016/j.nlm.2014.09.001 25225165
    [Google Scholar]
  158. Shepherd J.D. Bear M.F. New views of Arc, a master regulator of synaptic plasticity. Nat. Neurosci. 2011 14 3 279 284 10.1038/nn.2708 21278731
    [Google Scholar]
  159. Giannotti G. Caffino L. Calabrese F. Racagni G. Riva M.A. Fumagalli F. Prolonged abstinence from developmental cocaine exposure dysregulates BDNF and its signaling network in the me dial prefrontal cortex of adult rats. Int. J. Neuropsychopharmacol. 2014 17 4 625 634 10.1017/S1461145713001454 24345425
    [Google Scholar]
  160. Calabrese F. Richetto J. Racagni G. Feldon J. Meyer U. Riva M.A. Effects of withdrawal from repeated amphetamine exposure in peri-puberty on neuroplasticity-related genes in mice. Neuroscience 2013 250 222 231 10.1016/j.neuroscience.2013.07.018 23872394
    [Google Scholar]
  161. Grimm J.W. Lu L. Hayashi T. Hope B.T. Su T.P. Shaham Y. Time-dependent increases in brain-derived neurotrophic factor protein levels within the mesolimbic dopamine system after withdrawal from cocaine: implications for incubation of cocaine craving. J. Neurosci. 2003 23 3 742 747 10.1523/JNEUROSCI.23‑03‑00742.2003 12574402
    [Google Scholar]
  162. Giannotti G. Canazza I. Caffino L. Bilel S. Ossato A. Fumagalli F. Marti M. The cathinones MDPV and α-PVP elicit different behavioral and molecular effects following acute exposure. Neurotox. Res. 2017 32 4 594 602 10.1007/s12640‑017‑9769‑y 28646469
    [Google Scholar]
  163. Gainetdinov R.R. Jones S.R. Fumagalli F. Wightman R.M. Caron M.G. Re-evaluation of the role of the dopamine transporter in dopamine system homeostasis1Published on the World Wide Web on 27 January 1998.1 Brain Res. Brain Res. Rev. 1998 26 2-3 148 153 10.1016/S0165‑0173(97)00063‑5 9651511
    [Google Scholar]
  164. Biever A. Boubaker-Vitre J. Cutando L. Gracia-Rubio I. Costa- Mattioli, M.; Puighermanal, E.; Valjent, E. Repeated Exposure to D-Amphetamine Decreases Global Protein Synthesis and Regulates the Translation of a Subset of mRNAs in the Striatum. Front. Mol. Neurosci. 2017 9 165 10.3389/fnmol.2016.00165 28119566
    [Google Scholar]
  165. Banerjee P.S. Aston J. Khundakar A.A. Zetterström T.S.C. Differential regulation of psychostimulant‐induced gene expression of brain derived neurotrophic factor and the immediate‐early gene Arc in the juvenile and adult brain. Eur. J. Neurosci. 2009 29 3 465 476 10.1111/j.1460‑9568.2008.06601.x 19222557
    [Google Scholar]
  166. Benjamin G. James A. Claire L. Zetterström T. Age-dependent effects of methylphenidate in the prefrontal cortex: evidence from electrophysiological and Arc gene expression measurements. J. Psychopharmacol. 2010 24 12 1819 1827 10.1177/0269881109359100 20142300
    [Google Scholar]
  167. Chase T. Carrey N. Soo E. Wilkinson M. Methylphenidate regulates activity regulated cytoskeletal associated but not brainderived neurotrophic factor gene expression in the developing rat striatum. Neuroscience 2007 144 3 969 984 10.1016/j.neuroscience.2006.10.035 17156936
    [Google Scholar]
  168. Scherma M. Palmas M.F. Pisanu A. Masia P. Dedoni S. Camoglio C. Fratta W. Carta A.R. Fadda P. Induction of activity- regulated cytoskeleton-associated protein and c-fos expression in an animal model of anorexia nervosa. Nutrients 2023 15 17 3830 10.3390/nu15173830 37686862
    [Google Scholar]
  169. Andreou C. Bozikas V.P. The predictive significance of neurocognitive factors for functional outcome in bipolar disorder. Curr. Opin. Psychiatry 2013 26 1 54 59 10.1097/YCO.0b013e32835a2acf 23154642
    [Google Scholar]
  170. Addington J. Barbato M. The role of cognitive functioning in the outcome of those at clinical high risk for developing psychosis. Epidemiol. Psychiatr. Sci. 2012 21 4 335 342 10.1017/S204579601200042X 23174394
    [Google Scholar]
  171. Elizalde N. Pastor P.M. Garcia-García Á.L. Serres F. Venzala E. Huarte J. Ramírez M.J. Del Rio J. Sharp T. Tordera R.M. Regulation of markers of synaptic function in mouse models of depression: chronic mild stress and decreased expression of VGLUT1. J. Neurochem. 2010 114 5 1302 1314 10.1111/j.1471‑4159.2010.06854.x 20550627
    [Google Scholar]
  172. Pinaud R. Penner M.R. Robertson H.A. Currie R.W. Upregulation of the immediate early gene arc in the brains of rats exposed to environmental enrichment: implications for molecular plasticity. Brain Res. Mol. Brain Res. 2001 91 1-2 50 56 10.1016/S0169‑328X(01)00121‑8 11457492
    [Google Scholar]
  173. Vazdarjanova A. McNaughton B.L. Barnes C.A. Worley P.F. Guzowski J.F. Experience-dependent coincident expression of the effector immediate-early genes arc and Homer 1a in hippocampal and neocortical neuronal networks. J. Neurosci. 2002 22 23 10067 10071 10.1523/JNEUROSCI.22‑23‑10067.2002 12451105
    [Google Scholar]
  174. Pintori N. Piva A. Mottarlini F. Díaz F.C. Maggi C. Caffino L. Fumagalli F. Chiamulera C. Brief exposure to enriched environment rapidly shapes the glutamate synapses in the rat brain: A metaplastic fingerprint. Eur. J. Neurosci. 2024 59 5 982 995 10.1111/ejn.16279 38378276
    [Google Scholar]
  175. Kozlovsky N. Matar M.A. Kaplan Z. Kotler M. Zohar J. Cohen H. The immediate early gene Arc is associated with behavioral resilience to stress exposure in an animal model of posttraumatic stress disorder. Eur. Neuropsychopharmacol. 2008 18 2 107 116 10.1016/j.euroneuro.2007.04.009 17611082
    [Google Scholar]
/content/journals/cn/10.2174/011570159X338335240903075655
Loading
/content/journals/cn/10.2174/011570159X338335240903075655
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test