Skip to content
2000
Volume 23, Issue 6
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Alzheimer's disease (AD) is the most common neurodegenerative disease leading to dementia in the elderly, and the mechanisms of AD have not been fully defined. Circular RNAs (circRNAs), covalently closed RNAs produced by reverse splicing, have critical effects in the pathogenesis of AD. CircRNAs participate in production and clearance of Aβ and tau, regulate neuroinflammation, synaptic plasticity and the process of apoptosis and autophagy, indicating that circRNAs may be alternative biomarkers and therapeutic targets. Our review summarizes the functions of circRNAs in the progression and development of AD, which provide insights into the prospect of circRNAs in the diagnosis and treatment of AD.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X337659241014140824
2024-10-24
2025-07-26
Loading full text...

Full text loading...

References

  1. 2023 Alzheimer’s disease facts and figures.Alzheimers Dement.20231941598169510.1002/alz.13016 36918389
    [Google Scholar]
  2. Andrade-GuerreroJ. Santiago-BalmasedaA. Jeronimo-AguilarP. Vargas-RodríguezI. Cadena-SuárezA.R. Sánchez-GaribayC. Pozo-MolinaG. Méndez-CataláC.F. Cardenas-AguayoM.C. Diaz-CintraS. Pacheco-HerreroM. Luna-MuñozJ. Soto-RojasL.O. Alzheimer’s disease: An updated overview of its genetics.Int. J. Mol. Sci.2023244375410.3390/ijms24043754 36835161
    [Google Scholar]
  3. KarchC.M. GoateA.M. Alzheimer’s disease risk genes and mechanisms of disease pathogenesis.Biol. Psychiatry2015771435110.1016/j.biopsych.2014.05.006 24951455
    [Google Scholar]
  4. Van CauwenbergheC. Van BroeckhovenC. SleegersK. The genetic landscape of Alzheimer disease: Clinical implications and perspectives.Genet. Med.201618542143010.1038/gim.2015.117
    [Google Scholar]
  5. FarrerL.A. CupplesL.A. HainesJ.L. HymanB. KukullW.A. MayeuxR. MyersR.H. Pericak-VanceM.A. RischN. van DuijnC.M. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis.JAMA1997278161349135610.1001/jama.1997.03550160069041 9343467
    [Google Scholar]
  6. GambhirI.S. MisraA. ChakrabartiS.S. New genetic players in late-onset Alzheimer’s disease: Findings of genome-wide association studies.Indian J. Med. Res.2018148213514410.4103/ijmr.IJMR_473_17 30381536
    [Google Scholar]
  7. HardyJ.A. HigginsG.A. Alzheimer’s disease: The amyloid cascade hypothesis.Science1992256505418418510.1126/science.1566067 1566067
    [Google Scholar]
  8. McLeanC.A. ChernyR.A. FraserF.W. FullerS.J. SmithM.J. KonradV. BushA.I. MastersC.L. Soluble pool of Aβ amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease.Ann. Neurol.199946686086610.1002/1531‑8249(199912)46:6<860:AID‑ANA8>3.0.CO;2‑M 10589538
    [Google Scholar]
  9. HymanB.T. Amyloid-dependent and amyloid-independent stages of Alzheimer disease.Arch. Neurol.20116881062106410.1001/archneurol.2011.70 21482918
    [Google Scholar]
  10. QuerfurthH.W. LaFerlaF.M. Alzheimer’s disease.N. Engl. J. Med.2010362432934410.1056/NEJMra0909142 20107219
    [Google Scholar]
  11. YouX. VlatkovicI. BabicA. WillT. EpsteinI. TushevG. AkbalikG. WangM. GlockC. QuedenauC. WangX. HouJ. LiuH. SunW. SambandanS. ChenT. SchumanE.M. ChenW. Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity.Nat. Neurosci.201518460361010.1038/nn.3975 25714049
    [Google Scholar]
  12. ChenL.L. The expanding regulatory mechanisms and cellular functions of circular RNAs.Nat. Rev. Mol. Cell Biol.202021847549010.1038/s41580‑020‑0243‑y
    [Google Scholar]
  13. D’AmbraE. CapautoD. MorlandoM. Exploring the regulatory role of circular RNAs in neurodegenerative disorders.Int. J. Mol. Sci.20192021547710.3390/ijms20215477 31689888
    [Google Scholar]
  14. LiuK.S. PanF. MaoX.D. LiuC. ChenY.J. Biological functions of circular RNAs and their roles in occurrence of reproduction and gynecological diseases.Am. J. Transl. Res.2019111115 30787966
    [Google Scholar]
  15. BachD.H. LeeS.K. SoodA.K. Circular RNAs in cancer.Mol. Ther. Nucleic Acids20191611812910.1016/j.omtn.2019.02.005 30861414
    [Google Scholar]
  16. SchneiderT. HungL.H. SchreinerS. StarkeS. EckhofH. RossbachO. ReichS. MedenbachJ. BindereifA. CircRNAprotein complexes: IMP3 protein component defines subfamily of circRNPs. 2016, Scientific reports63131310.1038/srep31313
    [Google Scholar]
  17. LiZ. HuangC. BaoC. ChenL. LinM. WangX. ZhongG. YuB. HuW. DaiL. ZhuP. ChangZ. WuQ. ZhaoY. JiaY. XuP. LiuH. ShanG. Exon-intron circular RNAs regulate transcription in the nucleus.Nat. Struct. Mol. Biol.201522325626410.1038/nsmb.2959 25664725
    [Google Scholar]
  18. DuW.W. FangL. YangW. WuN. AwanF.M. YangZ. YangB.B. Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity.Cell Death Differ.201724235737010.1038/cdd.2016.133 27886165
    [Google Scholar]
  19. ChenC.K. ChengR. DemeterJ. ChenJ. Weingarten-GabbayS. JiangL. SnyderM.P. WeissmanJ.S. SegalE. JacksonP.K. ChangH.Y. Structured elements drive extensive circular RNA translation.Mol. Cell2021812043004318.e1310.1016/j.molcel.2021.07.042 34437836
    [Google Scholar]
  20. LegniniI. Di TimoteoG. RossiF. MorlandoM. BrigantiF. SthandierO. FaticaA. SantiniT. AndronacheA. WadeM. LaneveP. RajewskyN. BozzoniI. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis.Mol. Cell20176612237.e910.1016/j.molcel.2017.02.017 28344082
    [Google Scholar]
  21. GrunerH. Cortés-LópezM. CooperD.A. BauerM. MiuraP. CircRNA accumulation in the aging mouse brain.Sci. Rep.2016613890710.1038/srep38907 27958329
    [Google Scholar]
  22. CogswellJ.P. WardJ. TaylorI.A. WatersM. ShiY. CannonB. KelnarK. KemppainenJ. BrownD. ChenC. PrinjhaR.K. RichardsonJ.C. SaundersA.M. RosesA.D. RichardsC.A. Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathways.J. Alzheimers Dis.2008141274110.3233/JAD‑2008‑14103 18525125
    [Google Scholar]
  23. LuY. TanL. WangX. Circular HDAC9/microRNA-138/sirtuin-1 pathway mediates synaptic and amyloid precursor protein processing deficits in Alzheimer’s disease.Neurosci. Bull.201935587788810.1007/s12264‑019‑00361‑0 30887246
    [Google Scholar]
  24. MoD. LiX. RaabeC.A. RozhdestvenskyT.S. SkryabinB.V. BrosiusJ. Circular RNA encoded amyloid beta peptides-A novel putative player in Alzheimer’s disease.Cells2020910219610.3390/cells9102196 33003364
    [Google Scholar]
  25. Urdánoz-CasadoA. Sánchez-Ruiz de GordoaJ. RoblesM. RoldanM. Macías CondeM. AchaB. Blanco-LuquinI. MendiorozM. circRNA from APP gene changes in Alzheimer’s disease human brain.Int. J. Mol. Sci.2023245430810.3390/ijms24054308 36901741
    [Google Scholar]
  26. RianchoJ. Vázquez-HigueraJ.L. PozuetaA. LageC. KazimierczakM. BravoM. CaleroM. GonalezálezA. RodríguezE. LleóA. Sánchez-JuanP. MicroRNA profile in patients with Alzheimer’s disease: Analysis of miR-9-5p and miR-598 in raw and exosome enriched cerebrospinal fluid samples.J. Alzheimers Dis.201757248349110.3233/JAD‑161179 28269782
    [Google Scholar]
  27. SongC. ZhangY. HuangW. ShiJ. HuangQ. JiangM. QiuY. WangT. ChenH. WangH. Circular RNA Cwc27 contributes to Alzheimer’s disease pathogenesis by repressing Pur-α activity.Cell Death Differ.202229239340610.1038/s41418‑021‑00865‑1 34504314
    [Google Scholar]
  28. LiN. ZhangD. GuoH. YangQ. LiP. HeY. Inhibition of circ_0004381 improves cognitive function via miR-647/PSEN1 axis in an Alzheimer disease mouse model.J. Neuropathol. Exp. Neurol.2022821849210.1093/jnen/nlac108 36409993
    [Google Scholar]
  29. ChenH.H. EteleebA. WangC. FernandezM.V. BuddeJ.P. BergmannK. NortonJ. WangF. EblC. MorrisJ.C. PerrinR.J. BatemanR.J. McDadeE. XiongC. GoateA. FarlowM. ChhatwalJ. SchofieldP.R. ChuiH. HarariO. CruchagaC. IbanezL. Circular RNA detection identifies circPSEN1 alterations in brain specific to autosomal dominant Alzheimer’s disease.Acta Neuropathol. Commun.20221012910.1186/s40478‑022‑01328‑5 35246267
    [Google Scholar]
  30. García-EscuderoV. GarginiR. Martín-MaestroP. GarcíaE. García-EscuderoR. AvilaJ. Tau mRNA 3′UTR-to-CDS ratio is increased in Alzheimer disease.Neurosci. Lett.201765510110810.1016/j.neulet.2017.07.007 28689927
    [Google Scholar]
  31. BraakH. BraakE. Neuropathological stageing of Alzheimer-related changes.Acta Neuropathol.199182423925910.1007/BF00308809 1759558
    [Google Scholar]
  32. MacedoA.C. TissotC. TherriaultJ. ServaesS. WangY.T. Fernandez-AriasJ. RahmouniN. LussierF.Z. VermeirenM. BezginG. VitaliP. NgK.P. ZimmerE.R. GuiotM.C. PascoalT.A. GauthierS. Rosa-NetoP. The use of tau PET to stage Alzheimer disease according to the braak staging framework.J. Nucl. Med.20236481171117810.2967/jnumed.122.265200
    [Google Scholar]
  33. WeldenJ.R. MargvelaniG. Arizaca MaqueraK.A. GudlavalletiB. Miranda SardónS.C. CamposA.R. RobilN. LeeD.C. HernandezA.G. WangW.X. DiJ. de la GrangeP. NelsonP.T. StammS. RNA editing of microtubule-associated protein tau circular RNAs promotes their translation and tau tangle formation.Nucleic Acids Res.20225022129791299610.1093/nar/gkac1129 36533443
    [Google Scholar]
  34. WeldenJ.R. StammS. Pre-mRNA structures forming circular RNAs.Biochim. Biophys. Acta. Gene Regul. Mech.2019186211-1219441010.1016/j.bbagrm.2019.194410 31421281
    [Google Scholar]
  35. GeorgeC. X. GanZ. LiuY. SamuelC. E. Adenosine deaminases acting on RNA, RNA editing, and interferon action.J. Interferon Cytokine Res.20113119911710.1089/jir.2010.0097
    [Google Scholar]
  36. ZhangQ. ChenB. YangP. WuJ. PangX. PangC. Bioinformatics-based study reveals that AP2M1 is regulated by the circRNA-miRNA-mRNA interaction network and affects Alzheimer’s disease.Front. Genet.202213104978610.3389/fgene.2022.1049786 36468008
    [Google Scholar]
  37. WangX. TanL. LuY. PengJ. ZhuY. ZhangY. SunZ. MicroRNA‐138 promotes tau phosphorylation by targeting retinoic acid receptor alpha.FEBS Lett.2015589672672910.1016/j.febslet.2015.02.001 25680531
    [Google Scholar]
  38. LiY. FanH. SunJ. NiM. ZhangL. ChenC. HongX. FangF. ZhangW. MaP. Circular RNA expression profile of Alzheimer’s disease and its clinical significance as biomarkers for the disease risk and progression.Int. J. Biochem. Cell Biol.202012310574710.1016/j.biocel.2020.105747 32315771
    [Google Scholar]
  39. PuriS. HuJ. SunZ. LinM. SteinT.D. FarrerL.A. WolozinB. ZhangX. Identification of circRNAs linked to Alzheimer’s disease and related dementias.Alzheimers Dement.20231983389340510.1002/alz.12960 36795937
    [Google Scholar]
  40. LuoM. ZengQ. JiangK. ZhaoY. LongZ. DuY. WangK. HeG. Estrogen deficiency exacerbates learning and memory deficits associated with glucose metabolism disorder in APP/PS1 double transgenic female mice.Genes Dis.2022951315133110.1016/j.gendis.2021.01.007 35873026
    [Google Scholar]
  41. Arizaca MaqueraK.A. WeldenJ.R. MargvelaniG. Miranda SardónS.C. HartS. RobilN. HernandezA.G. de la GrangeP. NelsonP.T. StammS. Alzheimer’s disease pathogenetic progression is associated with changes in regulated retained introns and editing of circular RNAs.Front. Mol. Neurosci.202316114107910.3389/fnmol.2023.1141079 37266374
    [Google Scholar]
  42. CaiZ. YanL.J. RatkaA. Telomere shortening and Alzheimer’s disease.Neuromol. Med.2013151254810.1007/s12017‑012‑8207‑9 23161153
    [Google Scholar]
  43. XuX. GuD. XuB. YangC. WangL. Circular RNA circ_0005835 promotes promoted neural stem cells proliferation and differentiate to neuron and inhibits inflammatory cytokines levels through miR-576-3p in Alzheimer’s disease.Environ. Sci. Pollut. Res. Int.20222924359343594310.1007/s11356‑021‑17478‑3 35060046
    [Google Scholar]
  44. LiY. HanX. FanH. SunJ. NiM. ZhangL. FangF. ZhangW. MaP. Circular RNA AXL increases neuron injury and inflammation through targeting microRNA-328 mediated BACE1 in Alzheimer’s disease.Neurosci. Lett.202277613653110.1016/j.neulet.2022.136531 35167942
    [Google Scholar]
  45. MengS. WangB. LiW. CircAXL knockdown alleviates Aβ1-42-induced neurotoxicity in Alzheimer’s disease via repressing PDE4A by releasing miR-1306-5p.Neurochem. Res.20224761707172010.1007/s11064‑022‑03563‑7 35229272
    [Google Scholar]
  46. WangR. ZhangJ. Clinical significance of miR-433 in the diagnosis of Alzheimer’s disease and its effect on Aβ-induced neurotoxicity by regulating JAK2.Exp. Gerontol.202014111108010.1016/j.exger.2020.111080 32871216
    [Google Scholar]
  47. XuW. LiK. FanQ. ZongB. HanL. Knockdown of long non-coding RNA SOX21-AS1 attenuates amyloid-β-induced neuronal damage by sponging miR-107.Biosci. Rep.2020403BSR2019429510.1042/BSR20194295 32124921
    [Google Scholar]
  48. ZengC. XingH. ChenM. ChenL. LiP. WuX. LiL. Circ_0049472 regulates the damage of Aβ-induced SK-N-SH and CHP-212 cells by mediating the miR-107/KIF1B axis.Exp. Brain Res.202224092299230910.1007/s00221‑022‑06401‑y 35881155
    [Google Scholar]
  49. MeloT.Q. D’unhaoA.M. MartinsS.A. FarizattoK.L.G. ChavesR.S. FerrariM.F.R. Rotenone-dependent changes of anterograde motor protein expression and mitochondrial mobility in brain areas related to neurodegenerative diseases.Cell. Mol. Neurobiol.201333332733510.1007/s10571‑012‑9898‑z 23263842
    [Google Scholar]
  50. XiongW. LiD. FengY. JiaC. ZhangX. LiuZ. CircLPAR1 promotes neuroinflammation and oxidative stress in APP/PS1 mice by inhibiting SIRT1/Nrf-2/HO-1 axis through destabilizing GDF-15 mRNA.Mol. Neurobiol.20236042236225110.1007/s12035‑022‑03177‑8 36646968
    [Google Scholar]
  51. KohM.T. HabermanR.P. FotiS. McCownT.J. GallagherM. Treatment strategies targeting excess hippocampal activity benefit aged rats with cognitive impairment.Neuropsychopharmacology20103541016102510.1038/npp.2009.207
    [Google Scholar]
  52. DejanovicB. ShengM. HansonJ.E. Targeting synapse function and loss for treatment of neurodegenerative diseases.Nat. Rev. Drug Discov.2024231234210.1038/s41573‑023‑00823‑1 38012296
    [Google Scholar]
  53. Urdánoz-CasadoA. Sánchez-Ruiz de GordoaJ. RoblesM. AchaB. RoldanM. ZelayaM.V. Blanco-LuquinI. MendiorozM. Gender-dependent deregulation of linear and circular RNA variants of HOMER1 in the entorhinal cortex of Alzheimer’s disease.Int. J. Mol. Sci.20212217920510.3390/ijms22179205
    [Google Scholar]
  54. ZhangL. HouC. ChenC. GuoY. YuanW. YinD. LiuJ. SunZ. The role of N6-methyladenosine (m6A) modification in the regulation of circRNAs.Mol. Cancer202019110510.1186/s12943‑020‑01224‑3 32522202
    [Google Scholar]
  55. WangX. XieJ. TanL. LuY. ShenN. LiJ. HuH. LiH. LiX. ChengL. N6-methyladenosine-modified circRIMS2 mediates synaptic and memory impairments by activating GluN2B ubiquitination in Alzheimer’s disease.Transl. Neurodegener.20231215310.1186/s40035‑023‑00386‑6 38012808
    [Google Scholar]
  56. ZhangR. GaoY. LiY. GengD. LiangY. HeQ. WangL. CuiH. Nrf2 improves hippocampal synaptic plasticity, learning and memory through the circ-Vps41/miR-26a-5p/CaMKIV regulatory network.Exp. Neurol.202235111399810.1016/j.expneurol.2022.113998 35143833
    [Google Scholar]
  57. KoteraI. SekimotoT. MiyamotoY. SaiwakiT. NagoshiE. SakagamiH. KondoH. YonedaY. Importin α transports CaMKIV to the nucleus without utilizing importin β.EMBO J.200524594295110.1038/sj.emboj.7600587 15719015
    [Google Scholar]
  58. LiY. WangH. GaoY. ZhangR. LiuQ. XieW. LiuZ. GengD. WangL. Circ-Vps41 positively modulates Syp and its overexpression improves memory ability in aging mice.Front. Mol. Neurosci.202215103791210.3389/fnmol.2022.1037912 36533129
    [Google Scholar]
  59. XuK. ZhangY. XiongW. ZhangZ. WangZ. LvL. LiuC. HuZ. ZhengY.T. LuL. HuX.T. LiJ. CircGRIA1 shows an age-related increase in male macaque brain and regulates synaptic plasticity and synaptogenesis.Nat. Commun.2020111359410.1038/s41467‑020‑17435‑7 32681011
    [Google Scholar]
  60. OliverR.J. BrigmanJ.L. BolognaniF. AllanA.M. NeisewanderJ.L. Perrone-BizzozeroN.I. Neuronal RNA‐binding protein HuD regulates addiction‐related gene expression and behavior.Genes Brain Behav.2018174e1245410.1111/gbb.12454 29283498
    [Google Scholar]
  61. ZimmermanA.J. HafezA.K. AmoahS.K. RodriguezB.A. Dell’OrcoM. LozanoE. HartleyB.J. AluralB. LalondeJ. ChanderP. WebsterM.J. PerlisR.H. BrennandK.J. HaggartyS.J. WeickJ. Perrone-BizzozeroN. BrigmanJ.L. MelliosN. A psychiatric disease-related circular RNA controls synaptic gene expression and cognition.Mol. Psychiatry202025112712272710.1038/s41380‑020‑0653‑4 31988434
    [Google Scholar]
  62. Dell’OrcoM. OliverR.J. Perrone-BizzozeroN. HuD binds to and regulates circular RNAs derived from neuronal development- and synaptic plasticity-associated genes.Front. Genet.20201179010.3389/fgene.2020.00790 32849796
    [Google Scholar]
  63. QuanX. LiangH. ChenY. QinQ. WeiY. LiangZ. Related network and differential expression analyses identify nuclear genes and pathways in the hippocampus of Alzheimer disease.Med. Sci. Monit.202026e91931110.12659/MSM.919311 31989994
    [Google Scholar]
  64. BaconC. SchneiderM. Le MagueresseC. FroehlichH. StichtC. GluchC. MonyerH. RappoldG.A. Brain-specific Foxp1 deletion impairs neuronal development and causes autistic-like behaviour.Mol. Psychiatry201520563263910.1038/mp.2014.116 25266127
    [Google Scholar]
  65. LiuY. LeeJ.W. AckermanS.L. Mutations in the microtubule-associated protein 1A (Map1a) gene cause Purkinje cell degeneration.J. Neurosci.201535114587459810.1523/JNEUROSCI.2757‑14.2015 25788676
    [Google Scholar]
  66. a Dell’OrcoM. OliverR.J. Perrone-BizzozeroN. HuD binds to and regulates circular RNAs derived from neuronal development- and synaptic plasticity-associated genes.Front Genet20201179010.3389/fgene.2020.00790
    [Google Scholar]
  67. b ItoH. MorishitaR. SudoK. NishimuraY.V. InagumaY. IwamotoI. NagataK. Biochemical and morphological characterization of MAGI-1 in neuronal tissue.J. Neurosci. Res.20129091776178110.1002/jnr.23074
    [Google Scholar]
  68. YuP. AgbaegbuC. MalideD.A. WuX. KatagiriY. HammerJ.A. GellerH.M. Cooperative interactions of LPPR/PRG family members in membrane localization and alteration of cellular morphology.J. Cell Sci.201512817jcs.16978910.1242/jcs.16978926183180
    [Google Scholar]
  69. AnkarcronaM. WinbladB. Biomarkers for apoptosis in Alzheimer’s disease.Int. J. Geriatr. Psychiatry200520210110510.1002/gps.1260 15660410
    [Google Scholar]
  70. LiQ. LiuY. SunM. Autophagy and Alzheimer’s Disease.Cell. Mol. Neurobiol.201737337738810.1007/s10571‑016‑0386‑8 27260250
    [Google Scholar]
  71. YangH. WangH. ShangH. ChenX. YangS. QuY. DingJ. LiX. Circular RNA circ_0000950 promotes neuron apoptosis, suppresses neurite outgrowth and elevates inflammatory cytokines levels via directly sponging miR-103 in Alzheimer’s disease.Cell Cycle201918182197221410.1080/15384101.2019.1629773 31373242
    [Google Scholar]
  72. YangH. WangH. ShuY. LiX. miR-103 promotes neurite outgrowth and suppresses cells apoptosis by targeting prostaglandin-endoperoxide synthase 2 in cellular models of Alzheimer’s disease.Front. Cell. Neurosci.2018129110.3389/fncel.2018.00091 29674956
    [Google Scholar]
  73. LiY. WangH. ChenL. WeiK. LiuY. HanY. XiaX. Circ_0003611 regulates apoptosis and oxidative stress injury of Alzheimer’s disease via miR-383-5p/KIF1B axis.Metab. Brain Dis.20223782915292410.1007/s11011‑022‑01051‑z 35960460
    [Google Scholar]
  74. SchwarzD.S. BlowerM.D. The endoplasmic reticulum: Structure, function and response to cellular signaling.Cell. Mol. Life Sci.2016731799410.1007/s00018‑015‑2052‑6 26433683
    [Google Scholar]
  75. GoswamiP. AfjalM.A. AkhterJ. ManglaA. KhanJ. ParvezS. RaisuddinS. Involvement of endoplasmic reticulum stress in amyloid β (1-42)-induced Alzheimer’s like neuropathological process in rat brain.Brain Res. Bull.202016510811710.1016/j.brainresbull.2020.09.022 33011197
    [Google Scholar]
  76. XuT.T. ZhangY. HeJ.Y. LuoD. LuoY. WangY.J. LiuW. WuJ. ZhaoW. FangJ. GuanL. HuangS. WangH. LinL. ZhangS.J. WangQ. Bajijiasu ameliorates β-amyloid-triggered endoplasmic reticulum stress and related pathologies in an Alzheimer’s disease model.Cell. Physiol. Biochem.201846110711710.1159/000488414
    [Google Scholar]
  77. LiG. LiangR. LianY. ZhouY. Circ_0002945 functions as a competing endogenous RNA to promote Aβ25-35-induced endoplasmic reticulum stress and apoptosis in SK-N-SH cells and human primary neurons.Brain Res.2022178514787810.1016/j.brainres.2022.147878 35278480
    [Google Scholar]
  78. XiaoY. LiY. ZhangH. YangL. JiangY. WeiC. FengX. XunY. YuanS. XiangS. LiuN. TNFAIP1 is upregulated in APP/PS1 mice and promotes apoptosis in SH-SY5Y cells by binding to RhoB.J Mol Neurosci20217161221123310.1007/s12031‑020‑01748‑9
    [Google Scholar]
  79. WuL. DuQ. WuC. CircLPAR1/miR-212-3p/ZNF217 feedback loop promotes amyloid β-induced neuronal injury in Alzheimer’s Disease.Brain Res.2021177014762210.1016/j.brainres.2021.147622 34403662
    [Google Scholar]
  80. PichlerS. GuW. HartlD. GasparoniG. LeidingerP. KellerA. MeeseE. MayhausM. HampelH. RiemenschneiderM. The miRNome of Alzheimer’s disease: Consistent downregulation of the miR-132/212 cluster.Neurobiol. Aging201750167.e1167.e1010.1016/j.neurobiolaging.2016.09.019 27816213
    [Google Scholar]
  81. WangY. ChangQ. MicroRNA miR-212 regulates PDCD4 to attenuate Aβ25–35-induced neurotoxicity via PI3K/AKT signaling pathway in Alzheimer’s disease.Biotechnol. Lett.20204291789179710.1007/s10529‑020‑02915‑z 32474742
    [Google Scholar]
  82. GaoY. ZhangN. LvC. LiN. LiX. LiW. lncRNA SNHG1 Knockdown Alleviates Amyloid-β-Induced Neuronal Injury by Regulating ZNF217 via Sponging miR-361-3p in Alzheimer’s Disease.J. Alzheimers Dis.2020771859810.3233/JAD‑191303 32741808
    [Google Scholar]
  83. DilingC. YinruiG. LongkaiQ. XiaocuiT. YadiL. XinY. GuoyanH. OuS. TianqiaoY. DongdongW. YizhenX. YangB.B. QingpingW. Circular RNA NF1-419 enhances autophagy to ameliorate senile dementia by binding Dynamin-1 and Adaptor protein 2 B1 in AD-like mice.Aging (Albany NY)20191124120021203110.18632/aging.102529 31860870
    [Google Scholar]
  84. AntonnyB. BurdC. De CamilliP. ChenE. DaumkeO. FaelberK. FordM. FrolovV.A. FrostA. HinshawJ.E. KirchhausenT. KozlovM.M. LenzM. LowH.H. McMahonH. MerrifieldC. PollardT.D. RobinsonP.J. RouxA. SchmidS. Membrane fission by dynamin: What we know and what we need to know.EMBO J.201635212270228410.15252/embj.201694613 27670760
    [Google Scholar]
  85. KranceS.H. WuC.Y. ChanA.C.Y. KwongS. SongB.X. XiongL.Y. OukM. ChenM.H. ZhangJ. YungA. StanleyM. HerrmannN. LanctôtK.L. SwardfagerW. Endosomal-Lysosomal and Autophagy Pathway in Alzheimer’s Disease: A Systematic Review and Meta-Analysis.J. Alzheimers Dis.20228841279129210.3233/JAD‑220360 35754279
    [Google Scholar]
  86. ZhangZ. YangT. XiaoJ. Circular RNAs: Promising biomarkers for human diseases.EBioMedicine20183426727410.1016/j.ebiom.2018.07.036 30078734
    [Google Scholar]
  87. AkhterR. Circular RNA and Alzheimer’s disease.Adv. Exp. Med. Biol.2018108723924310.1007/978‑981‑13‑1426‑1_19 30259371
    [Google Scholar]
  88. DubeU. Del-AguilaJ.L. LiZ. BuddeJ.P. JiangS. HsuS. IbanezL. FernandezM.V. FariasF. NortonJ. GentschJ. WangF. AllegriR. AmtasharF. BenzingerT. BermanS. BodgeC. BrandonS. BrooksW. BuckJ. BucklesV. CheaS. ChremP. ChuiH. CincoJ. CliffordJ. D’MelloM. DonahueT. DouglasJ. EdigoN. Erekin-TanerN. FaganA. FarlowM. FarrarA. FeldmanH. FlynnG. FoxN. FranklinE. FujiiH. GantC. GardenerS. GhettiB. GoateA. GoldmanJ. GordonB. GrayJ. GurneyJ. HassenstabJ. HiroharaM. HoltzmanD. HornbeckR. DiBariS.H. IkeuchiT. IkonomovicS. JeromeG. JuckerM. KasugaK. KawarabayashiT. KlunkW. KoeppeR. Kuder-BulettaE. LaskeC. LevinJ. MarcusD. MartinsR. MasonN.S. Maue-DreyfusD. McDadeE. MontoyaL. MoriH. NagamatsuA. NeimeyerK. NobleJ. NortonJ. PerrinR. RaichleM. RingmanJ. RohJ.H. SchofieldP. ShimadaH. ShirotoT. ShojiM. SigurdsonW. SohrabiH. SparksP. SuzukiK. SwisherL. TaddeiK. WangJ. WangP. WeinerM. WolfsbergerM. XiongC. XuX. SallowayS. MastersC.L. LeeJ-H. Graff-RadfordN.R. ChhatwalJ.P. BatemanR.J. MorrisJ.C. KarchC.M. HarariO. CruchagaC. An atlas of cortical circular RNA expression in Alzheimer disease brains demonstrates clinical and pathological associations.Nat. Neurosci.201922111903191210.1038/s41593‑019‑0501‑5 31591557
    [Google Scholar]
  89. LiuL. ChenX. ChenY.H. ZhangK. Identification of circular RNA HSA_Circ_0003391 in peripheral blood is potentially associated with Alzheimer’s disease.Front. Aging Neurosci.20201260196510.3389/fnagi.2020.601965 33424579
    [Google Scholar]
  90. ZhangW. ThevapriyaS. KimP.J. YuW.P. Shawn JeH. King TanE. ZengL. Amyloid precursor protein regulates neurogenesis by antagonizing miR-574-5p in the developing cerebral cortex.Nat. Commun.201451333010.1038/ncomms4330 24584353
    [Google Scholar]
  91. PiscopoP. ManziniV. RivabeneR. CrestiniA. Le PeraL. PizziE. VeroniC. TalaricoG. PeconiM. CastellanoA.E. D’AlessioC. BrunoG. CorboM. VanacoreN. LacorteE. A plasma circular RNA profile differentiates subjects with Alzheimer’s disease and mild cognitive impairment from healthy controls.Int. J. Mol. Sci.202223211323210.3390/ijms232113232 36362022
    [Google Scholar]
  92. RenZ. ChuC. PangY. CaiH. JiaL. A circular RNA blood panel that differentiates Alzheimer’s disease from other dementia types.Biomark. Res.20221016310.1186/s40364‑022‑00405‑0 35982472
    [Google Scholar]
  93. De StrooperB. KarranE. The Cellular Phase of Alzheimer’s disease.Cell2016164460361510.1016/j.cell.2015.12.056 26871627
    [Google Scholar]
  94. LongJ.M. HoltzmanD.M. Alzheimer disease: An update on pathobiology and treatment strategies.Cell2019179231233910.1016/j.cell.2019.09.001 31564456
    [Google Scholar]
  95. JiangL. SuiD. QiaoK. DongH.M. ChenL. HanY. Impaired functional criticality of human brain during Alzheimer’s disease progression.Sci. Rep.201881132410.1038/s41598‑018‑19674‑7 29358749
    [Google Scholar]
  96. WilsonM.C. MeredithD. FoxJ.E.M. ManoharanC. DaviesA.J. HalestrapA.P. Basigin (CD147) is the target for organomercurial inhibition of monocarboxylate transporter isoforms 1 and 4: The ancillary protein for the insensitive MCT2 is EMBIGIN (gp70).J. Biol. Chem.200528029272132722110.1074/jbc.M411950200 15917240
    [Google Scholar]
  97. LuoH. HanG. WangJ. ZengF. LiY. ShaoS. SongF. BaiZ. PengX. WangY.J. ShiX. LeiH. Common aging signature in the peripheral blood of vascular dementia and Alzheimer’s disease.Mol. Neurobiol.20165363596360510.1007/s12035‑015‑9288‑x 26099307
    [Google Scholar]
  98. ZhengD. TahirR.A. YanY. ZhaoJ. QuanZ. KangG. HanY. QingH. Screening of human circular RNAs as biomarkers for early onset detection of Alzheimer’s disease.Front. Neurosci.20221687828710.3389/fnins.2022.878287 35864990
    [Google Scholar]
  99. WeingerJ.G. BrosnanC.F. LoudigO. GoldbergM.F. MacianF. ArnettH.A. PrietoA.L. TsipersonV. Shafit-ZagardoB. Loss of the receptor tyrosine kinase Axl leads to enhanced inflammation in the CNS and delayed removal of myelin debris during experimental autoimmune encephalomyelitis.J. Neuroinflammation2011814910.1186/1742‑2094‑8‑49 21569627
    [Google Scholar]
  100. HalesC.M. ReesH. SeyfriedN.T. DammerE.B. DuongD.M. GearingM. MontineT.J. TroncosoJ.C. ThambisettyM. LeveyA.I. LahJ.J. WingoT.S. Abnormal gephyrin immunoreactivity associated with Alzheimer disease pathologic changes.J. Neuropathol. Exp. Neurol.201372111009101510.1097/01.jnen.0000435847.59828.db 24128675
    [Google Scholar]
  101. PereiraP.A. TomásJ.F. QueirozJ.A. FigueirasA.R. SousaF. Recombinant pre-miR-29b for Alzheimer’s disease therapeutics.Sci. Rep.2016611994610.1038/srep19946 26818210
    [Google Scholar]
  102. VilardoE. BarbatoC. CiottiM. CogoniC. RubertiF. MicroRNA-101 regulates amyloid precursor protein expression in hippocampal neurons.J. Biol. Chem.201028524183441835110.1074/jbc.M110.112664 20395292
    [Google Scholar]
  103. HébertS.S. HorréK. NicolaïL. PapadopoulouA.S. MandemakersW. SilahtarogluA.N. KauppinenS. DelacourteA. De StrooperB. Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/β-secretase expression.Proc. Natl. Acad. Sci. USA2008105176415642010.1073/pnas.0710263105 18434550
    [Google Scholar]
  104. LiuY. ChengX. LiH. HuiS. ZhangZ. XiaoY. PengW. Non-coding RNAs as novel regulators of neuroinflammation in Alzheimer’s disease.Front. Immunol.20221390807610.3389/fimmu.2022.908076 35720333
    [Google Scholar]
  105. FengX.Y. ZhuS.X. PuK.J. HuangH.J. ChenY.Q. WangW.T. New insight into circRNAs: Characterization, strategies, and biomedical applications.Exp. Hematol. Oncol.20231219110.1186/s40164‑023‑00451‑w 37828589
    [Google Scholar]
  106. KranickJ.C. ChadalavadaD.M. SahuD. ShowalterS.A. Engineering double-stranded RNA binding activity into the Drosha double-stranded RNA binding domain results in a loss of microRNA processing function.PLoS One2017128e018244510.1371/journal.pone.0182445 28792523
    [Google Scholar]
  107. YuX. LiuH. ChangN. FuW. GuoZ. WangY. Circular RNAs: New players involved in the regulation of cognition and cognitive diseases.Front. Neurosci.202317109787810.3389/fnins.2023.1097878 36816112
    [Google Scholar]
  108. DongJ. ZengZ. HuangY. ChenC. ChengZ. ZhuQ. Challenges and opportunities for circRNA identification and delivery.Crit. Rev. Biochem. Mol. Biol.2023581193510.1080/10409238.2023.2185764 36916323
    [Google Scholar]
/content/journals/cn/10.2174/011570159X337659241014140824
Loading
/content/journals/cn/10.2174/011570159X337659241014140824
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test