Skip to content
2000
image of GRIN2A and Schizophrenia: Scientific Evidence and Biological Mechanisms

Abstract

Schizophrenia is a severe psychiatric disorder and a complex polygenic inherited disease that affects nearly 1% of the global population. Although considerable progress has been made over the past 10 years in the treatment of schizophrenia, antipsychotics are not universally effective and may have serious side effects. The hypofunction of glutamate NMDA receptors (NMDARs) in GABAergic interneurons has long been postulated to be the principal pathophysiology of schizophrenia. A recent study has shown that pathogenic variants are closely related to the aetiology of the disorder. encodes the GluN2A protein, which is a subunit of NMDAR. Most variants have been predicted to cause protein truncation, which results in reduced gene expression. Preclinical studies have indicated that mutations lead to NMDAR loss of function and substantially increase the risk of schizophrenia; however, their role in schizophrenia is not well understood. We hypothesise that the heterozygous loss of induces NMDAR hypofunction sufficient to confer a substantial risk of schizophrenia. Therefore, this review focuses on GRIN2A as a target for novel antipsychotics and discusses the mechanisms by which GRIN2A modulates antischizophrenic activities. Moreover, our review contributes to the understanding of the pathophysiology of schizophrenia to facilitate finding treatments for the cognitive and negative symptoms of schizophrenia.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X327712241023084944
2024-11-04
2024-12-29
Loading full text...

Full text loading...

References

  1. Campeau A. Mills R.H. Stevens T. Rossitto L.A. Meehan M. Dorrestein P. Daly R. Nguyen T.T. Gonzalez D.J. Jeste D.V. Hook V. Multi-omics of human plasma reveals molecular features of dysregulated inflammation and accelerated aging in schizophrenia. Mol. Psychiatry 2022 27 2 1217 1225 10.1038/s41380‑021‑01339‑z 34741130
    [Google Scholar]
  2. Keshavan M.S. Collin G. Guimond S. Kelly S. Prasad K.M. Lizano P. Neuroimaging in Schizophrenia. Neuroimaging Clin. N. Am. 2020 30 1 73 83 10.1016/j.nic.2019.09.007 31759574
    [Google Scholar]
  3. Winship I.R. Dursun S.M. Baker G.B. Balista P.A. Kandratavicius L. Maia-de-Oliveira J.P. Hallak J. Howland J.G. An Overview of Animal Models Related to Schizophrenia. Can. J. Psychiatry 2019 64 1 5 17 10.1177/0706743718773728 29742910
    [Google Scholar]
  4. Miyamoto Y. Nitta A. Behavioral phenotypes for negative symptoms in animal models of schizophrenia. J. Pharmacol. Sci. 2014 126 4 310 320 10.1254/jphs.14R02CR 25409784
    [Google Scholar]
  5. Schultz S.H. North S.W. Shields C.G. Schizophrenia: a review. Am. Fam. Physician 2007 75 12 1821 1829 17619525
    [Google Scholar]
  6. Stahl S.M. Buckley P.F. Negative symptoms of schizophrenia: a problem that will not go away. Acta Psychiatr. Scand. 2007 115 1 4 11 10.1111/j.1600‑0447.2006.00947.x 17201860
    [Google Scholar]
  7. Ohi K. Sumiyoshi C. Fujino H. Yasuda Y. Yamamori H. Fujimoto M. Shiino T. Sumiyoshi T. Hashimoto R. Genetic Overlap between General Cognitive Function and Schizophrenia: A Review of Cognitive GWASs. Int. J. Mol. Sci. 2018 19 12 3822 10.3390/ijms19123822 30513630
    [Google Scholar]
  8. Gebreegziabhere Y. Habatmu K. Mihretu A. Cella M. Alem A. Cognitive impairment in people with schizophrenia: an umbrella review. Eur. Arch. Psychiatry Clin. Neurosci. 2022 272 7 1139 1155 10.1007/s00406‑022‑01416‑6 35633394
    [Google Scholar]
  9. Green M.F. Horan W.P. Lee J. Nonsocial and social cognition in schizophrenia: current evidence and future directions. World Psychiatry 2019 18 2 146 161 10.1002/wps.20624 31059632
    [Google Scholar]
  10. Howes O. McCutcheon R. Stone J. Glutamate and dopamine in schizophrenia: An update for the 21 st century. J. Psychopharmacol. 2015 29 2 97 115 10.1177/0269881114563634 25586400
    [Google Scholar]
  11. McCutcheon R.A. Reis Marques T. Howes O.D. Schizophrenia-An Overview. JAMA Psychiatry 2020 77 2 201 210 10.1001/jamapsychiatry.2019.3360 31664453
    [Google Scholar]
  12. Eggers A.E. A serotonin hypothesis of schizophrenia. Med. Hypotheses 2013 80 6 791 794 10.1016/j.mehy.2013.03.013 23557849
    [Google Scholar]
  13. Guidotti A. Auta J. Davis J.M. Dong E. Grayson D.R. Veldic M. Zhang X. Costa E. GABAergic dysfunction in schizophrenia: new treatment strategies on the horizon. Psychopharmacology (Berl.) 2005 180 2 191 205 10.1007/s00213‑005‑2212‑8 15864560
    [Google Scholar]
  14. Yang A. Tsai S.J. New Targets for Schizophrenia Treatment beyond the Dopamine Hypothesis. Int. J. Mol. Sci. 2017 18 8 1689 10.3390/ijms18081689 28771182
    [Google Scholar]
  15. Mueser K.T. McGurk S.R. Schizophrenia. Lancet 2004 363 9426 2063 2072 10.1016/S0140‑6736(04)16458‑1 15207959
    [Google Scholar]
  16. Ying Y. Jia L. Wang Z. Jiang W. Zhang J. Wang H. Yang N. Wang R. Ren Y. Gao F. Ma X. Tang Y. McDonald W.M. Electroconvulsive therapy is associated with lower readmission rates in patients with schizophrenia. Brain Stimul. 2021 14 4 913 921 10.1016/j.brs.2021.05.010 34044182
    [Google Scholar]
  17. Biondo J. Dance/movement therapy as a holistic approach to diminish health discrepancies and promote wellness for people with schizophrenia: a review of the literature. F1000 Res. 2023 12 33 10.12688/f1000research.127377.2 37593363
    [Google Scholar]
  18. Jia R. Liang D. Yu J. Lu G. Wang Z. Wu Z. Huang H. Chen C. The effectiveness of adjunct music therapy for patients with schizophrenia: A meta‐analysis. Psychiatry Res. 2020 293 113464 10.1016/j.psychres.2020.113464 33002835
    [Google Scholar]
  19. Stępnicki P. Kondej M. Kaczor A.A. Current Concepts and Treatments of Schizophrenia. Molecules 2018 23 8 2087 10.3390/molecules23082087 30127324
    [Google Scholar]
  20. Carbon M. Correll C.U. Thinking and acting beyond the positive: The role of the cognitive and negative symptoms in schizophrenia. CNS Spectr 2014 19 38 52 10.1017/S1092852914000601
    [Google Scholar]
  21. Ricciardi L. Pringsheim T. Barnes T.R.E. Martino D. Gardner D. Remington G. Addington D. Morgante F. Poole N. Carson A. Edwards M. Treatment Recommendations for Tardive Dyskinesia. Can. J. Psychiatry 2019 64 6 388 399 10.1177/0706743719828968 30791698
    [Google Scholar]
  22. Sabé M. Pallis K. Solmi M. Crippa A. Sentissi O. Kaiser S. Comparative Effects of 11 Antipsychotics on Weight Gain and Metabolic Function in Patients With Acute Schizophrenia. J. Clin. Psychiatry 2023 84 2 84 10.4088/JCP.22r14490 36752753
    [Google Scholar]
  23. Harrison P.J. Bannerman D.M. GRIN2A (NR2A): a gene contributing to glutamatergic involvement in schizophrenia. Mol. Psychiatry 2023 28 9 3568 3572 10.1038/s41380‑023‑02265‑y 37736757
    [Google Scholar]
  24. Franchini L. Carrano N. Di Luca M. Gardoni F. Synaptic GluN2A-Containing NMDA Receptors: From Physiology to Pathological Synaptic Plasticity. Int. J. Mol. Sci. 2020 21 4 1538 10.3390/ijms21041538 32102377
    [Google Scholar]
  25. Li F. Tsien J.Z. Memory and the NMDA Receptors. N. Engl. J. Med. 2009 361 3 302 303 10.1056/NEJMcibr0902052 19605837
    [Google Scholar]
  26. Falcón-Moya R. Rodríguez-Moreno A. Metabotropic actions of kainate receptors modulating glutamate release. Neuropharmacology 2021 197 108696 10.1016/j.neuropharm.2021.108696 34274351
    [Google Scholar]
  27. Gaebler A.J. Fakour N. Stöhr F. Zweerings J. Taebi A. Suslova M. Dukart J. Hipp J.F. Adhikari B.M. Kochunov P. Muthukumaraswamy S.D. Forsyth A. Eggermann T. Kraft F. Kurth I. Paulzen M. Gründer G. Schneider F. Mathiak K. Functional connectivity signatures of NMDAR dysfunction in schizophrenia—integrating findings from imaging genetics and pharmaco-fMRI. Transl. Psychiatry 2023 13 1 59 10.1038/s41398‑023‑02344‑2 36797233
    [Google Scholar]
  28. Trubetskoy V. Pardiñas A.F. Qi T. Panagiotaropoulou G. Awasthi S. Bigdeli T.B. Bryois J. Chen C.Y. Dennison C.A. Hall L.S. Lam M. Watanabe K. Frei O. Ge T. Harwood J.C. Koopmans F. Magnusson S. Richards A.L. Sidorenko J. Wu Y. Zeng J. Grove J. Kim M. Li Z. Voloudakis G. Zhang W. Adams M. Agartz I. Atkinson E.G. Agerbo E. Al Eissa M. Albus M. Alexander M. Alizadeh B.Z. Alptekin K. Als T.D. Amin F. Arolt V. Arrojo M. Athanasiu L. Azevedo M.H. Bacanu S.A. Bass N.J. Begemann M. Belliveau R.A. Bene J. Benyamin B. Bergen S.E. Blasi G. Bobes J. Bonassi S. Braun A. Bressan R.A. Bromet E.J. Bruggeman R. Buckley P.F. Buckner R.L. Bybjerg-Grauholm J. Cahn W. Cairns M.J. Calkins M.E. Carr V.J. Castle D. Catts S.V. Chambert K.D. Chan R.C.K. Chaumette B. Cheng W. Cheung E.F.C. Chong S.A. Cohen D. Consoli A. Cordeiro Q. Costas J. Curtis C. Davidson M. Davis K.L. de Haan L. Degenhardt F. DeLisi L.E. Demontis D. Dickerson F. Dikeos D. Dinan T. Djurovic S. Duan J. Ducci G. Dudbridge F. Eriksson J.G. Fañanás L. Faraone S.V. Fiorentino A. Forstner A. Frank J. Freimer N.B. Fromer M. Frustaci A. Gadelha A. Genovese G. Gershon E.S. Giannitelli M. Giegling I. Giusti-Rodríguez P. Godard S. Goldstein J.I. González Peñas J. González-Pinto A. Gopal S. Gratten J. Green M.F. Greenwood T.A. Guillin O. Gülöksüz S. Gur R.E. Gur R.C. Gutiérrez B. Hahn E. Hakonarson H. Haroutunian V. Hartmann A.M. Harvey C. Hayward C. Henskens F.A. Herms S. Hoffmann P. Howrigan D.P. Ikeda M. Iyegbe C. Joa I. Julià A. Kähler A.K. Kam-Thong T. Kamatani Y. Karachanak-Yankova S. Kebir O. Keller M.C. Kelly B.J. Khrunin A. Kim S.W. Klovins J. Kondratiev N. Konte B. Kraft J. Kubo M. Kučinskas V. Kučinskiene Z.A. Kusumawardhani A. Kuzelova-Ptackova H. Landi S. Lazzeroni L.C. Lee P.H. Legge S.E. Lehrer D.S. Lencer R. Lerer B. Li M. Lieberman J. Light G.A. Limborska S. Liu C.M. Lönnqvist J. Loughland C.M. Lubinski J. Luykx J.J. Lynham A. Macek M. Jr Mackinnon A. Magnusson P.K.E. Maher B.S. Maier W. Malaspina D. Mallet J. Marder S.R. Marsal S. Martin A.R. Martorell L. Mattheisen M. McCarley R.W. McDonald C. McGrath J.J. Medeiros H. Meier S. Melegh B. Melle I. Mesholam-Gately R.I. Metspalu A. Michie P.T. Milani L. Milanova V. Mitjans M. Molden E. Molina E. Molto M.D. Mondelli V. Moreno C. Morley C.P. Muntané G. Murphy K.C. Myin-Germeys I. Nenadić I. Nestadt G. Nikitina-Zake L. Noto C. Nuechterlein K.H. O’Brien N.L. O’Neill F.A. Oh S.Y. Olincy A. Ota V.K. Pantelis C. Papadimitriou G.N. Parellada M. Paunio T. Pellegrino R. Periyasamy S. Perkins D.O. Pfuhlmann B. Pietiläinen O. Pimm J. Porteous D. Powell J. Quattrone D. Quested D. Radant A.D. Rampino A. Rapaport M.H. Rautanen A. Reichenberg A. Roe C. Roffman J.L. Roth J. Rothermundt M. Rutten B.P.F. Saker-Delye S. Salomaa V. Sanjuan J. Santoro M.L. Savitz A. Schall U. Scott R.J. Seidman L.J. Sharp S.I. Shi J. Siever L.J. Sigurdsson E. Sim K. Skarabis N. Slominsky P. So H.C. Sobell J.L. Söderman E. Stain H.J. Steen N.E. Steixner-Kumar A.A. Stögmann E. Stone W.S. Straub R.E. Streit F. Strengman E. Stroup T.S. Subramaniam M. Sugar C.A. Suvisaari J. Svrakic D.M. Swerdlow N.R. Szatkiewicz J.P. Ta T.M.T. Takahashi A. Terao C. Thibaut F. Toncheva D. Tooney P.A. Torretta S. Tosato S. Tura G.B. Turetsky B.I. Üçok A. Vaaler A. van Amelsvoort T. van Winkel R. Veijola J. Waddington J. Walter H. Waterreus A. Webb B.T. Weiser M. Williams N.M. Witt S.H. Wormley B.K. Wu J.Q. Xu Z. Yolken R. Zai C.C. Zhou W. Zhu F. Zimprich F. Atbaşoğlu E.C. Ayub M. Benner C. Bertolino A. Black D.W. Bray N.J. Breen G. Buccola N.G. Byerley W.F. Chen W.J. Cloninger C.R. Crespo-Facorro B. Donohoe G. Freedman R. Galletly C. Gandal M.J. Gennarelli M. Hougaard D.M. Hwu H.G. Jablensky A.V. McCarroll S.A. Moran J.L. Mors O. Mortensen P.B. Müller-Myhsok B. Neil A.L. Nordentoft M. Pato M.T. Petryshen T.L. Pirinen M. Pulver A.E. Schulze T.G. Silverman J.M. Smoller J.W. Stahl E.A. Tsuang D.W. Vilella E. Wang S.H. Xu S. Dai N. Wenwen Q. Wildenauer D.B. Agiananda F. Amir N. Antoni R. Arsianti T. Asmarahadi A. Diatri H. Djatmiko P. Irmansyah I. Khalimah S. Kusumadewi I. Kusumaningrum P. Lukman P.R. Nasrun M.W. Safyuni N.S. Prasetyawan P. Semen G. Siste K. Tobing H. Widiasih N. Wiguna T. Wulandari D. Evalina N. Hananto A.J. Ismoyo J.H. Marini T.M. Henuhili S. Reza M. Yusnadewi S. Abyzov A. Akbarian S. Ashley-Koch A. van Bakel H. Breen M. Brown M. Bryois J. Carlyle B. Charney A. Coetzee G. Crawford G. Dracheva S. Emani P. Farnham P. Fromer M. Galeev T. Gandal M. Gerstein M. Giase G. Girdhar K. Goes F. Grennan K. Gu M. Guerra B. Gursoy G. Hoffman G. Hyde T. Jaffe A. Jiang S. Jiang Y. Kefi A. Kim Y. Kitchen R. Knowles J.A. Lay F. Lee D. Li M. Liu C. Liu S. Mattei E. Navarro F. Pan X. Peters M.A. Pinto D. Pochareddy S. Polioudakis D. Purcaro M. Purcell S. Pratt H. Reddy T. Rhie S. Roussos P. Rozowsky J. Sanders S. Sestan N. Sethi A. Shi X. Shieh A. Swarup V. Szekely A. Wang D. Warrell J. Weissman S. Weng Z. White K. Wiseman J. Witt H. Won H. Wood S. Wu F. Xu X. Yao L. Zandi P. Arranz M.J. Bakker S. Bender S. Bramon E. Collier D.A. Crepo-Facorro B. Hall J. Iyegbe C. Kahn R. Lawrie S. Lewis C. Lin K. Linszen D.H. Mata I. McIntosh A. Murray R.M. Ophoff R.A. van Os J. Powell J. Rujescu D. Walshe M. Weisbrod M. Achsel T. Andres-Alonso M. Bagni C. Bayés À. Biederer T. Brose N. Brown T.C. Chua J.J.E. Coba M.P. Cornelisse L.N. de Jong A.P.H. de Juan-Sanz J. Dieterich D.C. Feng G. Goldschmidt H.L. Gundelfinger E.D. Hoogenraad C. Huganir R.L. Hyman S.E. Imig C. Jahn R. Jung H. Kaeser P.S. Kim E. Koopmans F. Kreutz M.R. Lipstein N. MacGillavry H.D. Malenka R. McPherson P.S. O’Connor V. Pielot R. Ryan T.A. Sahasrabudhe D. Sala C. Sheng M. Smalla K-H. Smit A.B. Südhof T.C. Thomas P.D. Toonen R.F. van Weering J.R.T. Verhage M. Verpelli C. Adolfsson R. Arango C. Baune B.T. Belangero S.I. Børglum A.D. Braff D. Bramon E. Buxbaum J.D. Campion D. Cervilla J.A. Cichon S. Collier D.A. Corvin A. Curtis D. Forti M.D. Domenici E. Ehrenreich H. Escott-Price V. Esko T. Fanous A.H. Gareeva A. Gawlik M. Gejman P.V. Gill M. Glatt S.J. Golimbet V. Hong K.S. Hultman C.M. Hyman S.E. Iwata N. Jönsson E.G. Kahn R.S. Kennedy J.L. Khusnutdinova E. Kirov G. Knowles J.A. Krebs M-O. Laurent-Levinson C. Lee J. Lencz T. Levinson D.F. Li Q.S. Liu J. Malhotra A.K. Malhotra D. McIntosh A. McQuillin A. Menezes P.R. Morgan V.A. Morris D.W. Mowry B.J. Murray R.M. Nimgaonkar V. Nöthen M.M. Ophoff R.A. Paciga S.A. Palotie A. Pato C.N. Qin S. Rietschel M. Riley B.P. Rivera M. Rujescu D. Saka M.C. Sanders A.R. Schwab S.G. Serretti A. Sham P.C. Shi Y. St Clair D. Stefánsson H. Stefansson K. Tsuang M.T. van Os J. Vawter M.P. Weinberger D.R. Werge T. Wildenauer D.B. Yu X. Yue W. Holmans P.A. Pocklington A.J. Roussos P. Vassos E. Verhage M. Visscher P.M. Yang J. Posthuma D. Andreassen O.A. Kendler K.S. Owen M.J. Wray N.R. Daly M.J. Huang H. Neale B.M. Sullivan P.F. Ripke S. Walters J.T.R. O’Donovan M.C. de Haan L. van Amelsvoort T. van Winkel R. Gareeva A. Sham P.C. Shi Y. St Clair D. van Os J. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature 2022 604 7906 502 508 10.1038/s41586‑022‑04434‑5 35396580
    [Google Scholar]
  29. Benke T.A. Park K. Krey I. Camp C.R. Song R. Ramsey A.J. Yuan H. Traynelis S.F. Lemke J. Clinical and therapeutic significance of genetic variation in the GRIN gene family encoding NMDARs. Neuropharmacology 2021 199 108805 10.1016/j.neuropharm.2021.108805 34560056
    [Google Scholar]
  30. Singh T. Poterba T. Curtis D. Akil H. Al Eissa M. Barchas J.D. Bass N. Bigdeli T.B. Breen G. Bromet E.J. Buckley P.F. Bunney W.E. Bybjerg-Grauholm J. Byerley W.F. Chapman S.B. Chen W.J. Churchhouse C. Craddock N. Cusick C.M. DeLisi L. Dodge S. Escamilla M.A. Eskelinen S. Fanous A.H. Faraone S.V. Fiorentino A. Francioli L. Gabriel S.B. Gage D. Gagliano Taliun S.A. Ganna A. Genovese G. Glahn D.C. Grove J. Hall M.H. Hämäläinen E. Heyne H.O. Holi M. Hougaard D.M. Howrigan D.P. Huang H. Hwu H.G. Kahn R.S. Kang H.M. Karczewski K.J. Kirov G. Knowles J.A. Lee F.S. Lehrer D.S. Lescai F. Malaspina D. Marder S.R. McCarroll S.A. McIntosh A.M. Medeiros H. Milani L. Morley C.P. Morris D.W. Mortensen P.B. Myers R.M. Nordentoft M. O’Brien N.L. Olivares A.M. Ongur D. Ouwehand W.H. Palmer D.S. Paunio T. Quested D. Rapaport M.H. Rees E. Rollins B. Satterstrom F.K. Schatzberg A. Scolnick E. Scott L.J. Sharp S.I. Sklar P. Smoller J.W. Sobell J.L. Solomonson M. Stahl E.A. Stevens C.R. Suvisaari J. Tiao G. Watson S.J. Watts N.A. Blackwood D.H. Børglum A.D. Cohen B.M. Corvin A.P. Esko T. Freimer N.B. Glatt S.J. Hultman C.M. McQuillin A. Palotie A. Pato C.N. Pato M.T. Pulver A.E. St Clair D. Tsuang M.T. Vawter M.P. Walters J.T. Werge T.M. Ophoff R.A. Sullivan P.F. Owen M.J. Boehnke M. O’Donovan M.C. Neale B.M. Daly M.J. Rare coding variants in ten genes confer substantial risk for schizophrenia. Nature 2022 604 7906 509 516 10.1038/s41586‑022‑04556‑w 35396579
    [Google Scholar]
  31. Poltavskaya E.G. Kornetova E.G. Freidin M.B. Pozhidaev I.V. Paderina D.Z. Bocharova A.V. Semke A.V. Bokhan N.A. Ivanova S.A. Fedorenko O.Y. The Role of Glutamatergic Gene Polymorphisms in the Clinical Phenotypes of Schizophrenia. Genes (Basel) 2023 14 3 575 10.3390/genes14030575 36980845
    [Google Scholar]
  32. Poltavskaya E.G. Fedorenko O.Y. Kornetova E.G. Loonen A.J.M. Kornetov A.N. Bokhan N.A. Ivanova S.A. Study of Early Onset Schizophrenia: Associations of GRIN2A and GRIN2B Polymorphisms. Life (Basel) 2021 11 10 997 10.3390/life11100997 34685369
    [Google Scholar]
  33. Traynelis S.F. Wollmuth L.P. McBain C.J. Menniti F.S. Vance K.M. Ogden K.K. Hansen K.B. Yuan H. Myers S.J. Dingledine R. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol. Rev. 2010 62 3 405 496 10.1124/pr.109.002451 20716669
    [Google Scholar]
  34. Sun Q. Cao W. Luo J. The roles of GluN3-containing N-methyl-D-aspartate receptor in central nerve system. Zhejiang Da Xue Xue Bao Yi Xue Ban 2021 50 5 651 658 10.3724/zdxbyxb‑2021‑0167 34986531
    [Google Scholar]
  35. Vieira M. Yong X.L.H. Roche K.W. Anggono V. Regulation of NMDA glutamate receptor functions by the GluN2 subunits. J. Neurochem. 2020 154 2 121 143 10.1111/jnc.14970 31978252
    [Google Scholar]
  36. Hansen K.B. Yi F. Perszyk R.E. Furukawa H. Wollmuth L.P. Gibb A.J. Traynelis S.F. Structure, function, and allosteric modulation of NMDA receptors. J. Gen. Physiol. 2018 150 8 1081 1105 10.1085/jgp.201812032 30037851
    [Google Scholar]
  37. Monyer H. Burnashev N. Laurie D.J. Sakmann B. Seeburg P.H. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 1994 12 3 529 540 10.1016/0896‑6273(94)90210‑0 7512349
    [Google Scholar]
  38. Watanabe M. Inoue Y. Sakimura K. Mishina M. Developmental changes in distribution of NMDA receptor channel subunit mRNAs. Neuroreport 1992 3 12 1138 1140 10.1097/00001756‑199212000‑00027 1493227
    [Google Scholar]
  39. Ladagu A.D. Olopade F.E. Adejare A. Olopade J.O. GluN2A and GluN2B N-Methyl-D-Aspartate Receptor (NMDARs) Subunits: Their Roles and Therapeutic Antagonists in Neurological Diseases. Pharmaceuticals (Basel) 2023 16 11 1535 10.3390/ph16111535 38004401
    [Google Scholar]
  40. Nicoll R.A. Roche K.W. Long-term potentiation: Peeling the onion. Neuropharmacology 2013 74 18 22 10.1016/j.neuropharm.2013.02.010 23439383
    [Google Scholar]
  41. Lau C.G. Zukin R.S. NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nat. Rev. Neurosci. 2007 8 6 413 426 10.1038/nrn2153 17514195
    [Google Scholar]
  42. Bai N. Hayashi H. Aida T. Namekata K. Harada T. Mishina M. Tanaka K. Dock3 interaction with a glutamate-receptor NR2D subunit protects neurons from excitotoxicity. Mol. Brain 2013 6 1 22 10.1186/1756‑6606‑6‑22 23641686
    [Google Scholar]
  43. Sheng M. Cummings J. Roldan L.A. Jan Y.N. Jan L.Y. Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Nature 1994 368 6467 144 147 10.1038/368144a0 8139656
    [Google Scholar]
  44. Akazawa C. Shigemoto R. Bessho Y. Nakanishi S. Mizuno N. Differential expression of five N‐methyl‐D‐aspartate receptor subunit mRNAs in the cerebellum of developing and adult rats. J. Comp. Neurol. 1994 347 1 150 160 10.1002/cne.903470112 7798379
    [Google Scholar]
  45. Herzog L.E. Wang L. Yu E. Choi S. Farsi Z. Song B.J. Pan J.Q. Sheng M. Mouse mutants in schizophrenia risk genes GRIN2A and AKAP11 show EEG abnormalities in common with schizophrenia patients. Transl. Psychiatry 2023 13 1 92 10.1038/s41398‑023‑02393‑7 36914641
    [Google Scholar]
  46. Myers K.A. Scheffer I.E. GRIN2A-related speech disorders and epilepsy. Gene Reviews Pagon R.A. Adam M.P. Ardinger H.H. Wallace S.E. Amemiya A. Bean L.J.H. Bird T.D. Ledbetter N. Mefford H.C. Smith R.J.H. Stephens K. Seattle (WA) University of Washington, Seattle 2016 1993 2024
    [Google Scholar]
  47. Hojlo M.A. Ghebrelul M. Genetti C.A. Smith R. Rockowitz S. Deaso E. Beggs A.H. Agrawal P.B. Glahn D.C. Gonzalez-Heydrich J. Brownstein C.A. Children with Early-Onset Psychosis Have Increased Burden of Rare GRIN2A Variants. Genes (Basel) 2023 14 4 779 10.3390/genes14040779 37107537
    [Google Scholar]
  48. Prabhakar S.K. Rajaguru H. Kim S.H. Schizophrenia EEG Signal Classification Based on Swarm Intelligence Computing. Comput. Intell. Neurosci. 2020 2020 1 14 10.1155/2020/8853835 33335544
    [Google Scholar]
  49. Tekell J.L. Hoffmann R. Hendrickse W. Greene R.W. Rush A.J. Armitage R. High frequency EEG activity during sleep: characteristics in schizophrenia and depression. Clin. EEG Neurosci. 2005 36 1 25 35 10.1177/155005940503600107 15683195
    [Google Scholar]
  50. Kim H.K. Blumberger D.M. Daskalakis Z.J. Neurophysiological Biomarkers in Schizophrenia—P50, Mismatch Negativity, and TMS-EMG and TMS-EEG. Front. Psychiatry 2020 11 795 10.3389/fpsyt.2020.00795 32848953
    [Google Scholar]
  51. Haigh S.M. Coffman B.A. Salisbury D.F. Mismatch Negativity in First-Episode Schizophrenia. Clin. EEG Neurosci. 2017 48 1 3 10 10.1177/1550059416645980 27170669
    [Google Scholar]
  52. Salmi M. Del Gallo F. Minlebaev M. Zakharov A. Pauly V. Perron P. Pons-Bennaceur A. Corby-Pellegrino S. Aniksztejn L. Lenck-Santini P.P. Epsztein J. Khazipov R. Burnashev N. Bertini G. Szepetowski P. Impaired vocal communication, sleep-related discharges, and transient alteration of slow-wave sleep in developing mice lacking the GluN2A subunit of N-methyl-d-aspartate receptors. Epilepsia 2019 60 7 1424 1437 10.1111/epi.16060 31158310
    [Google Scholar]
  53. Manoach D.S. Stickgold R. Abnormal Sleep Spindles, Memory Consolidation, and Schizophrenia. Annu. Rev. Clin. Psychol. 2019 15 1 451 479 10.1146/annurev‑clinpsy‑050718‑095754 30786245
    [Google Scholar]
  54. Kaskie R.E. Gill K.M. Ferrarelli F. Reduced frontal slow wave density during sleep in first-episode psychosis. Schizophr. Res. 2019 206 318 324 10.1016/j.schres.2018.10.024 30377012
    [Google Scholar]
  55. Vallée A. Neuroinflammation in Schizophrenia: The Key Role of the WNT/β-Catenin Pathway. Int. J. Mol. Sci. 2022 23 5 2810 10.3390/ijms23052810 35269952
    [Google Scholar]
  56. Na K.S. Jung H.Y. Kim Y.K. The role of pro-inflammatory cytokines in the neuroinflammation and neurogenesis of schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 2014 48 277 286 10.1016/j.pnpbp.2012.10.022 23123365
    [Google Scholar]
  57. Kim Y.K. Won E. The influence of stress on neuroinflammation and alterations in brain structure and function in major depressive disorder. Behav. Brain Res. 2017 329 6 11 10.1016/j.bbr.2017.04.020 28442354
    [Google Scholar]
  58. Yu X. Qi X. Wei L. Zhao L. Deng W. Guo W. Wang Q. Ma X. Hu X. Ni P. Li T. Fingolimod ameliorates schizophrenia‐like cognitive impairments induced by phencyclidine in male rats. Br. J. Pharmacol. 2023 180 2 161 173 10.1111/bph.15954 36106568
    [Google Scholar]
  59. Sun T. Liu J. Ding J. Zhang C. Zhang Y-W. Ma Q-R. Liu Y.M. N-methyl-D-aspartate receptor subunit 1 regulates neurogenesis in the hippocampal dentate gyrus of schizophrenia-like mice. Neural Regen. Res. 2019 14 12 2112 2117 10.4103/1673‑5374.262597 31397349
    [Google Scholar]
  60. Tanaka M. Török N. Tóth F. Szabó Á. Vécsei L. Co-Players in Chronic Pain: Neuroinflammation and the Tryptophan-Kynurenine Metabolic Pathway. Biomedicines 2021 9 8 897 10.3390/biomedicines9080897 34440101
    [Google Scholar]
  61. Sathyasaikumar K.V. Stachowski E.K. Wonodi I. Roberts R.C. Rassoulpour A. McMahon R.P. Schwarcz R. Impaired kynurenine pathway metabolism in the prefrontal cortex of individuals with schizophrenia. Schizophr. Bull. 2011 37 6 1147 1156 10.1093/schbul/sbq112 21036897
    [Google Scholar]
  62. Erhardt S. Schwieler L. Imbeault S. Engberg G. The kynurenine pathway in schizophrenia and bipolar disorder. Neuropharmacology 2017 112 Pt B 297 306 10.1016/j.neuropharm.2016.05.020 27245499
    [Google Scholar]
  63. Su Y. Lian J. Hodgson J. Zhang W. Deng C. Prenatal Poly I:C Challenge Affects Behaviors and Neurotransmission via Elevated Neuroinflammation Responses in Female Juvenile Rats. Int. J. Neuropsychopharmacol. 2022 25 2 160 171 10.1093/ijnp/pyab087 34893855
    [Google Scholar]
  64. Meehan C. Harms L. Frost J.D. Barreto R. Todd J. Schall U. Shannon Weickert C. Zavitsanou K. Michie P.T. Hodgson D.M. Effects of immune activation during early or late gestation on schizophrenia-related behaviour in adult rat offspring. Brain Behav. Immun. 2017 63 8 20 10.1016/j.bbi.2016.07.144 27423491
    [Google Scholar]
  65. Meyer U. Nyffeler M. Engler A. Urwyler A. Schedlowski M. Knuesel I. Yee B.K. Feldon J. The time of prenatal immune challenge determines the specificity of inflammation-mediated brain and behavioral pathology. J. Neurosci. 2006 26 18 4752 4762 10.1523/JNEUROSCI.0099‑06.2006 16672647
    [Google Scholar]
  66. Gogos A. Sbisa A. Witkamp D. van den Buuse M. Sex differences in the effect of maternal immune activation on cognitive and psychosis‐like behaviour in Long Evans rats. Eur. J. Neurosci. 2020 52 1 2614 2626 10.1111/ejn.14671 31901174
    [Google Scholar]
  67. Haddad F.L. Patel S.V. Schmid S. Maternal Immune Activation by Poly I:C as a preclinical Model for Neurodevelopmental Disorders: A focus on Autism and Schizophrenia. Neurosci. Biobehav. Rev. 2020 113 546 567 10.1016/j.neubiorev.2020.04.012 32320814
    [Google Scholar]
  68. Liang X.S. Qian T.L. Xiong Y.F. Liang X.T. Ding Y.W. Zhu X.Y. Li Y.L. Zhou J.L. Tan L.Y. Li W.P. Xie W. IRAK-M Ablation Promotes Status Epilepticus-Induced Neuroinflammation via Activating M1 Microglia and Impairing Excitatory Synaptic Function. Mol. Neurobiol. 2023 60 9 5199 5213 10.1007/s12035‑023‑03407‑7 37277682
    [Google Scholar]
  69. Deng Y. Liao Y. Huang P. Yao Y. Liu W. Gu Y. Weng G. IRAK-M deficiency exacerbates dopaminergic neuronal damage in a mouse model of sub-acute Parkinson’s disease. Neuroreport 2023 34 9 463 470 10.1097/WNR.0000000000001913 37161987
    [Google Scholar]
  70. Henstridge C.M. Tzioras M. Paolicelli R.C. Glial Contribution to Excitatory and Inhibitory Synapse Loss in Neurodegeneration. Front. Cell. Neurosci. 2019 13 63 10.3389/fncel.2019.00063 30863284
    [Google Scholar]
  71. Rahman T. Purves-Tyson T. Geddes A.E. Huang X.F. Newell K.A. Weickert C.S. N-Methyl- -Aspartate receptor and inflammation in dorsolateral prefrontal cortex in schizophrenia. Schizophr. Res. 2022 240 61 70 10.1016/j.schres.2021.11.045 34952289
    [Google Scholar]
  72. Shishkina G.T. Kalinina T.S. Lanshakov D.A. Bulygina V.V. Komysheva N.P. Bannova A.V. Drozd U.S. Dygalo N.N. Genes Involved by Dexamethasone in Prevention of Long-Term Memory Impairment Caused by Lipopolysaccharide-Induced Neuroinflammation. Biomedicines 2023 11 10 2595 10.3390/biomedicines11102595 37892969
    [Google Scholar]
  73. Wu A. Zhang J. Neuroinflammation, memory, and depression: new approaches to hippocampal neurogenesis. J. Neuroinflammation 2023 20 1 283 10.1186/s12974‑023‑02964‑x 38012702
    [Google Scholar]
  74. Sun Y. Cheng X. Zhang L. Hu J. chen Y. Zhan L. Gao Z. The Functional and Molecular Properties, Physiological Functions, and Pathophysiological Roles of GluN2A in the Central Nervous System. Mol. Neurobiol. 2017 54 2 1008 1021 10.1007/s12035‑016‑9715‑7 26797520
    [Google Scholar]
  75. Ronald De Koloet E. Why Dexamethasone Poorly Penetrates in Brain. Stress 1997 2 1 13 19 10.3109/10253899709014734 9787252
    [Google Scholar]
  76. Hu R. Chen J. Lujan B. Lei R. Zhang M. Wang Z. Liao M. Li Z. Wan Y. Liu F. Feng H. Wan Q. Glycine triggers a non-ionotropic activity of GluN2A-containing NMDA receptors to confer neuroprotection. Sci. Rep. 2016 6 1 34459 10.1038/srep34459 27694970
    [Google Scholar]
  77. Shepard N. Baez-Nieto D. Iqbal S. Kurganov E. Budnik N. Campbell A.J. Pan J.Q. Sheng M. Farsi Z. Differential functional consequences of GRIN2A mutations associated with schizophrenia and neurodevelopmental disorders. Sci. Rep. 2024 14 1 2798 10.1038/s41598‑024‑53102‑3 38307912
    [Google Scholar]
  78. Cardis R. Cabungcal J.H. Dwir D. Do K.Q. Steullet P. A lack of GluN2A-containing NMDA receptors confers a vulnerability to redox dysregulation: Consequences on parvalbumin interneurons, and their perineuronal nets. Neurobiol. Dis. 2018 109 Pt A 64 75 10.1016/j.nbd.2017.10.006 29024713
    [Google Scholar]
  79. Steullet P. Cabungcal J-H. Coyle J. Didriksen M. Gill K. Grace A.A. Hensch T.K. LaMantia A-S. Lindemann L. Maynard T.M. Meyer U. Morishita H. O’Donnell P. Puhl M. Cuenod M. Do K.Q. Oxidative stress-driven parvalbumin interneuron impairment as a common mechanism in models of schizophrenia. Mol. Psychiatry 2017 22 7 936 943 10.1038/mp.2017.47 28322275
    [Google Scholar]
  80. Gawande D.Y. S Narasimhan K.K. Shelkar G.P. Pavuluri R. Stessman H.A.F. Dravid S.M. GluN2D Subunit in Parvalbumin Interneurons Regulates Prefrontal Cortex Feedforward Inhibitory Circuit and Molecular Networks Relevant to Schizophrenia. Biol. Psychiatry 2023 94 4 297 309 10.1016/j.biopsych.2023.03.020 37004850
    [Google Scholar]
  81. Lewis D.A. Curley A.A. Glausier J.R. Volk D.W. Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends Neurosci. 2012 35 1 57 67 10.1016/j.tins.2011.10.004 22154068
    [Google Scholar]
  82. Akbarian S. Huang H.S. Molecular and cellular mechanisms of altered GAD1/GAD67 expression in schizophrenia and related disorders. Brain Res. Brain Res. Rev. 2006 52 2 293 304 10.1016/j.brainresrev.2006.04.001 16759710
    [Google Scholar]
  83. Zhang Z. Sun Q.Q. Development of NMDA NR2 subunits and their roles in critical period maturation of neocortical GABAergic interneurons. Dev. Neurobiol. 2011 71 3 221 245 10.1002/dneu.20844 20936660
    [Google Scholar]
  84. Kinney J.W. Davis C.N. Tabarean I. Conti B. Bartfai T. Behrens M.M. A specific role for NR2A-containing NMDA receptors in the maintenance of parvalbumin and GAD67 immunoreactivity in cultured interneurons. J. Neurosci. 2006 26 5 1604 1615 10.1523/JNEUROSCI.4722‑05.2006 16452684
    [Google Scholar]
  85. Phensy A. Lindquist K.L. Lindquist K.A. Bairuty D. Gauba E. Guo L. Tian J. Du H. Kroener S. Deletion of the Mitochondrial Matrix Protein CyclophilinD Prevents Parvalbumin Interneuron Dysfunctionand Cognitive Deficits in a Mouse Model of NMDA Hypofunction. J. Neurosci. 2020 40 32 6121 6132 10.1523/JNEUROSCI.0880‑20.2020 32605939
    [Google Scholar]
  86. Cabungcal J.H. Steullet P. Morishita H. Kraftsik R. Cuenod M. Hensch T.K. Do K.Q. Perineuronal nets protect fast-spiking interneurons against oxidative stress. Proc. Natl. Acad. Sci. USA 2013 110 22 9130 9135 10.1073/pnas.1300454110 23671099
    [Google Scholar]
  87. Acutain M.F. Baez M.V. Reduced expression of GluN2A induces a delay in neuron maturation. J. Neurochem. 2023 jnc.16023 10.1111/jnc.16023 38037434
    [Google Scholar]
  88. Eastwood S.L. The synaptic pathology of schizophrenia: is aberrant neurodevelopment and plasticity to blame? Int. Rev. Neurobiol. 2004 59 47 72 10.1016/S0074‑7742(04)59003‑7 15006484
    [Google Scholar]
  89. Sarkar A. Marchetto M.C. Gage F.H. Synaptic activity: An emerging player in schizophrenia. Brain Res. 2017 1656 68 75 10.1016/j.brainres.2015.12.028 26723567
    [Google Scholar]
  90. Ahammad I. Jamal T.B. Bhattacharjee A. Chowdhury Z.M. Rahman S. Hassan M.R. Hossain M.U. Das K.C. Keya C.A. Salimullah M. Impact of highly deleterious non-synonymous polymorphisms on GRIN2A protein’s structure and function. PLoS One 2023 18 6 e0286917 10.1371/journal.pone.0286917 37319252
    [Google Scholar]
  91. Elfving B. Müller H.K. Oliveras I. Østerbøg T.B. Rio-Alamos C. Sanchez-Gonzalez A. Tobeña A. Fernandez-Teruel A. Aznar S. Differential expression of synaptic markers regulated during neurodevelopment in a rat model of schizophrenia-like behavior. Prog. Neuropsychopharmacol. Biol. Psychiatry 2019 95 109669 10.1016/j.pnpbp.2019.109669 31228641
    [Google Scholar]
  92. Sønderstrup M. Batiuk M.Y. Mantas P. Tapias-Espinosa C. Oliveras I. Cañete T. Sampedro-Viana D. Brudek T. Rydbirk R. Khodosevich K. Fernandez-Teruel A. Elfving B. Aznar S. A maturational shift in the frontal cortex synaptic transcriptional landscape underlies schizophrenia-relevant behavioural traits: A congenital rat model. Eur. Neuropsychopharmacol. 2023 74 32 46 10.1016/j.euroneuro.2023.05.001 37263043
    [Google Scholar]
  93. Wang C.S. Kavalali E.T. Monteggia L.M. BDNF signaling in context: From synaptic regulation to psychiatric disorders. Cell 2022 185 1 62 76 10.1016/j.cell.2021.12.003 34963057
    [Google Scholar]
  94. Vyklicky V. Korinek M. Smejkalova T. Balik A. Krausova B. Kaniakova M. Lichnerova K. Cerny J. Krusek J. Dittert I. Horak M. Vyklicky L. Structure, function, and pharmacology of NMDA receptor channels. Physiol. Res. 2014 63 S191 S203 10.33549/physiolres.932678 24564659
    [Google Scholar]
  95. Zhang Y. Li P. Feng J. Wu M. Dysfunction of NMDA receptors in Alzheimer’s disease. Neurol. Sci. 2016 37 7 1039 1047 10.1007/s10072‑016‑2546‑5 26971324
    [Google Scholar]
  96. Li Q.Q. Chen J. Hu P. Jia M. Sun J.H. Feng H.Y. Qiao F.C. Zang Y.Y. Shi Y.Y. Chen G. Sheng N. Xu Y. Yang J.J. Xu Z. Shi Y.S. Enhancing GluN2A-type NMDA receptors impairs long-term synaptic plasticity and learning and memory. Mol. Psychiatry 2022 27 8 3468 3478 10.1038/s41380‑022‑01579‑7 35484243
    [Google Scholar]
  97. Lundbye C.J. Toft A.K.H. Banke T.G. Inhibition of GluN2A NMDA receptors ameliorates synaptic plasticity deficits in the Fmr1 −/y mouse model. J. Physiol. 2018 596 20 5017 5031 10.1113/JP276304 30132892
    [Google Scholar]
  98. Intson K. Geissah S. McCullumsmith R.E. Ramsey A.J. A role for endothelial NMDA receptors in the pathophysiology of schizophrenia. Schizophr. Res. 2022 249 63 73 10.1016/j.schres.2020.10.004 33189520
    [Google Scholar]
  99. Tang J. Chen X. Xu X. Wu R. Zhao J. Hu Z. Xia K. Significant linkage and association between a functional (GT)n polymorphism in promoter of the N-methyl-d-aspartate receptor subunit gene (GRIN2A) and schizophrenia. Neurosci. Lett. 2006 409 1 80 82 10.1016/j.neulet.2006.09.022 17011703
    [Google Scholar]
  100. Itokawa M. Yamada K. Yoshitsugu K. Toyota T. Suga T. Ohba H. Watanabe A. Hattori E. Shimizu H. Kumakura T. Ebihara M. Meerabux J.M.A. Toru M. Yoshikawa T. A microsatellite repeat in the promoter of the N-methyl-d-aspartate receptor 2A subunit (GRIN2A) gene suppresses transcriptional activity and correlates with chronic outcome in schizophrenia. Pharmacogenetics 2003 13 5 271 278 10.1097/00008571‑200305000‑00006 12724619
    [Google Scholar]
  101. Krzystanek M. Asman M. Witecka J. Pałasz A. Wiaderkiewicz R. Exploratory study of selected nucleotide variants in GRIN1, GRIN2A and GRIN2B encoding subunits of the NMDA receptor in a targeted group of schizophrenia patients with chronic cognitive impairment. Pharmacol. Rep. 2021 73 1 269 277 10.1007/s43440‑020‑00192‑1 33237434
    [Google Scholar]
  102. Karakas E. Furukawa H. Crystal structure of a heterotetrameric NMDA receptor ion channel. Science 2014 344 6187 992 997 10.1126/science.1251915 24876489
    [Google Scholar]
  103. Hansen K.B. Yi F. Perszyk R.E. Menniti F.S. Traynelis S.F. NMDA Receptors in the Central Nervous System. Methods Mol. Biol. 2017 1677 1 80 10.1007/978‑1‑4939‑7321‑7_1 28986865
    [Google Scholar]
/content/journals/cn/10.2174/011570159X327712241023084944
Loading
/content/journals/cn/10.2174/011570159X327712241023084944
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Schizophrenia ; GRIN2A ; pathophysiology ; mutations ; NMDAR ; synaptic signalling
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test