Skip to content
2000
Volume 23, Issue 6
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

COVID-19 is associated with neuropsychiatric symptoms, such as anosmia, anxiety, depression, stress-related reactions, and psychoses. The illness can cause persistent cognitive impairment and “brain fog”, suggesting chronic brain involvement. Clinical entities of ongoing symptomatic COVID-19 and Post COVID Syndrome (PCS) mainly present neuropsychiatric symptoms such as dysgeusia, headache, fatigue, anxiety, depression, sleep disturbances, and post-traumatic stress disorder. The pathophysiology of COVID-19-related brain damage is unclear, but it is linked to various mechanisms such as inflammation, oxidative stress, immune dysregulation, impaired glutamate homeostasis, glial and glymphatic damage, and hippocampal degeneration. Noteworthy is that the metabotropic receptor mGluR2 was discovered as a mechanism of internalisation of SARS-CoV-2 in Central Nervous System (CNS) cells. N-acetylcysteine (NAC) and acetyl-L-carnitine (ALC) are two supplements that have already been found effective in treating psychiatric conditions. Furthermore, NAC showed evidence in relieving cognitive symptomatology in PCS, and ALC was found effective in treating depressive symptomatology of PCS. The overlapping effects on the glutamatergic system of ALC and NAC could help treat COVID-19 psychiatric symptoms and PCS, acting through different mechanisms on the xc-mGluR2 network, with potentially synergistic effects on chronic pain and neuro-astrocyte protection. This paper aims to summarise the current evidence on the potential therapeutic role of NAC and ALC, providing an overview of the underlying molecular mechanisms and pathophysiology. It proposes a pathophysiological model explaining the effectiveness of NAC and ALC in treating COVID-19-related neuropsychiatric symptoms.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X343115241030094848
2024-11-05
2025-04-13
Loading full text...

Full text loading...

References

  1. ShivalkarS. PingaliM.S. VermaA. SinghA. SinghV. PaitalB. DasD. VaradwajP.K. SamantaS.K. Outbreak of COVID-19: A detailed overview and its consequences.Adv. Exp. Med. Biol.20211353234510.1007/978‑3‑030‑85113‑2_2 35137366
    [Google Scholar]
  2. WanD. DuT. HongW. ChenL. QueH. LuS. PengX. Neurological complications and infection mechanism of SARS-CoV-2.Signal Transduct. Target. Ther.20216140610.1038/s41392‑021‑00818‑7 34815399
    [Google Scholar]
  3. RogersJ.P. ChesneyE. OliverD. PollakT.A. McGuireP. Fusar-PoliP. ZandiM.S. LewisG. DavidA.S. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: A systematic review and meta-analysis with comparison to the COVID-19 pandemic.Lancet Psychiatry20207761162710.1016/S2215‑0366(20)30203‑0 32437679
    [Google Scholar]
  4. AleemA.A. SamadA.B. SlenkerA.K. Emerging variants of SARS-CoV-2 and novel therapeutics against coronavirus (COVID-19).Treasure Island, FLStatPearls2021
    [Google Scholar]
  5. WeeL.E. LimJ.T. TayA.T. PangD. DickensB. ChiewC.J. OngB. LyeD.C.B. TanK.B. Long-term neuropsychiatric sequelae of Delta versus Omicron SARS-CoV-2 infection.Clin. Microbiol. Infect.202430453153910.1016/j.cmi.2023.12.019 38141822
    [Google Scholar]
  6. NalbandianA. SehgalK. GuptaA. MadhavanM.V. McGroderC. StevensJ.S. CookJ.R. NordvigA.S. ShalevD. SehrawatT.S. AhluwaliaN. BikdeliB. DietzD. Der-NigoghossianC. Liyanage-DonN. RosnerG.F. BernsteinE.J. MohanS. BeckleyA.A. SeresD.S. ChoueiriT.K. UrielN. AusielloJ.C. AcciliD. FreedbergD.E. BaldwinM. SchwartzA. BrodieD. GarciaC.K. ElkindM.S.V. ConnorsJ.M. BilezikianJ.P. LandryD.W. WanE.Y. Post-acute COVID-19 syndrome.Nat. Med.202127460161510.1038/s41591‑021‑01283‑z 33753937
    [Google Scholar]
  7. VenkatesanP. NICE guideline on long COVID.Lancet Respir. Med.20219212910.1016/S2213‑2600(21)00031‑X 33453162
    [Google Scholar]
  8. SchouT.M. JocaS. WegenerG. Bay-RichterC. Psychiatric and neuropsychiatric sequelae of COVID-19 - A systematic review.Brain Behav. Immun.20219732834810.1016/j.bbi.2021.07.018 34339806
    [Google Scholar]
  9. De BerardisD. How concerned should we be about neurotropism of SARS-Cov-2? A brief clinical consideration of the possible psychiatric implications.CNS Spectr.202227325825910.1017/S1092852920002175 33300484
    [Google Scholar]
  10. De BerardisD. Di CarloF. Di GiannantonioM. PettorrusoM. Legacy of neuropsychiatric symptoms associated with past COVID-19 infection: A cause of concern.World J. Psychiatry202212677377810.5498/wjp.v12.i6.773 35978974
    [Google Scholar]
  11. Ali AwanH. Najmuddin DiwanM. AamirA. AliM. Di GiannantonioM. UllahI. ShoibS. De BerardisD. SARS-CoV-2 and the brain: What do we know about the causality of ‘cognitive COVID?J. Clin. Med.20211015344110.3390/jcm10153441 34362224
    [Google Scholar]
  12. SherL. Post-COVID syndrome and suicide risk.QJM20211142959810.1093/qjmed/hcab007 33486531
    [Google Scholar]
  13. YelinD. MargalitI. NehmeM. Bordas-MartínezJ. PistelliF. YahavD. GuessousI. Durà-MirallesX. CarrozziL. Shapira-LichterI. VetterP. Peleato-CatalanD. TiseoG. WirtheimE. KaiserL. GudiolC. FalconeM. LeiboviciL. Patterns of long COVID symptoms: A multi-center cross sectional study.J. Clin. Med.202211489810.3390/jcm11040898 35207171
    [Google Scholar]
  14. IraniS. Immune responses in SARS-CoV-2, SARS-CoV, and MERS-CoV infections: A comparative review.Int. J. Prev. Med.20221314510.4103/ijpvm.IJPVM_429_20 35529506
    [Google Scholar]
  15. MohamedM.S. JohanssonA. JonssonJ. SchiöthH.B. Dissecting the molecular mechanisms surrounding Post-COVID-19 syndrome and neurological features.Int. J. Mol. Sci.2022238427510.3390/ijms23084275 35457093
    [Google Scholar]
  16. DavisH.E. McCorkellL. VogelJ.M. TopolE.J. Long COVID: Major findings, mechanisms and recommendations.Nat. Rev. Microbiol.202321313314610.1038/s41579‑022‑00846‑2 36639608
    [Google Scholar]
  17. HanY. YuanK. WangZ. LiuW.J. LuZ.A. LiuL. ShiL. YanW. YuanJ.L. LiJ.L. ShiJ. LiuZ.C. WangG.H. KostenT. BaoY.P. LuL. Neuropsychiatric manifestations of COVID-19, potential neurotropic mechanisms, and therapeutic interventions.Transl. Psychiatry202111149910.1038/s41398‑021‑01629‑8 34593760
    [Google Scholar]
  18. WostynP. COVID-19 and chronic fatigue syndrome: Is the worst yet to come?Med. Hypotheses202114611046910.1016/j.mehy.2020.110469 33401106
    [Google Scholar]
  19. Díez-CirardaM. Yus-FuertesM. Sanchez-SanchezR. Gonzalez-RosaJ.J. Gonzalez-EscamillaG. Gil-MartínezL. Delgado-AlonsoC. Gil-MorenoM.J. Valles-SalgadoM. Cano-CanoF. Ojeda-HernandezD. Gomez-RuizN. Oliver-MasS. Benito-MartínM.S. JorqueraM. de la FuenteS. PoliduraC. Selma-CalvoB. ArrazolaJ. Matias-GuiuJ. Gomez-PinedoU. Matias-GuiuJ.A. Hippocampal subfield abnormalities and biomarkers of pathologic brain changes: From SARS-CoV-2 acute infection to post-COVID syndrome.EBioMedicine20239410471110.1016/j.ebiom.2023.104711 37453364
    [Google Scholar]
  20. WangJ. YangG. WangX. WenZ. ShuaiL. LuoJ. WangC. SunZ. LiuR. GeJ. HeX. HuaR. WangX. YangX. ChenW. ZhongG. BuZ. SARS-CoV-2 uses metabotropic glutamate receptor subtype 2 as an internalization factor to infect cells.Cell Discov.20217111910.1038/s41421‑021‑00357‑z 34903715
    [Google Scholar]
  21. NicolettiF. BockaertJ. CollingridgeG.L. ConnP.J. FerragutiF. SchoeppD.D. WroblewskiJ.T. PinJ.P. Metabotropic glutamate receptors: From the workbench to the bedside.Neuropharmacology2011607-81017104110.1016/j.neuropharm.2010.10.022 21036182
    [Google Scholar]
  22. Planas-FontánezT.M. DreyfusC.F. SaittaK.S. Reactive astrocytes as therapeutic targets for brain degenerative diseases: Roles played by metabotropic glutamate receptors.Neurochem. Res.202045354155010.1007/s11064‑020‑02968‑6 31983009
    [Google Scholar]
  23. Fesharaki-ZadehA. LoweN. ArnstenA.F.T. Clinical experience with the α2A-adrenoceptor agonist, guanfacine, and N-acetylcysteine for the treatment of cognitive deficits in “Long-COVID19”.Neuroimmunology Reports2023310015410.1016/j.nerep.2022.100154
    [Google Scholar]
  24. ScaturroD. VitaglianiF. Di BellaV.E. FalcoV. TomaselloS. LauricellaL. Letizia MauroG. The role of acetyl-carnitine and rehabilitation in the management of patients with Post-COVID syndrome: Case-control study.Appl. Sci. (Basel)2022128408410.3390/app12084084
    [Google Scholar]
  25. SamsoniaM. KandelakiM. BaratashviliN. GvaramiaL. Neuroprotective and antioxidant potential of montelukast-acetylcysteine combination therapy for brain protection in patients with COVID-19 induced pneumonia.Georgian Med. News2023335335111118 37042600
    [Google Scholar]
  26. StefanouM.I. PalaiodimouL. BakolaE. SmyrnisN. PapadopoulouM. ParaskevasG.P. RizosE. BoutatiE. GrigoriadisN. KrogiasC. GiannopoulosS. TsiodrasS. GagaM. TsivgoulisG. Neurological manifestations of long-COVID syndrome: A narrative review.Ther. Adv. Chronic Dis.2022137689010.1177/20406223221076890 35198136
    [Google Scholar]
  27. De FloraS. BalanskyR. La MaestraS. Rationale for the use of N‐acetylcysteine in both prevention and adjuvant therapy of COVID‐19.FASEB J.20203410131851319310.1096/fj.202001807 32780893
    [Google Scholar]
  28. Fesharaki ZadehA. ArnstenA.F.T. WangM. Scientific rationale for the treatment of cognitive deficits from long COVID.Neurol. Int.202315272574210.3390/neurolint15020045 37368329
    [Google Scholar]
  29. VeleriS. Neurotropism of SARS-CoV-2 and neurological diseases of the central nervous system in COVID-19 patients.Exp. Brain Res.2022240192510.1007/s00221‑021‑06244‑z 34694467
    [Google Scholar]
  30. MeinhardtJ. RadkeJ. DittmayerC. FranzJ. ThomasC. MothesR. LaueM. SchneiderJ. BrüninkS. GreuelS. LehmannM. HassanO. AschmanT. SchumannE. ChuaR.L. ConradC. EilsR. StenzelW. WindgassenM. RößlerL. GoebelH.H. GelderblomH.R. MartinH. NitscheA. Schulz-SchaefferW.J. HakroushS. WinklerM.S. TampeB. ScheibeF. KörtvélyessyP. ReinholdD. SiegmundB. KühlA.A. ElezkurtajS. HorstD. OesterhelwegL. TsokosM. Ingold-HeppnerB. StadelmannC. DrostenC. CormanV.M. RadbruchH. HeppnerF.L. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19.Nat. Neurosci.202124216817510.1038/s41593‑020‑00758‑5 33257876
    [Google Scholar]
  31. Baysal-KiracL. UysalH. COVID-19 associate neurological complications.Neurol. Sci. Neurophysiol.20203711310.4103/NSN.NSN_28_20
    [Google Scholar]
  32. BostancıklıoğluM. SARS-CoV2 entry and spread in the lymphatic drainage system of the brain.Brain Behav. Immun.20208712212310.1016/j.bbi.2020.04.080 32360606
    [Google Scholar]
  33. HirabaraS.M. SerdanT.D.A. GorjaoR. MasiL.N. Pithon-CuriT.C. CovasD.T. CuriR. DurigonE.L. SARS-COV-2 Variants: Differences and potential of immune evasion.Front. Cell. Infect. Microbiol.20221178142910.3389/fcimb.2021.781429 35118007
    [Google Scholar]
  34. ZeiselA. Muñoz-ManchadoA.B. CodeluppiS. LönnerbergP. La MannoG. JuréusA. MarquesS. MungubaH. HeL. BetsholtzC. RolnyC. Castelo-BrancoG. Hjerling-LefflerJ. LinnarssonS. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq.Science201534762261138114210.1126/science.aaa1934 25700174
    [Google Scholar]
  35. ZhangY. ArchieS.R. GhanwatkarY. SharmaS. NozohouriS. BurksE. MdzinarishviliA. LiuZ. AbbruscatoT.J. Potential role of astrocyte angiotensin converting enzyme 2 in the neural transmission of COVID-19 and a neuroinflammatory state induced by smoking and vaping.Fluids Barriers CNS20221914610.1186/s12987‑022‑00339‑7 35672716
    [Google Scholar]
  36. PellegriniL. BonfioC. ChadwickJ. BegumF. SkehelM. LancasterM.A. Human CNS barrier-forming organoids with cerebrospinal fluid production.Science20203696500eaaz562610.1126/science.aaz5626
    [Google Scholar]
  37. MaoL.M. BodepudiA. ChuX.P. WangJ.Q. GroupI. Group I metabotropic glutamate receptors and interacting partners: An Update.Int. J. Mol. Sci.202223284010.3390/ijms23020840 35055030
    [Google Scholar]
  38. WangX. WenZ. CaoH. LuoJ. ShuaiL. WangC. GeJ. WangX. BuZ. WangJ. Transferrin receptor protein 1 cooperates with mGluR2 to mediate the internalization of rabies virus and SARS-CoV-2.J. Virol.2023972e01611e0162210.1128/jvi.01611‑22 36779763
    [Google Scholar]
  39. SpampinatoS.F. CopaniA. NicolettiF. SortinoM.A. CaraciF. Metabotropic glutamate receptors in glial cells: A new potential target for neuroprotection?Front. Mol. Neurosci.20181141410.3389/fnmol.2018.00414 30483053
    [Google Scholar]
  40. HuangL. XiaoW. WangY. LiJ. GongJ. TuE. LongL. XiaoB. YanX. WanL. Metabotropic glutamate receptors (mGluRs) in epileptogenesis: An update on abnormal mGluRs signaling and its therapeutic implications.Neural Regen. Res.202419236036810.4103/1673‑5374.379018 37488891
    [Google Scholar]
  41. AndrewsM.G. MukhtarT. EzeU.C. SimoneauC.R. RossJ. ParikshakN. WangS. ZhouL. KoontzM. VelmeshevD. SiebertC.V. GemenesK.M. TabataT. PerezY. WangL. Mostajo-RadjiM.A. de MajoM. DonohueK.C. ShinD. SalmaJ. PollenA.A. NowakowskiT.J. UllianE. KumarG.R. WinklerE.A. CrouchE.E. OttM. KriegsteinA.R. Tropism of SARS-CoV-2 for human cortical astrocytes.Proc. Natl. Acad. Sci. USA202211930e2122236119e212223611910.1073/pnas.2122236119 35858406
    [Google Scholar]
  42. HirunpattarasilpC. JamesG. KwanthongdeeJ. FreitasF. HuoJ. SethiH. KittlerJ.T. OwensR.J. McCoyL.E. AttwellD. SARS-CoV-2 triggers pericyte-mediated cerebral capillary constriction.Brain2023146272773810.1093/brain/awac272 35867861
    [Google Scholar]
  43. JacksonC.B. FarzanM. ChenB. ChoeH. Mechanisms of SARS-CoV-2 entry into cells.Nat. Rev. Mol. Cell Biol.202223132010.1038/s41580‑021‑00418‑x 34611326
    [Google Scholar]
  44. JariusS. PacheF. KörtvelyessyP. JelčićI. StettnerM. FranciottaD. KellerE. NeumannB. RingelsteinM. SenelM. RegeniterA. KalantzisR. WillmsJ.F. BertheleA. BuschM. CapobiancoM. EiseleA. ReichenI. DerschR. RauerS. SandnerK. AyzenbergI. GrossC.C. HegenH. KhalilM. KleiterI. LenhardT. HaasJ. AktasO. AngstwurmK. KleinschnitzC. LewerenzJ. TumaniH. PaulF. StangelM. RuprechtK. WildemannB. Cerebrospinal fluid findings in COVID-19: A multicenter study of 150 lumbar punctures in 127 patients.J. Neuroinflammation20221911910.1186/s12974‑021‑02339‑0 35057809
    [Google Scholar]
  45. IliffJ.J. WangM. LiaoY. PloggB.A. PengW. GundersenG.A. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β.Sci. Transl. Med.20124147147ra11110.1126/scitranslmed.3003748
    [Google Scholar]
  46. WuL. ZhangZ. LiangX. WangY. CaoY. LiM. ZhouF. Glymphatic system dysfunction in recovered patients with mild COVID-19: A DTI-ALPS study.iScience202427110864710.1016/j.isci.2023.108647 38155770
    [Google Scholar]
  47. KoehlerR.C. RomanR.J. HarderD.R. Astrocytes and the regulation of cerebral blood flow.Trends Neurosci.200932316016910.1016/j.tins.2008.11.005 19162338
    [Google Scholar]
  48. MasamotoK. UnekawaM. WatanabeT. ToriumiH. TakuwaH. KawaguchiH. KannoI. MatsuiK. TanakaK.F. TomitaY. SuzukiN. Unveiling astrocytic control of cerebral blood flow with optogenetics.Sci. Rep.2015511145510.1038/srep11455 26076820
    [Google Scholar]
  49. JessenN.A. MunkA.S.F. LundgaardI. NedergaardM. The glymphatic system: A beginner’s guide.Neurochem. Res.201540122583259910.1007/s11064‑015‑1581‑6 25947369
    [Google Scholar]
  50. KuboteraH. Ikeshima-KataokaH. HatashitaY. Allegra MascaroA.L. PavoneF.S. InoueT. Astrocytic endfeet re-cover blood vessels after removal by laser ablation.Sci. Rep.201991126310.1038/s41598‑018‑37419‑4 30718555
    [Google Scholar]
  51. HuB. HuangS. YinL. The cytokine storm and COVID‐19.J. Med. Virol.202193125025610.1002/jmv.26232 32592501
    [Google Scholar]
  52. SelickmanJ. VrettouC.S. MentzelopoulosS.D. MariniJ.J. COVID-19-Related ARDS: Key mechanistic features and treatments.J. Clin. Med.20221116489610.3390/jcm11164896 36013135
    [Google Scholar]
  53. HasanvandA. COVID-19 and the role of cytokines in this disease.Inflammopharmacology202230378979810.1007/s10787‑022‑00992‑2 35505267
    [Google Scholar]
  54. NikkhooB. MohammadiM. HasaniS. SigariN. BorhaniA. RamezaniC. CharajooA. BadriS. RostamiF. EtemadiM. RahmaniK. Elevated interleukin (IL)-6 as a predictor of disease severity among COVID-19 patients: A prospective cohort study.BMC Infect. Dis.202323131110.1186/s12879‑023‑08294‑w 37161412
    [Google Scholar]
  55. GuoJ. WangS. XiaH. ShiD. ChenY. ZhengS. ChenY. GaoH. GuoF. JiZ. HuangC. LuoR. ZhangY. ZuoJ. ChenY. XuY. XiaJ. ZhuC. XuX. QiuY. ShengJ. XuK. LiL. Cytokine signature associated with disease severity in COVID-19.Front. Immunol.20211268151610.3389/fimmu.2021.681516 34489933
    [Google Scholar]
  56. Del ValleD.M. Kim-SchulzeS. HuangH.H. BeckmannN.D. NirenbergS. WangB. LavinY. SwartzT.H. MadduriD. StockA. MarronT.U. XieH. PatelM. TuballesK. Van OekelenO. RahmanA. KovatchP. AbergJ.A. SchadtE. JagannathS. MazumdarM. CharneyA.W. Firpo-BetancourtA. MenduD.R. JhangJ. ReichD. SigelK. Cordon-CardoC. FeldmannM. ParekhS. MeradM. GnjaticS. An inflammatory cytokine signature predicts COVID-19 severity and survival.Nat. Med.202026101636164310.1038/s41591‑020‑1051‑9 32839624
    [Google Scholar]
  57. MontazersahebS.H. KhatibiS.M. HejaziM.S. TarhrizV. FarjamiA.G. SorbeniF. FarahzadiR. GhasemnejadT. COVID-19 infection: An overview on cytokine storm and related interventions.Virol. J.20221919210.1186/s12985‑022‑01814‑1 35619180
    [Google Scholar]
  58. TanS. ChenW. KongG. WeiL. XieY. Peripheral inflammation and neurocognitive impairment: Correlations, underlying mechanisms, and therapeutic implications.Front. Aging Neurosci.202315130579010.3389/fnagi.2023.1305790 38094503
    [Google Scholar]
  59. Redza-DutordoirM. Averill-BatesD.A. Activation of apoptosis signalling pathways by reactive oxygen species.Biochim. Biophys. Acta Mol. Cell Res.20161863122977299210.1016/j.bbamcr.2016.09.012 27646922
    [Google Scholar]
  60. MaesM. GaleckiP. ChangY.S. BerkM. A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness.Prog. Neuropsychopharmacol. Biol. Psychiatry201135367669210.1016/j.pnpbp.2010.05.004 20471444
    [Google Scholar]
  61. CorreiaA.S. CardosoA. ValeN. Oxidative stress in depression: The link with the stress response, neuroinflammation, serotonin, neurogenesis and synaptic plasticity.Antioxidants202312247010.3390/antiox12020470 36830028
    [Google Scholar]
  62. LiuX. FangY. XuJ. YangT. XuJ. HeJ. LiuW. YuX. WenY. ZhangN. LiC. Oxidative stress, dysfunctional energy metabolism, and destabilizing neurotransmitters altered the cerebral metabolic profile in a rat model of simulated heliox saturation diving to 4.0 MPa.PLoS One2023183e0282700e028270010.1371/journal.pone.0282700 36917582
    [Google Scholar]
  63. KongX. GongZ. ZhangL. SunX. OuZ. XuB. HuangJ. LongD. HeX. LinX. LiQ. XuL. XuanA. JAK2/STAT3 signaling mediates IL-6-inhibited neurogenesis of neural stem cells through DNA demethylation/methylation.Brain Behav. Immun.20197915917310.1016/j.bbi.2019.01.027 30763768
    [Google Scholar]
  64. VallièresL. CampbellI.L. GageF.H. SawchenkoP.E. Reduced hippocampal neurogenesis in adult transgenic mice with chronic astrocytic production of interleukin-6.J. Neurosci.200222248649210.1523/JNEUROSCI.22‑02‑00486.2002 11784794
    [Google Scholar]
  65. SchwerkC. TenenbaumT. KimK.S. SchrotenH. The choroid plexus a multi-role player during infectious diseases of the CNS.Front. Cell. Neurosci.201598010.3389/fncel.2015.00080 25814932
    [Google Scholar]
  66. YirmiyaR. GoshenI. Immune modulation of learning, memory, neural plasticity and neurogenesis.Brain Behav. Immun.201125218121310.1016/j.bbi.2010.10.015 20970492
    [Google Scholar]
  67. SchousboeA. BakL.K. WaagepetersenH.S. Astrocytic control of biosynthesis and turnover of the neurotransmitters glutamate and GABA.Front. Endocrinol. (Lausanne)2013410210.3389/fendo.2013.00102 23966981
    [Google Scholar]
  68. SchousboeA. Metabolic signaling in the brain and the role of astrocytes in control of glutamate and GABA neurotransmission.Neurosci. Lett.2019689111310.1016/j.neulet.2018.01.038 29378296
    [Google Scholar]
  69. KalivasP.W. The glutamate homeostasis hypothesis of addiction.Nat. Rev. Neurosci.200910856157210.1038/nrn2515 19571793
    [Google Scholar]
  70. MassieA. BoilléeS. HewettS. KnackstedtL. LewerenzJ. Main path and byways: Non‐vesicular glutamate release by system Xc− as an important modifier of glutamatergic neurotransmission.J. Neurochem.201513561062107910.1111/jnc.13348 26336934
    [Google Scholar]
  71. ShihA.Y. ErbH. SunX. TodaS. KalivasP.W. MurphyT.H. Cystine/glutamate exchange modulates glutathione supply for neuroprotection from oxidative stress and cell proliferation.J. Neurosci.20062641105141052310.1523/JNEUROSCI.3178‑06.2006 17035536
    [Google Scholar]
  72. MoranM.M. McFarlandK. MelendezR.I. KalivasP.W. SeamansJ.K. Cystine/glutamate exchange regulates metabotropic glutamate receptor presynaptic inhibition of excitatory transmission and vulnerability to cocaine seeking.J. Neurosci.200525276389639310.1523/JNEUROSCI.1007‑05.2005 16000629
    [Google Scholar]
  73. HolE.M. PeknyM. Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system.Curr. Opin. Cell Biol.20153212113010.1016/j.ceb.2015.02.004 25726916
    [Google Scholar]
  74. KanbergN. SimrénJ. EdénA. AnderssonL.M. NilssonS. AshtonN.J. SundvallP.D. NellgårdB. BlennowK. ZetterbergH. GisslénM. Neurochemical signs of astrocytic and neuronal injury in acute COVID-19 normalizes during long-term follow-up.EBioMedicine20217010351210.1016/j.ebiom.2021.103512 34333238
    [Google Scholar]
  75. MatschkeJ. LütgehetmannM. HagelC. SperhakeJ.P. SchröderA.S. EdlerC. MushumbaH. FitzekA. AllweissL. DandriM. DottermuschM. HeinemannA. PfefferleS. SchwabenlandM.S. MagruderD. BonnS. PrinzM. GerloffC. PüschelK. KrasemannS. AepfelbacherM. GlatzelM. Neuropathology of patients with COVID-19 in Germany: A post-mortem case series.Lancet Neurol.2020191191992910.1016/S1474‑4422(20)30308‑2 33031735
    [Google Scholar]
  76. DeigendeschN. SironiL. KutzaM. WischnewskiS. FuchsV. HenchJ. FrankA. NienholdR. MertzK.D. CathomasG. MatterM.S. SiegemundM. TolnayM. SchirmerL. PröbstelA.K. TzankovA. FrankS. Correlates of critical illness-related encephalopathy predominate postmortem COVID-19 neuropathology.Acta Neuropathol.2020140458358610.1007/s00401‑020‑02213‑y 32851506
    [Google Scholar]
  77. CosentinoG. TodiscoM. HotaN. Della PortaG. MorbiniP. TassorelliC. PisaniA. Neuropathological findings from COVID‐19 patients with neurological symptoms argue against a direct brain invasion of SARS‐CoV‐2: A critical systematic review.Eur. J. Neurol.202128113856386510.1111/ene.15045 34339563
    [Google Scholar]
  78. VillarrealA. VidosC. Monteverde BussoM. CieriM.B. RamosA.J. Pathological neuroinflammatory conversion of reactive astrocytes is induced by microglia and involves chromatin remodeling.Front. Pharmacol.20211268934610.3389/fphar.2021.689346 34234677
    [Google Scholar]
  79. RibeiroD.E. Oliveira-GiacomelliÁ. GlaserT. Arnaud-SampaioV.F. AndrejewR. DieckmannL. BaranovaJ. LameuC. RatajczakM.Z. UlrichH. Hyperactivation of P2X7 receptors as a culprit of COVID-19 neuropathology.Mol. Psychiatry20212641044105910.1038/s41380‑020‑00965‑3 33328588
    [Google Scholar]
  80. LoaneD.J. KumarA. StoicaB.A. CabatbatR. FadenA.I. Progressive neurodegeneration after experimental brain trauma: Association with chronic microglial activation.J. Neuropathol. Exp. Neurol.2014731142910.1097/NEN.0000000000000021 24335533
    [Google Scholar]
  81. Fernández-CastañedaA. LuP. GeraghtyA.C. SongE. LeeM.H. WoodJ. O’DeaM.R. DuttonS. ShamardaniK. NwangwuK. MancusiR. YalçınB. TaylorK.R. Acosta-AlvarezL. MalaconK. KeoughM.B. NiL. WooP.J. Contreras-EsquivelD. TolandA.M.S. GehlhausenJ.R. KleinJ. TakahashiT. SilvaJ. IsraelowB. LucasC. MaoT. Peña-HernándezM.A. TabachnikovaA. HomerR.J. TabacofL. Tosto-MancusoJ. BreymanE. KontorovichA. McCarthyD. QuezadoM. VogelH. HeftiM.M. PerlD.P. LiddelowS. FolkerthR. PutrinoD. NathA. IwasakiA. MonjeM. Mild respiratory COVID can cause multi-lineage neural cell and myelin dysregulation.Cell20221851424522468.e1610.1016/j.cell.2022.06.008 35768006
    [Google Scholar]
  82. BoldriniM. CanollP.D. KleinR.S. How COVID-19 affects the brain.JAMA Psychiatry202178668268310.1001/jamapsychiatry.2021.0500 33769431
    [Google Scholar]
  83. BuckinghamS.C. CampbellS.L. HaasB.R. MontanaV. RobelS. OgunrinuT. SontheimerH. Glutamate release by primary brain tumors induces epileptic activity.Nat. Med.201117101269127410.1038/nm.2453 21909104
    [Google Scholar]
  84. SoriaF.N. Pérez-SamartínA. MartinA. GonaK.B. LlopJ. SzczupakB. CharaJ.C. MatuteC. DomercqM. Extrasynaptic glutamate release through cystine/glutamate antiporter contributes to ischemic damage.J. Clin. Invest.201412483645365510.1172/JCI71886 25036707
    [Google Scholar]
  85. DringenR. BrandmannM. HohnholtM.C. BlumrichE.M. Glutathione-dependent detoxification processes in astrocytes.Neurochem. Res.201540122570258210.1007/s11064‑014‑1481‑1 25428182
    [Google Scholar]
  86. YesilkayaU.H. SenM. BalciogluY.H. COVID-19-related cognitive dysfunction may be associated with transient disruption in the DLPFC glutamatergic pathway.J. Clin. Neurosci.20218715315510.1016/j.jocn.2021.03.007 33863524
    [Google Scholar]
  87. García-SánchezC. CalabriaM. GrundenN. PonsC. ArroyoJ.A. Gómez-AnsonB. LleóA. AlcoleaD. BelvísR. MorollónN. MurI. PomarV. DomingoP. Neuropsychological deficits in patients with cognitive complaints after COVID‐19.Brain Behav.2022123e250810.1002/brb3.2508 35137561
    [Google Scholar]
  88. LuY. LiX. GengD. MeiN. WuP.Y. HuangC.C. JiaT. ZhaoY. WangD. XiaoA. YinB. Cerebral micro-structural changes in COVID-19 patients - an MRI-based 3-month follow-up study.EClinicalMedicine20202510048410.1016/j.eclinm.2020.100484 32838240
    [Google Scholar]
  89. PericaM.I. RavindranathO. CalabroF.J. ForanW. LunaB. Hippocampal-Prefrontal connectivity prior to the COVID-19 pandemic predicts stress reactivity.Biol. Psychiatry Glob. Open Sci.20211428329010.1016/j.bpsgos.2021.06.010 34849503
    [Google Scholar]
  90. BirdC.M. BurgessN. The hippocampus and memory: Insights from spatial processing.Nat. Rev. Neurosci.20089318219410.1038/nrn2335 18270514
    [Google Scholar]
  91. SchollerP. NevoltrisD. de BundelD. BossiS. Moreno-DelgadoD. RoviraX. MøllerT.C. El MoustaineD. MathieuM. BlancE. McLeanH. DupuisE. MathisG. TrinquetE. DanielH. ValjentE. BatyD. ChamesP. RondardP. PinJ.P. Allosteric nanobodies uncover a role of hippocampal mGlu2 receptor homodimers in contextual fear consolidation.Nat. Commun.201781196710.1038/s41467‑017‑01489‑1 29213077
    [Google Scholar]
  92. RitchieK. ChanD. WatermeyerT. The cognitive consequences of the COVID-19 epidemic: Collateral damage.Brain Commun.202222fcaa06910.1093/braincomms/fcaa069
    [Google Scholar]
  93. SoungA.L. VanderheidenA. NordvigA.S. SissokoC.A. CanollP. MarianiM.B. JiangX. BrickerT. RosoklijaG.B. ArangoV. UnderwoodM. MannJ.J. DworkA.J. GoldmanJ.E. BoonA.C.M. BoldriniM. KleinR.S. COVID-19 induces CNS cytokine expression and loss of hippocampal neurogenesis.Brain2022145124193420110.1093/brain/awac270 36004663
    [Google Scholar]
  94. JinL.E. WangM. GalvinV.C. LightbourneT.C. ConnP.J. ArnstenA.F.T. PaspalasC.D. mGluR2 versus mGluR3 metabotropic glutamate receptors in primate dorsolateral prefrontal cortex: Postsynaptic mGluR3 strengthen working memory networks.Cereb. Cortex201828397498710.1093/cercor/bhx005 28108498
    [Google Scholar]
  95. MaJ. HuZ. YueH. LuoY. WangC. WuX. GuY. WangL. GRM2 regulates functional integration of adult-born DGCs by paradoxically modulating MEK/ERK1/2 pathway.J. Neurosci.202343162822283610.1523/JNEUROSCI.1886‑22.2023 36878727
    [Google Scholar]
  96. AleninaN. BaderM. ACE2 in brain physiology and pathophysiology: Evidence from transgenic animal models.Neurochem. Res.20194461323132910.1007/s11064‑018‑2679‑4 30443713
    [Google Scholar]
  97. XiaH. LazartiguesE. Angiotensin‐converting enzyme 2 in the brain: Properties and future directions.J. Neurochem.200810761482149410.1111/j.1471‑4159.2008.05723.x 19014390
    [Google Scholar]
  98. HashimotoT. PerlotT. RehmanA. TrichereauJ. IshiguroH. PaolinoM. SiglV. HanadaT. HanadaR. LipinskiS. WildB. CamargoS.M.R. SingerD. RichterA. KubaK. FukamizuA. SchreiberS. CleversH. VerreyF. RosenstielP. PenningerJ.M. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation.Nature2012487740847748110.1038/nature11228 22837003
    [Google Scholar]
  99. KlempinF. MosienkoV. MatthesS. VillelaD.C. TodirasM. PenningerJ.M. BaderM. SantosR.A.S. AleninaN. Depletion of angiotensin-converting enzyme 2 reduces brain serotonin and impairs the running-induced neurogenic response.Cell. Mol. Life Sci.201875193625363410.1007/s00018‑018‑2815‑y 29679094
    [Google Scholar]
  100. BartolomucciA. CarolaV. PascucciT. Puglisi-AllegraS. CabibS. LeschK.P. ParmigianiS. PalanzaP. GrossC. Increased vulnerability to psychosocial stress in heterozygous serotonin transporter knockout mice.Dis. Model. Mech.201037-845947010.1242/dmm.004614 20371729
    [Google Scholar]
  101. WangL.A. de KloetA.D. SmeltzerM.D. CahillK.M. HillerH. BruceE.B. PioquintoD.J. LudinJ.A. KatovichM.J. RaizadaM.K. KrauseE.G. Coupling corticotropin-releasing-hormone and angiotensin converting enzyme 2 dampens stress responsiveness in male mice.Neuropharmacology2018133859310.1016/j.neuropharm.2018.01.025 29360543
    [Google Scholar]
  102. WenzelJ. LampeJ. Müller-FielitzH. SchusterR. ZilleM. MüllerK. KrohnM. KörbelinJ. ZhangL. ÖzorhanÜ. NeveV. WagnerJ.U.G. BojkovaD. ShumliakivskaM. JiangY. FähnrichA. OttF. SencioV. RobilC. PfefferleS. SauveF. CoêlhoC.F.F. FranzJ. SpieckerF. LembrichB. BinderS. FellerN. KönigP. BuschH. CollinL. VillaseñorR. JöhrenO. AltmeppenH.C. PasparakisM. DimmelerS. CinatlJ. PüschelK. ZelicM. OfengeimD. StadelmannC. TrotteinF. NogueirasR. HilgenfeldR. GlatzelM. PrevotV. SchwaningerM. The SARS-CoV-2 main protease Mpro causes microvascular brain pathology by cleaving NEMO in brain endothelial cells.Nat. Neurosci.202124111522153310.1038/s41593‑021‑00926‑1 34675436
    [Google Scholar]
  103. JohanssonA. MohamedM.S. MoulinT.C. SchiöthH.B. Neurological manifestations of COVID-19: A comprehensive literature review and discussion of mechanisms.J. Neuroimmunol.202135857765810.1016/j.jneuroim.2021.577658 34304141
    [Google Scholar]
  104. EveraerdD. VissersP. van HelvoortM. SchellekensA. van de MaatJ. HoogerwerfJ. TendolkarI. Acute neuropsychiatric symptoms during COVID-19.J. Nerv. Ment. Dis.20232111077978310.1097/NMD.0000000000001700 37557068
    [Google Scholar]
  105. ChhabraN. GrillM.F. SinghR.B.H. Post-COVID Headache: A Literature Review.Curr. Pain Headache Rep.2022261183584210.1007/s11916‑022‑01086‑y 36197571
    [Google Scholar]
  106. BelvisR. Headaches During COVID‐19: My clinical case and review of the literature.Headache20206071422142610.1111/head.13841 32413158
    [Google Scholar]
  107. CaronnaE. van den HoekT.C. BolayH. Garcia-AzorinD. Gago-VeigaA.B. ValerianiM. TakizawaT. MesslingerK. ShapiroR.E. GoadsbyP.J. AshinaM. TassorelliC. DienerH.C. TerwindtG.M. Pozo-RosichP. Headache attributed to SARS-CoV-2 infection, vaccination and the impact on primary headache disorders of the COVID-19 pandemic: A comprehensive review.Cephalalgia202343133102422113133710.1177/03331024221131337 36606562
    [Google Scholar]
  108. MaY. Deng. J.; Liu. Q.; Du. M.; Liu, M.; Liu, J. Long-term consequences of COVID-19 at 6 months and above: A systematic review and meta-analysis.Int. J. Environ. Res. Public Health20221911686510.3390/ijerph19116865 35682448
    [Google Scholar]
  109. MazzaM.G. PalladiniM. VillaG. AgnolettoE. HarringtonY. VaiB. BenedettiF. Prevalence of depression in SARS-CoV-2 infected patients: An umbrella review of meta-analyses.Gen. Hosp. Psychiatry202380172510.1016/j.genhosppsych.2022.12.002 36535239
    [Google Scholar]
  110. MazzaM.G. De LorenzoR. ConteC. PolettiS. VaiB. BollettiniI. MelloniE.M.T. FurlanR. CiceriF. Rovere-QueriniP. BenedettiF. Anxiety and depression in COVID-19 survivors: Role of inflammatory and clinical predictors.Brain Behav. Immun.20208959460010.1016/j.bbi.2020.07.037 32738287
    [Google Scholar]
  111. TaquetM. LucianoS. GeddesJ.R. HarrisonP.J. Bidirectional associations between COVID-19 and psychiatric disorder: Retrospective cohort studies of 62 354 COVID-19 cases in the USA.Lancet Psychiatry20218213014010.1016/S2215‑0366(20)30462‑4 33181098
    [Google Scholar]
  112. TaquetM. SillettR. ZhuL. MendelJ. CamplissonI. DerconQ. HarrisonP.J. Neurological and psychiatric risk trajectories after SARS-CoV-2 infection: An analysis of 2-year retrospective cohort studies including 1 284 437 patients.Lancet Psychiatry202291081582710.1016/S2215‑0366(22)00260‑7 35987197
    [Google Scholar]
  113. NordvigA.S. FongK.T. WilleyJ.Z. ThakurK.T. BoehmeA.K. VargasW.S. SmithC.J. ElkindM.S.V. Potential neurologic manifestations of COVID-19.Neurol. Clin. Pract.2021112e135e14610.1212/CPJ.0000000000000897 33842082
    [Google Scholar]
  114. HenekaM.T. GolenbockD. LatzE. MorganD. BrownR. Immediate and long-term consequences of COVID-19 infections for the development of neurological disease.Alzheimers Res. Ther.20201216910.1186/s13195‑020‑00640‑3 32498691
    [Google Scholar]
  115. SakusicA. RabinsteinA.A. Cognitive outcomes after critical illness.Curr. Opin. Crit. Care201824541041410.1097/MCC.0000000000000527 30036191
    [Google Scholar]
  116. PatelU.K. MehtaN. PatelA. PatelN. OrtizJ.F. KhuranaM. UrhoghideE. ParulekarA. BhriguvanshiA. PatelN. MistryA.M. PatelR. ArumaithuraiK. ShahS. Long-term neurological sequelae among severe COVID-19 patients: A systematic review and meta-analysis.Cureus2022149e29694e2969410.7759/cureus.29694 36321004
    [Google Scholar]
  117. KedorC. FreitagH. Meyer-ArndtL. WittkeK. HanitschL.G. ZollerT. SteinbeisF. HaffkeM. RudolfG. HeideckerB. BobbertT. SprangerJ. VolkH.D. SkurkC. KonietschkeF. PaulF. BehrendsU. Bellmann-StroblJ. ScheibenbogenC. A prospective observational study of post-COVID-19 chronic fatigue syndrome following the first pandemic wave in Germany and biomarkers associated with symptom severity.Nat. Commun.2022131510410.1038/s41467‑022‑32507‑6 36042189
    [Google Scholar]
  118. KomaroffA.L. LipkinW.I. ME/CFS and Long COVID share similar symptoms and biological abnormalities: Road map to the literature.Front. Med. (Lausanne)202310118716310.3389/fmed.2023.1187163 37342500
    [Google Scholar]
  119. ComellaP.H. Gonzalez-KozlovaE. KosoyR. CharneyA.W. PeradejordiI.F. ChandrasekarS. A Molecular network approach reveals shared cellular and molecular signatures between chronic fatigue syndrome and other fatiguing illnesses.MedRxiv202110.1101/2021.01.29.21250755
    [Google Scholar]
  120. Martinez-BanaclochaM. N-Acetyl-Cysteine: Modulating the cysteine redox proteome in neurodegenerative diseases.Antioxidants (Basel)202211241610.3390/antiox11020416
    [Google Scholar]
  121. Devrim-LanpirA. HillL. KnechtleB. How N-Acetylcysteine supplementation affects redox regulation, especially at mitohormesis and sarcohormesis level: Current perspective.Antioxidants (Basel)202110215310.3390/antiox10020153
    [Google Scholar]
  122. SchwalfenbergG.K. N-Acetylcysteine: A review of clinical usefulness (an Old Drug with New Tricks).J. Nutr. Metab.2021202111310.1155/2021/9949453 34221501
    [Google Scholar]
  123. AsanumaM. MiyazakiI. Glutathione and related molecules in parkinsonism.Int. J. Mol. Sci.20212216868910.3390/ijms22168689 34445395
    [Google Scholar]
  124. FerreiraF.R. BiojoneC. JocaS.R.L. GuimarãesF.S. Antidepressant-like effects of N-acetyl-L-cysteine in rats.Behav. Pharmacol.200819774775010.1097/FBP.0b013e3283123c98 18797252
    [Google Scholar]
  125. BerkM. DeanO. CottonS.M. GamaC.S. KapczinskiF. FernandesB.S. KohlmannK. JeavonsS. HewittK. AllwangC. CobbH. BushA.I. SchapkaitzI. DoddS. MalhiG.S. The efficacy of N-acetylcysteine as an adjunctive treatment in bipolar depression: An open label trial.J. Affect. Disord.20111351-338939410.1016/j.jad.2011.06.005 21719110
    [Google Scholar]
  126. RazaH. JohnA. ShafarinJ. NAC attenuates LPS-induced toxicity in aspirin-sensitized mouse macrophages via suppression of oxidative stress and mitochondrial dysfunction.PLoS One201497e103379e10337910.1371/journal.pone.0103379 25075522
    [Google Scholar]
  127. TardioloG. BramantiP. MazzonE. Overview on the effects of N-acetylcysteine in neurodegenerative diseases.Molecules20182312330510.3390/molecules23123305 30551603
    [Google Scholar]
  128. PorcuM. UrbanoM.R. VerriW.A.Jr BarbosaD.S. BaracatM. VargasH.O. MachadoR.C.B.R. PescimR.R. NunesS.O.V. Effects of adjunctive N-acetylcysteine on depressive symptoms: Modulation by baseline high-sensitivity C-reactive protein.Psychiatry Res.201826326827410.1016/j.psychres.2018.02.056 29605103
    [Google Scholar]
  129. DeanO. GiorlandoF. BerkM. N-acetylcysteine in psychiatry: Current therapeutic evidence and potential mechanisms of action.J. Psychiatry Neurosci.2011362788610.1503/jpn.100057 21118657
    [Google Scholar]
  130. Rapado-CastroM. BerkM. VenugopalK. BushA.I. DoddS. DeanO.M. Towards stage specific treatments: Effects of duration of illness on therapeutic response to adjunctive treatment with N-acetyl cysteine in schizophrenia.Prog. Neuropsychopharmacol. Biol. Psychiatry201557697510.1016/j.pnpbp.2014.10.002 25315856
    [Google Scholar]
  131. GleixnerA.M. HutchisonD.F. SanninoS. BhatiaT.N. LeakL.C. FlahertyP.T. WipfP. BrodskyJ.L. LeakR.K. N-acetyl-L-cysteine protects astrocytes against proteotoxicity without recourse to glutathione.Mol. Pharmacol.201792556457510.1124/mol.117.109926 28830914
    [Google Scholar]
  132. HalasiM. WangM. ChavanT.S. GaponenkoV. HayN. GartelA.L. ROS inhibitor N-acetyl-L-cysteine antagonizes the activity of proteasome inhibitors.Biochem. J.2013454220120810.1042/BJ20130282 23772801
    [Google Scholar]
  133. PedreB. BarayeuU. EzeriņaD. DickT.P. The mechanism of action of N-acetylcysteine (NAC): The emerging role of H2S and sulfane sulfur species.Pharmacol. Ther.202122810791610.1016/j.pharmthera.2021.107916 34171332
    [Google Scholar]
  134. AldiniG. AltomareA. BaronG. VistoliG. CariniM. BorsaniL. SergioF. N-Acetylcysteine as an antioxidant and disulphide breaking agent: The reasons why.Free Radic. Res.201852775176210.1080/10715762.2018.1468564 29742938
    [Google Scholar]
  135. SotoM.E. Manzano-PechL. Palacios-ChavarríaA. Valdez-VázquezR.R. Guarner-LansV. Pérez-TorresI. N-acetyl cysteine restores the diminished activity of the antioxidant enzymatic system caused by SARS-CoV-2 infection: Preliminary findings.Pharmaceuticals (Basel)202316459110.3390/ph16040591 37111348
    [Google Scholar]
  136. ZhouY. WangH. ZhouX. FangJ. ZhuL. DingK. N-acetylcysteine amide provides neuroprotection via Nrf2-ARE pathway in a mouse model of traumatic brain injury.Drug Des. Devel. Ther.2018124117412710.2147/DDDT.S179227 30584276
    [Google Scholar]
  137. XiaZ. NagareddyP.R. GuoZ. ZhangW. McneillJ.H. Antioxidant N -acetylcysteine restores systemic nitric oxide availability and corrects depressions in arterial blood pressure and heart rate in diabetic rats.Free Radic. Res.200640217518410.1080/10715760500484336 16390827
    [Google Scholar]
  138. KrzyzanowskaW. PomiernyB. BudziszewskaB. FilipM. PeraJ. N-acetylcysteine and ceftriaxone as preconditioning strategies in focal brain ischemia: influence on glutamate transporters expression.Neurotox. Res.201629453955010.1007/s12640‑016‑9602‑z 26861954
    [Google Scholar]
  139. MinariniA. FerrariS. GallettiM. GiambalvoN. PerroneD. RioliG. GaleazziG.M. N-acetylcysteine in the treatment of psychiatric disorders: Current status and future prospects.Expert Opin. Drug Metab. Toxicol.201713327929210.1080/17425255.2017.1251580 27766914
    [Google Scholar]
  140. OoiB.K. ChanK.G. GohB.H. YapW.H. The role of natural products in targeting cardiovascular diseases via Nrf2 pathway: Novel molecular mechanisms and therapeutic approaches.Front. Pharmacol.20189130810.3389/fphar.2018.01308 30498447
    [Google Scholar]
  141. BlancoA.T. RamírezO.D. RodríguezP.O. PinedaB. Pérez de la CruzG.G. Esquivel, D.; Schwarcz, R.; Sathyasaikumar, K.V.; Jiménez, A.A.; Pérez de la Cruz, V. Subchronic n-acetylcysteine treatment decreases brain kynurenic acid levels and improves cognitive performance in mice.Antioxidants202110214710.3390/antiox10020147 33498402
    [Google Scholar]
  142. HashimotoK. TsukadaH. NishiyamaS. FukumotoD. KakiuchiT. ShimizuE. IyoM. Protective effects of N-acetyl-L-cysteine on the reduction of dopamine transporters in the striatum of monkeys treated with methamphetamine.Neuropsychopharmacology200429112018202310.1038/sj.npp.1300512 15199373
    [Google Scholar]
  143. JanákyR. DohovicsR. SaransaariP. OjaS.S. Modulation of [3H]dopamine release by glutathione in mouse striatal slices.Neurochem. Res.20073281357136410.1007/s11064‑007‑9315‑z 17401648
    [Google Scholar]
  144. YanC.Y.I. GreeneL.A. Prevention of PC12 cell death by N-acetylcysteine requires activation of the Ras pathway.J. Neurosci.199818114042404910.1523/JNEUROSCI.18‑11‑04042.1998 9592085
    [Google Scholar]
  145. SunL. GuL. WangS. YuanJ. YangH. ZhuJ. ZhangH. N-acetylcysteine protects against apoptosis through modulation of group I metabotropic glutamate receptor activity.PLoS One201273e32503e3250310.1371/journal.pone.0032503 22442667
    [Google Scholar]
  146. ZhangF. LauS.S. MonksT.J. The cytoprotective effect of N-acetyl-L-cysteine against ROS-induced cytotoxicity is independent of its ability to enhance glutathione synthesis.Toxicol. Sci.20111201879710.1093/toxsci/kfq364 21135414
    [Google Scholar]
  147. HeinemannS.D. PosimoJ.M. MasonD.M. HutchisonD.F. LeakR.K. Synergistic stress exacerbation in hippocampal neurons: Evidence favoring the dual‐hit hypothesis of neurodegeneration.Hippocampus201626898099410.1002/hipo.22580 26934478
    [Google Scholar]
  148. PosimoJ.M. TitlerA.M. ChoiH.J.H. UnnithanA.S. LeakR.K. Neocortex and allocortex respond differentially to cellular stress in vitro and aging in vivo.PLoS One201383e58596e5859610.1371/journal.pone.0058596 23536801
    [Google Scholar]
  149. UnnithanA.S. JiangY. RumbleJ.L. PulugullaS.H. PosimoJ.M. GleixnerA.M. LeakR.K. N-Acetyl cysteine prevents synergistic, severe toxicity from two hits of oxidative stress.Neurosci. Lett.2014560717610.1016/j.neulet.2013.12.023 24361774
    [Google Scholar]
  150. FanC. LongY. WangL. LiuX. LiuZ. LanT. LiY. YuS.Y. N-acetylcysteine rescues hippocampal oxidative stress-induced neuronal injury via suppression of p38/JNK signaling in depressed rats.Front. Cell. Neurosci.20201455461310.3389/fncel.2020.554613 33262689
    [Google Scholar]
  151. LantéF. MeunierJ. GuiramandJ. De Jesus FerreiraM.C. CambonieG. AimarR. Cohen-SolalC. MauriceT. VignesM. BarbanelG. Late N ‐acetylcysteine treatment prevents the deficits induced in the offspring of dams exposed to an immune stress during gestation.Hippocampus200818660260910.1002/hipo.20421 18306297
    [Google Scholar]
  152. BradlowR.C.J. BerkM. KalivasP.W. BackS.E. KanaanR.A. The potential of N-Acetyl-L-Cysteine (NAC) in the treatment of psychiatric disorders.CNS Drugs202236545148210.1007/s40263‑022‑00907‑3 35316513
    [Google Scholar]
  153. FenF. ZhangJ. WangZ. WuQ. ZhouX. Efficacy and safety of N acetylcysteine therapy for idiopathic pulmonary fibrosis: An updated systematic review and meta analysis.Exp. Ther. Med.201918180281610.3892/etm.2019.7579 31258714
    [Google Scholar]
  154. PanahiY. GhaneiM. RahimiM. SamimA. Vahedian-AzimiA. AtkinS.L. SahebkarA. Evaluation the efficacy and safety of N‐acetylcysteine inhalation spray in controlling the symptoms of patients with COVID‐19: An open‐label randomized controlled clinical trial.J. Med. Virol.2023951e28393e2839310.1002/jmv.28393 36495185
    [Google Scholar]
  155. CelorrioM. RhodesJ. VadiveluS. DaviesM. FriessS.H. N-acetylcysteine reduces brain injury after delayed hypoxemia following traumatic brain injury.Exp. Neurol.202133511350710.1016/j.expneurol.2020.113507 33065076
    [Google Scholar]
  156. IzzoL.T. TrefelyS. DemetriadouC. DrummondJ.M. MizukamiT. KuprasertkulN. FarriaA.T. NguyenP.T.T. MuraliN. ReichL. KantnerD.S. ShafferJ. AffrontiH. CarrerA. AndrewsA. CapellB.C. SnyderN.W. WellenK.E. Acetylcarnitine shuttling links mitochondrial metabolism to histone acetylation and lipogenesis.Sci. Adv.2023918eadf011510.1126/sciadv.adf0115 37134161
    [Google Scholar]
  157. LongoN. FrigeniM. PasqualiM. Carnitine transport and fatty acid oxidation.Biochim. Biophys. Acta Mol. Cell Res.20161863102422243510.1016/j.bbamcr.2016.01.023 26828774
    [Google Scholar]
  158. JonesL.L. McDonaldD.A. BorumP.R. Acylcarnitines: Role in brain.Prog. Lipid Res.2010491617510.1016/j.plipres.2009.08.004 19720082
    [Google Scholar]
  159. Matias-GuiuJ.A. Delgado-AlonsoC. Díez-CirardaM. Martínez-PetitÁ. Oliver-MasS. Delgado-ÁlvarezA. CuevasC. Valles-SalgadoM. GilM.J. YusM. Gómez-RuizN. PoliduraC. PagánJ. Matías-GuiuJ. AyalaJ.L. Neuropsychological predictors of fatigue in post-COVID syndrome.J. Clin. Med.20221113388610.3390/jcm11133886 35807173
    [Google Scholar]
  160. KoleničováV. VňukováM.S. AndersM. FišerováM. RabochJ. PtáčekR. A review article on exercise intolerance in long COVID: Unmasking the causes and optimizing treatment strategies.Med. Sci. Monit.202329e941079e94107910.12659/MSM.941079 37897034
    [Google Scholar]
  161. FathizadehH. MilajerdiA. ReinerŽ. AmiraniE. AsemiZ. MansourniaM.A. HallajzadehJ. The effects of L-carnitine supplementation on indicators of inflammation and oxidative stress: A systematic review and meta-analysis of randomized controlled trials.J. Diabetes Metab. Disord.20201921879189410.1007/s40200‑020‑00627‑9 33520867
    [Google Scholar]
  162. ChiechioS. CanonicoP. GrilliM. L-acetylcarnitine: A mechanistically distinctive and potentially rapid-acting antidepressant drug.Int. J. Mol. Sci.20171911110.3390/ijms19010011 29267192
    [Google Scholar]
  163. FerreiraG.C. McKennaM.C. l-Carnitine and acetyl-l-carnitine roles and neuroprotection in developing brain.Neurochem. Res.20174261661167510.1007/s11064‑017‑2288‑7 28508995
    [Google Scholar]
  164. SpaldingK.L. BergmannO. AlkassK. BernardS. SalehpourM. HuttnerH.B. BoströmE. WesterlundI. VialC. BuchholzB.A. PossnertG. MashD.C. DruidH. FrisénJ. Dynamics of hippocampal neurogenesis in adult humans.Cell201315361219122710.1016/j.cell.2013.05.002 23746839
    [Google Scholar]
  165. NascaC. BigioB. ZelliD. de AngelisP. LauT. OkamotoM. SoyaH. NiJ. BrichtaL. GreengardP. NeveR.L. LeeF.S. McEwenB.S. Role of the astroglial glutamate exchanger xct in ventral hippocampus in resilience to stress.Neuron2017962402413.e510.1016/j.neuron.2017.09.020 29024663
    [Google Scholar]
  166. NotartomasoS. MascioG. BernabucciM. ZappullaC. ScarselliP. CannellaM. ImbriglioT. GradiniR. BattagliaG. BrunoV. NicolettiF. Analgesia induced by the epigenetic drug, L-acetylcarnitine, outlasts the end of treatment in mouse models of chronic inflammatory and neuropathic pain.Mol. Pain201713174480691769700910.1177/1744806917697009 28326943
    [Google Scholar]
  167. Sarzi-PuttiniP. GiorgiV. Di LascioS. FornasariD. Acetyl-L-carnitine in chronic pain: A narrative review.Pharmacol. Res.202117310587410.1016/j.phrs.2021.105874 34500063
    [Google Scholar]
  168. NascaC. BigioB. ZelliD. NicolettiF. McEwenB.S. Mind the gap: Glucocorticoids modulate hippocampal glutamate tone underlying individual differences in stress susceptibility.Mol. Psychiatry201520675576310.1038/mp.2014.96 25178162
    [Google Scholar]
  169. NascaC. XenosD. BaroneY. CarusoA. ScaccianoceS. MatriscianoF. BattagliaG. MathéA.A. PittalugaA. LionettoL. SimmacoM. NicolettiF. L -acetylcarnitine causes rapid antidepressant effects through the epigenetic induction of mGlu2 receptors.Proc. Natl. Acad. Sci. USA2013110124804480910.1073/pnas.1216100110 23382250
    [Google Scholar]
  170. OnofrjM. CiccocioppoF. VaraneseS. di MuzioA. CalvaniM. ChiechioS. OsioM. ThomasA. Acetyl- L -carnitine: From a biological curiosity to a drug for the peripheral nervous system and beyond.Expert Rev. Neurother.201313892593610.1586/14737175.2013.814930 23965166
    [Google Scholar]
  171. LiuT. DengK. XueY. YangR. YangR. GongZ. TangM. Carnitine and depression.Front. Nutr.2022985305810.3389/fnut.2022.853058 35369081
    [Google Scholar]
  172. LiS. LiQ. LiY. LiL. TianH. SunX. Acetyl-L-carnitine in the treatment of peripheral neuropathic pain: A systematic review and meta-analysis of randomized controlled trials.PLoS One2015103e0119479e011947910.1371/journal.pone.0119479 25751285
    [Google Scholar]
  173. BigioB. AzamS. MathéA.A. NascaC. The neuropsychopharmacology of acetyl-L-carnitine (LAC): basic, translational and therapeutic implications.Discov. Ment. Health202441210.1007/s44192‑023‑00056‑z 38169018
    [Google Scholar]
  174. WangS.M. HanC. LeeS.J. PatkarA.A. MasandP.S. PaeC.U. A review of current evidence for acetyl-l-carnitine in the treatment of depression.J. Psychiatr. Res.201453303710.1016/j.jpsychires.2014.02.005 24607292
    [Google Scholar]
  175. BersaniG. MecoG. DenaroA. LiberatiD. CollettiC. NicolaiR. BersaniF.S. KoverechA. l-Acetylcarnitine in dysthymic disorder in elderly patients: A double-blind, multicenter, controlled randomized study vs. fluoxetine.Eur. Neuropsychopharmacol.201323101219122510.1016/j.euroneuro.2012.11.013 23428336
    [Google Scholar]
  176. VeroneseN. StubbsB. SolmiM. AjnakinaO. CarvalhoA.F. MaggiS. Acetyl-l-carnitine supplementation and the treatment of depressive symptoms: A systematic review and meta-analysis.Psychosom. Med.201880215415910.1097/PSY.0000000000000537 29076953
    [Google Scholar]
  177. AmesB.N. LiuJ. Delaying the mitochondrial decay of aging with acetylcarnitine.Ann. N. Y. Acad. Sci.20041033110811610.1196/annals.1320.010 15591008
    [Google Scholar]
  178. ChenN. YangM. ZhouM. XiaoJ. GuoJ. HeL. L-carnitine for cognitive enhancement in people without cognitive impairment.Cochrane Libr.201720173CD009374CD00937410.1002/14651858.CD009374.pub3 28349514
    [Google Scholar]
  179. CuccurazzuB. BortolottoV. ValenteM.M. UbezioF. KoverechA. CanonicoP.L. GrilliM. Upregulation of mGlu2 receptors via NF-κB p65 acetylation is involved in the Proneurogenic and antidepressant effects of acetyl-L-carnitine.Neuropsychopharmacology201338112220223010.1038/npp.2013.121 23670591
    [Google Scholar]
  180. ForemanP.J. Perez-PoloJ.R. AngelucciL. RamacciM.T. TaglialatelaG. Effects of acetyl-l-carnitine treatment and stress exposure on the nerve growth factor receptor (p75NGFR) mRNA level in the central nervous system of aged rats.Prog. Neuropsychopharmacol. Biol. Psychiatry199519111713310.1016/0278‑5846(94)00109‑U 7708926
    [Google Scholar]
  181. TaglialatelaG. NavarraD. CrucianiR. RamacciM. AlemàG. AngelucciL. Acetyl-l-carnitine treatment increases nerve growth factor levels and choline acetyltransferase activity in the central nervous system of aged rats.Exp. Gerontol.1994291556610.1016/0531‑5565(94)90062‑0 8187841
    [Google Scholar]
  182. PiovesanP. PacificiL. TaglialatelaG. RamacciM.T. AngelucciL. Acetyl-l-carnitine treatment increases choline acetyltransferase activity and NGF levels in the CNS of adult rats following total fimbria-fornix transection.Brain Res.19946331-2778210.1016/0006‑8993(94)91524‑5 8137174
    [Google Scholar]
  183. PourshahidiS. ShamshiriA.R. DerakhshanS. MohammadiS. GhorbaniM. The effect of acetyl-L-carnitine (ALCAR) on peripheral nerve regeneration in animal models: A systematic review.Neurochem. Res.20234882335234410.1007/s11064‑023‑03911‑1 37037995
    [Google Scholar]
  184. DoležalV. TučekS. Utilization of citrate, acetylcarnitine, acetate, pyruvate and glucose for the synthesis of acetylcholine in rat brain slices.J. Neurochem.19813641323133010.1111/j.1471‑4159.1981.tb00569.x 6790669
    [Google Scholar]
  185. TrainaG. The neurobiology of acetyl-L-carnitine.Front. Biosci.20162171314132910.2741/4459 27100509
    [Google Scholar]
  186. TrainaG. FederighiG. BrunelliM. ScuriR. Cytoprotective effect of acetyl-L-carnitine evidenced by analysis of gene expression in the rat brain.Mol. Neurobiol.200939210110610.1007/s12035‑009‑8056‑1 19199082
    [Google Scholar]
  187. HeJ. LiZ. XiaP. ShiA. FuChen, X.; Zhang, J.; Yu, P. Ferroptosis and ferritinophagy in diabetes complications.Mol. Metab.20226010147010.1016/j.molmet.2022.101470 35304332
    [Google Scholar]
  188. LiC. OuR. WeiQ. ShangH. Carnitine and COVID-19 susceptibility and severity: A mendelian randomization study.Front. Nutr.2021878020510.3389/fnut.2021.780205 34901126
    [Google Scholar]
  189. ArnstenA.F.T. DattaD. WangM. The genie in the bottle-magnified calcium signaling in dorsolateral prefrontal cortex.Mol. Psychiatry20212683684370010.1038/s41380‑020‑00973‑3 33319854
    [Google Scholar]
  190. McEwenB.S. GrayJ.D. NascaC. Recognizing resilience: Learning from the effects of stress on the brain.Neurobiol. Stress2015111110.1016/j.ynstr.2014.09.001 25506601
    [Google Scholar]
  191. ArnstenA.F.T. WooE. YangS. WangM. DattaD. Unusual molecular regulation of dorsolateral prefrontal cortex layer III synapses increases vulnerability to genetic and environmental insults in Schizophrenia.Biol. Psychiatry202292648049010.1016/j.biopsych.2022.02.003 35305820
    [Google Scholar]
  192. ArnstenA.F.T. WangM. The evolutionary expansion of mGluR3-NAAG-GCPII signaling: Relevance to human intelligence and cognitive disorders.Am. J. Psychiatry2020177121103110610.1176/appi.ajp.2020.20101458 33256450
    [Google Scholar]
  193. KnollM.D. WonodiC. Oxford–AstraZeneca COVID-19 vaccine efficacy.Lancet202139710269727410.1016/S0140‑6736(20)32623‑4 33306990
    [Google Scholar]
  194. YangS. DattaD. ElizabethW. DuqueA. MorozovY.M. ArellanoJ. SlusherB.S. WangM. ArnstenA.F.T. Inhibition of glutamate-carboxypeptidase-II in dorsolateral prefrontal cortex: Potential therapeutic target for neuroinflammatory cognitive disorders.Mol. Psychiatry202227104252426310.1038/s41380‑022‑01656‑x 35732693
    [Google Scholar]
  195. NealeJ.H. OlszewskiR.T. ZuoD. JanczuraK.J. ProfaciC.P. LavinK.M. MadoreJ.C. BzdegaT. Advances in understanding the peptide neurotransmitter NAAG and appearance of a new member of the NAAG neuropeptide family.J. Neurochem.2011118449049810.1111/j.1471‑4159.2011.07338.x 21644997
    [Google Scholar]
  196. HolmayM.J. TerpstraM. ColesL.D. MishraU. AhlskogM. ÖzG. CloydJ.C. TuiteP.J. N-Acetylcysteine boosts brain and blood glutathione in Gaucher and Parkinson diseases.Clin. Neuropharmacol.201336410310610.1097/WNF.0b013e31829ae713 23860343
    [Google Scholar]
  197. ScofieldM.D. HeinsbroekJ.A. GipsonC.D. KupchikY.M. SpencerS. SmithA.C.W. Roberts-WolfeD. KalivasP.W. The nucleus accumbens: Mechanisms of addiction across drug classes reflect the importance of glutamate homeostasis.Pharmacol. Rev.201668381687110.1124/pr.116.012484 27363441
    [Google Scholar]
  198. KazmiN.D. SmithG. LewisS. Mendelian randomization analyses show that higher acetyl-carnitine and carnitine levels in blood protect against severe COVID19.SSRN20212021-0510.2139/ssrn.3857663
    [Google Scholar]
  199. Vaziri-haramiR. DelkashP. Can l-carnitine reduce post-COVID-19 fatigue?Ann. Med. Surg. (Lond.)20227310314510.1016/j.amsu.2021.103145 34925826
    [Google Scholar]
  200. CuadradoA. Martín-MoldesZ. YeJ. Lastres-BeckerI. Transcription factors NRF2 and NF-κB are coordinated effectors of the Rho family, GTP-binding protein RAC1 during inflammation.J. Biol. Chem.201428922152441525810.1074/jbc.M113.540633 24759106
    [Google Scholar]
  201. WardynJ.D. PonsfordA.H. SandersonC.M. Dissecting molecular cross-talk between Nrf2 and NF-κB response pathways.Biochem. Soc. Trans.201543462162610.1042/BST20150014 26551702
    [Google Scholar]
  202. KhodakaramiA. AdibfarS. KarpishehV. AbolhasaniS. JalaliP. MohammadiH.G. NavashenaqJ. Hojjat-FarsangiM. Jadidi-NiaraghF. The molecular biology and therapeutic potential of Nrf2 in leukemia.Cancer Cell Int.202222124110.1186/s12935‑022‑02660‑5 35906617
    [Google Scholar]
  203. CacciatoreI. CornacchiaC. PinnenF. MollicaA. Di StefanoA. Prodrug approach for increasing cellular glutathione levels.Molecules20101531242126410.3390/molecules15031242 20335977
    [Google Scholar]
  204. HelbingD.L. DommaschkE.M. DanyeliL.V. LiepinshE. RefischA. SenZ.D. ZvejnieceL. RocktäschelT. StabenowL.K. SchiöthH.B. WalterM. DambrovaM. BesteherB. Conceptual foundations of acetylcarnitine supplementation in neuropsychiatric long COVID syndrome: A narrative review.Eur. Arch. Psychiatry Clin. Neurosci.2024202401734310.1007/s00406‑023‑01734‑3 38172332
    [Google Scholar]
  205. TenórioM.C.S. GracilianoN.G. MouraF.A. OliveiraA.C.M. GoulartM.O.F. N-Acetylcysteine (NAC): Impacts on Human Health.Antioxidants202110696710.3390/antiox10060967 34208683
    [Google Scholar]
  206. Tavares-JúniorJ.W.L. de SouzaA.C.C. BorgesJ.W.P. OliveiraD.N. Siqueira-NetoJ.I. Sobreira-NetoM.A. Braga-NetoP. COVID-19 associated cognitive impairment: A systematic review.Cortex2022152779710.1016/j.cortex.2022.04.006 35537236
    [Google Scholar]
  207. OoiS.L. GreenR. PakS.C. N-Acetylcysteine for the Treatment of Psychiatric Disorders: A Review of Current Evidence.BioMed Res. Int.201820181810.1155/2018/2469486 30426004
    [Google Scholar]
  208. MohiuddinM. PivettaB. GilronI. KhanJ.S. Efficacy and safety of N-acetylcysteine for the management of chronic pain in adults: A systematic review and meta-analysis.Pain Med.202122122896290710.1093/pm/pnab042 33560443
    [Google Scholar]
  209. MorrisG. PuriB.K. WalkerA.J. MaesM. CarvalhoA.F. WalderK. MazzaC. BerkM. Myalgic encephalomyelitis/chronic fatigue syndrome: From pathophysiological insights to novel therapeutic opportunities.Pharmacol. Res.201914810445010.1016/j.phrs.2019.104450 31509764
    [Google Scholar]
  210. VermeulenR.C.W. ScholteH.R. Exploratory open label, randomized study of acetyl- and propionylcarnitine in chronic fatigue syndrome.Psychosom. Med.200466227628210.1097/01.psy.0000116249.60477.e9 15039515
    [Google Scholar]
  211. AltayO. ArifM. LiX. YangH. AydınM. AlkurtG. KimW. AkyolD. ZhangC. Dinler-DoganayG. TurkezH. ShoaieS. NielsenJ. BorénJ. OlmuscelikO. DoganayL. UhlénM. MardinogluA. Combined metabolic activators accelerates recovery in mild‐to‐moderate COVID‐19.Adv. Sci. (Weinh.)2021817210122210.1002/advs.202101222 34180141
    [Google Scholar]
  212. ValdésA. MorenoL.O. RelloS.R. OrduñaA. BernardoD. CifuentesA. Metabolomics study of COVID-19 patients in four different clinical stages.Sci. Rep.2022121165010.1038/s41598‑022‑05667‑0 35102215
    [Google Scholar]
  213. MichelettoC. IzquierdoJ.L. AvdeevS.N.R. EscobarR.A. Pacheco GallegoM.C. N-acetylcysteine as a therapeutic approach to post-COVID-19 pulmonary fibrosis adjunctive treatment.Eur. Rev. Med. Pharmacol. Sci.202226134872488010.26355/eurrev_202207_29212 35856379
    [Google Scholar]
  214. RastgooS. FatehS.T. Nikbaf-ShandizM. RasaeiN. AaliY. ZamaniM. ShirasebF. AsbaghiO. The effects of L-carnitine supplementation on inflammatory and anti-inflammatory markers in adults: A systematic review and dose-response meta-analysis.Inflammopharmacology20233152173219910.1007/s10787‑023‑01323‑9 37656233
    [Google Scholar]
  215. AlhasaniahA.H. l-carnitine: Nutrition, pathology, and health benefits.Saudi J. Biol. Sci.202330210355510.1016/j.sjbs.2022.103555 36632072
    [Google Scholar]
  216. BadawiA. Hypercytokinemia and Pathogen–Host Interaction in COVID-19.J. Inflamm. Res.20201325526110.2147/JIR.S259096 32606886
    [Google Scholar]
  217. PoeF.L. CornJ. N-Acetylcysteine: A potential therapeutic agent for SARS-CoV-2.Med. Hypotheses202014310986210.1016/j.mehy.2020.109862 32504923
    [Google Scholar]
  218. ZawawiA. NaserA.Y. AlwafiH. MinshawiF. Profile of circulatory cytokines and chemokines in human coronaviruses: A systematic review and meta-analysis.Front. Immunol.20211266622310.3389/fimmu.2021.666223 34046036
    [Google Scholar]
  219. TruiniA. PirosoS. PasqualeE. NotartomasoS. StefanoG.D. LattanziR. BattagliaG. NicolettiF. CruccuG. N-acetyl cysteine, a drug that enhances the endogenous activation of group- II metabotropic glutamate receptors, inhibits nociceptive transmission in humans.Mol. Pain, 201511s12990-015-0009.10.1186/s12990‑015‑0009‑225889381
    [Google Scholar]
  220. NaureenZ. DautajA. NodariS. FiorettiF. DhuliK. AnpilogovK. LorussoL. PaolacciS. MicheliniS. GudaT. KallaziM. BertelliM. Proposal of a food supplement for the management of post-COVID syndrome.Eur. Rev. Med. Pharmacol. Sci.2021251677310.26355/eurrev_202112_27335 34890036
    [Google Scholar]
  221. BellamineA. PhamT.N.Q. JainJ. WilsonJ. SahinK. DallaireF. SeidahN.G. DurkeeS. RadoševićK. CohenÉ.A. L-carnitine tartrate downregulates the ace2 receptor and limits sars-cov-2 infection.Nutrients2021134129710.3390/nu13041297 33919991
    [Google Scholar]
  222. SadowskaA.M. N -Acetylcysteine mucolysis in the management of chronic obstructive pulmonary disease.Ther. Adv. Respir. Dis.20126312713510.1177/1753465812437563 22361928
    [Google Scholar]
  223. DaiJ. TengX. JinS. WuY. The antiviral roles of hydrogen sulfide by blocking the interaction between SARS‐CoV‐2 and its potential cell surface receptors.Oxid. Med. Cell. Longev.202120211786699210.1155/2021/7866992 34497683
    [Google Scholar]
  224. GuoQ. JinY. ChenX. YeX. ShenX. LinM. ZengC. ZhouT. ZhangJ. NF-κB in biology and targeted therapy: New insights and translational implications.Signal Transduct. Target. Ther.2024915310.1038/s41392‑024‑01757‑9 38433280
    [Google Scholar]
  225. NaushadS.M. MandadapuG. RamaiahM.J. AlmajhdiF.N. HussainT. The role of TLR7 agonists in modulating COVID-19 severity in subjects with loss-of-function TLR7 variants.Sci. Rep.20231311307810.1038/s41598‑023‑40114‑8 37567916
    [Google Scholar]
  226. McCartyM.F. DiNicolantonioJ.J. Nutraceuticals have potential for boosting the type 1 interferon response to RNA viruses including influenza and coronavirus.Prog. Cardiovasc. Dis.202063338338510.1016/j.pcad.2020.02.007 32061635
    [Google Scholar]
  227. ShibanumaM. KurokiT. NoseK. Inhibition by N‐acetyl‐L‐cysteine of interleukin‐6 mRNA induction and activation of NFκB by tumor necrosis factor α in a mouse fibroblastic cell line, Balb/3T3.FEBS Lett.19943531626610.1016/0014‑5793(94)01014‑5 7926024
    [Google Scholar]
  228. WongK.K. LeeS.W.H. KuaK.P. N-acetylcysteine as adjuvant therapy for COVID-19 - a perspective on the current state of the evidence.J. Inflamm. Res.2021142993301310.2147/JIR.S306849 34262324
    [Google Scholar]
  229. KimK. LeeS.G. KegelmanT.P. SuZ.Z. DasS.K. DashR. DasguptaS. BarralP.M. HedvatM. DiazP. ReedJ.C. StebbinsJ.L. PellecchiaM. SarkarD. FisherP.B. Role of Excitatory Amino Acid Transporter‐2 (EAAT2) and glutamate in neurodegeneration: Opportunities for developing novel therapeutics.J. Cell. Physiol.2011226102484249310.1002/jcp.22609 21792905
    [Google Scholar]
  230. TalbotK. MaddenV.J. JonesS.L. MoseleyG.L. The sensory and affective components of pain: Are they differentially modifiable dimensions or inseparable aspects of a unitary experience? A systematic review.Br. J. Anaesth.20191232e263e27210.1016/j.bja.2019.03.033 31053232
    [Google Scholar]
  231. HuangR. WuJ. MaY. KangK. Molecular mechanisms of ferroptosis and its role in viral pathogenesis.Viruses20231512237310.3390/v15122373 38140616
    [Google Scholar]
  232. WangJ. ZhuJ. RenS. ZhangZ. NiuK. LiH. WuW. PengC. The role of ferroptosis in virus infections.Front. Microbiol.202314127965510.3389/fmicb.2023.1279655 38075884
    [Google Scholar]
  233. LuY. ZhuQ. FoxD.M. GaoC. StanleyS.A. LuoK. SARS-CoV-2 down-regulates ACE2 through lysosomal degradation.Mol. Biol. Cell20223314ar147ar14710.1091/mbc.E22‑02‑0045 36287912
    [Google Scholar]
  234. WangX. WangM. XuT. FengY. ShaoQ. HanS. ChuX. XuY. LinS. ZhaoQ. WuB. Structural insights into dimerization and activation of the mGlu2-mGlu3 and mGlu2-mGlu4 heterodimers.Cell Res.2023331076277410.1038/s41422‑023‑00830‑2 37286794
    [Google Scholar]
  235. BridgesR.J. NataleN.R. PatelS.A. System xc‐ cystine/glutamate antiporter: An update on molecular pharmacology and roles within the CNS.Br. J. Pharmacol.20121651203410.1111/j.1476‑5381.2011.01480.x 21564084
    [Google Scholar]
  236. ChiangW. StoutA. Yanchik-SladeF. LiH. TerrandoN. NilssonB.L. GelbardH.A. KraussT.D. Quantum dot biomimetic for SARS-CoV-2 to interrogate blood-brain barrier damage relevant to NeuroCOVID brain inflammation.ACS Appl. Nano Mater.2023616150941510710.1021/acsanm.3c02719 37649833
    [Google Scholar]
  237. BradburyJ. WilkinsonS. SchlossJ. Nutritional support during long COVID: A systematic scoping review.J. Integr. Complement. Med.2023291169570410.1089/jicm.2022.0821 37102680
    [Google Scholar]
  238. ReuterS.E. EvansA.M. Carnitine and acylcarnitines.Clin. Pharmacokinet.201251955357210.1007/BF03261931
    [Google Scholar]
  239. LiW. XuZ. NiuT. XieY. ZhaoZ. LiD. HeQ. SunW. ShiK. GuoW. ChangZ. LiuK. FanZ. QiJ. GaoG.F. Key mechanistic features of the trade-off between antibody escape and host cell binding in the SARS-CoV-2 Omicron variant spike proteins.EMBO J.20244381484149810.1038/s44318‑024‑00062‑z 38467833
    [Google Scholar]
  240. StępieńT. TarkaS. ChmuraN. GrzegorczykM. AcewiczA. FelczakP. Wierzba-BobrowiczT. Influence of SARS-CoV-2 on adult human neurogenesis.Cells202312224410.3390/cells12020244 36672177
    [Google Scholar]
  241. BorsiniA. MerrickB. EdgeworthJ. MandalG. SrivastavaD.P. VernonA.C. NebbiaG. ThuretS. ParianteC.M. Neurogenesis is disrupted in human hippocampal progenitor cells upon exposure to serum samples from hospitalized COVID-19 patients with neurological symptoms.Mol. Psychiatry202227125049506110.1038/s41380‑022‑01741‑1 36195636
    [Google Scholar]
  242. ZorzoC. SolaresL. MendezM. Mendez-LopezM. Hippocampal alterations after SARS-CoV-2 infection: A systematic review.Behav. Brain Res.202345511466210.1016/j.bbr.2023.114662 37703951
    [Google Scholar]
/content/journals/cn/10.2174/011570159X343115241030094848
Loading
/content/journals/cn/10.2174/011570159X343115241030094848
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test