Skip to content
2000
Volume 23, Issue 6
  • ISSN: 1570-159X
  • E-ISSN: 1875-6190

Abstract

Schizophrenia is a severe psychiatric disorder and a complex polygenic inherited disease that affects nearly 1% of the global population. Although considerable progress has been made over the past 10 years in the treatment of schizophrenia, antipsychotics are not universally effective and may have serious side effects. The hypofunction of glutamate NMDA receptors (NMDARs) in GABAergic interneurons has long been postulated to be the principal pathophysiology of schizophrenia. A recent study has shown that pathogenic variants are closely related to the aetiology of the disorder. encodes the GluN2A protein, which is a subunit of NMDAR. Most variants have been predicted to cause protein truncation, which results in reduced gene expression. Preclinical studies have indicated that mutations lead to NMDAR loss of function and substantially increase the risk of schizophrenia; however, their role in schizophrenia is not well understood. We hypothesise that the heterozygous loss of induces NMDAR hypofunction sufficient to confer a substantial risk of schizophrenia. Therefore, this review focuses on as a target for novel antipsychotics and discusses the mechanisms by which modulates antischizophrenic activities. Moreover, our review contributes to the understanding of the pathophysiology of schizophrenia to facilitate finding treatments for the cognitive and negative symptoms of schizophrenia.

Loading

Article metrics loading...

/content/journals/cn/10.2174/011570159X327712241023084944
2024-11-04
2025-04-24
Loading full text...

Full text loading...

References

  1. CampeauA. MillsR.H. StevensT. RossittoL.A. MeehanM. DorresteinP. DalyR. NguyenT.T. GonzalezD.J. JesteD.V. HookV. Multi-omics of human plasma reveals molecular features of dysregulated inflammation and accelerated aging in schizophrenia.Mol. Psychiatry20222721217122510.1038/s41380‑021‑01339‑z34741130
    [Google Scholar]
  2. KeshavanM.S. CollinG. GuimondS. KellyS. PrasadK.M. LizanoP. Neuroimaging in Schizophrenia.Neuroimaging Clin. N. Am.2020301738310.1016/j.nic.2019.09.00731759574
    [Google Scholar]
  3. WinshipI.R. DursunS.M. BakerG.B. BalistaP.A. KandrataviciusL. Maia-de-OliveiraJ.P. HallakJ. HowlandJ.G. An overview of animal models related to Schizophrenia.Can. J. Psychiatry201964151710.1177/070674371877372829742910
    [Google Scholar]
  4. MiyamotoY. NittaA. Behavioral phenotypes for negative symptoms in animal models of Schizophrenia.J. Pharmacol. Sci.2014126431032010.1254/jphs.14R02CR25409784
    [Google Scholar]
  5. SchultzS.H. NorthS.W. ShieldsC.G. Schizophrenia: A review.Am. Fam. Physician200775121821182917619525
    [Google Scholar]
  6. StahlS.M. BuckleyP.F. Negative symptoms of Schizophrenia: A problem that will not go away.Acta Psychiatr. Scand.2007115141110.1111/j.1600‑0447.2006.00947.x17201860
    [Google Scholar]
  7. OhiK. SumiyoshiC. FujinoH. YasudaY. YamamoriH. FujimotoM. ShiinoT. SumiyoshiT. HashimotoR. Genetic overlap between general cognitive function and schizophrenia: A review of cognitive GWASs.Int. J. Mol. Sci.20181912382210.3390/ijms1912382230513630
    [Google Scholar]
  8. GebreegziabhereY. HabatmuK. MihretuA. CellaM. AlemA. Cognitive impairment in people with schizophrenia: An umbrella review.Eur. Arch. Psychiatry Clin. Neurosci.202227271139115510.1007/s00406‑022‑01416‑635633394
    [Google Scholar]
  9. GreenM.F. HoranW.P. LeeJ. Nonsocial and social cognition in Schizophrenia: Current evidence and future directions.World Psychiatry201918214616110.1002/wps.2062431059632
    [Google Scholar]
  10. HowesO. McCutcheonR. StoneJ. Glutamate and dopamine in schizophrenia: An update for the 21st century.J. Psychopharmacol.20152929711510.1177/026988111456363425586400
    [Google Scholar]
  11. McCutcheonR.A. Reis MarquesT. HowesO.D. Schizophrenia-an overview.JAMA Psychiatry202077220121010.1001/jamapsychiatry.2019.336031664453
    [Google Scholar]
  12. EggersA.E. A serotonin hypothesis of schizophrenia.Med. Hypotheses201380679179410.1016/j.mehy.2013.03.01323557849
    [Google Scholar]
  13. GuidottiA. AutaJ. DavisJ.M. DongE. GraysonD.R. VeldicM. ZhangX. CostaE. GABAergic dysfunction in schizophrenia: New treatment strategies on the horizon.Psychopharmacology (Berl.)2005180219120510.1007/s00213‑005‑2212‑815864560
    [Google Scholar]
  14. YangA. TsaiS.J. New targets for Schizophrenia treatment beyond the dopamine hypothesis.Int. J. Mol. Sci.2017188168910.3390/ijms1808168928771182
    [Google Scholar]
  15. MueserK.T. McGurkS.R. Schizophrenia.Lancet200436394262063207210.1016/S0140‑6736(04)16458‑115207959
    [Google Scholar]
  16. YingY. JiaL. WangZ. JiangW. ZhangJ. WangH. YangN. WangR. RenY. GaoF. MaX. TangY. McDonaldW.M. Electroconvulsive therapy is associated with lower readmission rates in patients with Schizophrenia.Brain Stimul.202114491392110.1016/j.brs.2021.05.01034044182
    [Google Scholar]
  17. BiondoJ. Dance/movement therapy as a holistic approach to diminish health discrepancies and promote wellness for people with schizophrenia: A review of the literature.F1000 Res.2023123310.12688/f1000research.127377.237593363
    [Google Scholar]
  18. JiaR. LiangD. YuJ. LuG. WangZ. WuZ. HuangH. ChenC. The effectiveness of adjunct music therapy for patients with schizophrenia: A meta‐analysis.Psychiatry Res.202029311346410.1016/j.psychres.2020.11346433002835
    [Google Scholar]
  19. StępnickiP. KondejM. KaczorA.A. Current concepts and treatments of Schizophrenia.Molecules2018238208710.3390/molecules2308208730127324
    [Google Scholar]
  20. CarbonM. CorrellC.U. Thinking and acting beyond the positive: The role of the cognitive and negative symptoms in Schizophrenia.CNS Spectr.201419385210.1017/S1092852914000601
    [Google Scholar]
  21. RicciardiL. PringsheimT. BarnesT.R.E. MartinoD. GardnerD. RemingtonG. AddingtonD. MorganteF. PooleN. CarsonA. EdwardsM. Treatment recommendations for tardive dyskinesia.Can. J. Psychiatry201964638839910.1177/070674371982896830791698
    [Google Scholar]
  22. SabéM. PallisK. SolmiM. CrippaA. SentissiO. KaiserS. Comparative effects of 11 antipsychotics on weight gain and metabolic function in patients with acute Schizophrenia.J. Clin. Psychiatry20238428410.4088/JCP.22r1449036752753
    [Google Scholar]
  23. HarrisonP.J. BannermanD.M. GRIN2A (NR2A): A gene contributing to glutamatergic involvement in schizophrenia.Mol. Psychiatry20232893568357210.1038/s41380‑023‑02265‑y37736757
    [Google Scholar]
  24. FranchiniL. CarranoN. Di LucaM. GardoniF. Synaptic GluN2A-Containing NMDA receptors: From physiology to pathological synaptic plasticity.Int. J. Mol. Sci.2020214153810.3390/ijms2104153832102377
    [Google Scholar]
  25. LiF. TsienJ.Z. Memory and the NMDA Receptors.N. Engl. J. Med.2009361330230310.1056/NEJMcibr090205219605837
    [Google Scholar]
  26. Falcón-MoyaR. Rodríguez-MorenoA. Metabotropic actions of kainate receptors modulating glutamate release.Neuropharmacology202119710869610.1016/j.neuropharm.2021.10869634274351
    [Google Scholar]
  27. GaeblerA.J. FakourN. StöhrF. ZweeringsJ. TaebiA. SuslovaM. DukartJ. HippJ.F. AdhikariB.M. KochunovP. MuthukumaraswamyS.D. ForsythA. EggermannT. KraftF. KurthI. PaulzenM. GründerG. SchneiderF. MathiakK. Functional connectivity signatures of NMDAR dysfunction in schizophrenia-integrating findings from imaging genetics and pharmaco-fMRI.Transl. Psychiatry20231315910.1038/s41398‑023‑02344‑236797233
    [Google Scholar]
  28. TrubetskoyV. PardiñasA.F. QiT. PanagiotaropoulouG. AwasthiS. BigdeliT.B. BryoisJ. ChenC.Y. DennisonC.A. HallL.S. LamM. WatanabeK. FreiO. GeT. HarwoodJ.C. KoopmansF. MagnussonS. RichardsA.L. SidorenkoJ. WuY. ZengJ. GroveJ. KimM. LiZ. VoloudakisG. ZhangW. AdamsM. AgartzI. AtkinsonE.G. AgerboE. Al EissaM. AlbusM. AlexanderM. AlizadehB.Z. AlptekinK. AlsT.D. AminF. AroltV. ArrojoM. AthanasiuL. AzevedoM.H. BacanuS.A. BassN.J. BegemannM. BelliveauR.A. BeneJ. BenyaminB. BergenS.E. BlasiG. BobesJ. BonassiS. BraunA. BressanR.A. BrometE.J. BruggemanR. BuckleyP.F. BucknerR.L. Bybjerg-GrauholmJ. CahnW. CairnsM.J. CalkinsM.E. CarrV.J. CastleD. CattsS.V. ChambertK.D. ChanR.C.K. ChaumetteB. ChengW. CheungE.F.C. ChongS.A. CohenD. ConsoliA. CordeiroQ. CostasJ. CurtisC. DavidsonM. DavisK.L. de HaanL. DegenhardtF. DeLisiL.E. DemontisD. DickersonF. DikeosD. DinanT. DjurovicS. DuanJ. DucciG. DudbridgeF. ErikssonJ.G. FañanásL. FaraoneS.V. FiorentinoA. ForstnerA. FrankJ. FreimerN.B. FromerM. FrustaciA. GadelhaA. GenoveseG. GershonE.S. GiannitelliM. GieglingI. Giusti-RodríguezP. GodardS. GoldsteinJ.I. González PeñasJ. González-PintoA. GopalS. GrattenJ. GreenM.F. GreenwoodT.A. GuillinO. GülöksüzS. GurR.E. GurR.C. GutiérrezB. HahnE. HakonarsonH. HaroutunianV. HartmannA.M. HarveyC. HaywardC. HenskensF.A. HermsS. HoffmannP. HowriganD.P. IkedaM. IyegbeC. JoaI. JuliàA. KählerA.K. Kam-ThongT. KamataniY. Karachanak-YankovaS. KebirO. KellerM.C. KellyB.J. KhruninA. KimS.W. KlovinsJ. KondratievN. KonteB. KraftJ. KuboM. KučinskasV. KučinskieneZ.A. KusumawardhaniA. Kuzelova-PtackovaH. LandiS. LazzeroniL.C. LeeP.H. LeggeS.E. LehrerD.S. LencerR. LererB. LiM. LiebermanJ. LightG.A. LimborskaS. LiuC.M. LönnqvistJ. LoughlandC.M. LubinskiJ. LuykxJ.J. LynhamA. MacekM.Jr MackinnonA. MagnussonP.K.E. MaherB.S. MaierW. MalaspinaD. MalletJ. MarderS.R. MarsalS. MartinA.R. MartorellL. MattheisenM. McCarleyR.W. McDonaldC. McGrathJ.J. MedeirosH. MeierS. MeleghB. MelleI. Mesholam-GatelyR.I. MetspaluA. MichieP.T. MilaniL. MilanovaV. MitjansM. MoldenE. MolinaE. MoltoM.D. MondelliV. MorenoC. MorleyC.P. MuntanéG. MurphyK.C. Myin-GermeysI. NenadićI. NestadtG. Nikitina-ZakeL. NotoC. NuechterleinK.H. O’BrienN.L. O’NeillF.A. OhS.Y. OlincyA. OtaV.K. PantelisC. PapadimitriouG.N. ParelladaM. PaunioT. PellegrinoR. PeriyasamyS. PerkinsD.O. PfuhlmannB. PietiläinenO. PimmJ. PorteousD. PowellJ. QuattroneD. QuestedD. RadantA.D. RampinoA. RapaportM.H. RautanenA. ReichenbergA. RoeC. RoffmanJ.L. RothJ. RothermundtM. RuttenB.P.F. Saker-DelyeS. SalomaaV. SanjuanJ. SantoroM.L. SavitzA. SchallU. ScottR.J. SeidmanL.J. SharpS.I. ShiJ. SieverL.J. SigurdssonE. SimK. SkarabisN. SlominskyP. SoH.C. SobellJ.L. SödermanE. StainH.J. SteenN.E. Steixner-KumarA.A. StögmannE. StoneW.S. StraubR.E. StreitF. StrengmanE. StroupT.S. SubramaniamM. SugarC.A. SuvisaariJ. SvrakicD.M. SwerdlowN.R. SzatkiewiczJ.P. TaT.M.T. TakahashiA. TeraoC. ThibautF. TonchevaD. TooneyP.A. TorrettaS. TosatoS. TuraG.B. TuretskyB.I. ÜçokA. VaalerA. van AmelsvoortT. van WinkelR. VeijolaJ. WaddingtonJ. WalterH. WaterreusA. WebbB.T. WeiserM. WilliamsN.M. WittS.H. WormleyB.K. WuJ.Q. XuZ. YolkenR. ZaiC.C. ZhouW. ZhuF. ZimprichF. AtbaşoğluE.C. AyubM. BennerC. BertolinoA. BlackD.W. BrayN.J. BreenG. BuccolaN.G. ByerleyW.F. ChenW.J. CloningerC.R. Crespo-FacorroB. DonohoeG. FreedmanR. GalletlyC. GandalM.J. GennarelliM. HougaardD.M. HwuH.G. JablenskyA.V. McCarrollS.A. MoranJ.L. MorsO. MortensenP.B. Müller-MyhsokB. NeilA.L. NordentoftM. PatoM.T. PetryshenT.L. PirinenM. PulverA.E. SchulzeT.G. SilvermanJ.M. SmollerJ.W. StahlE.A. TsuangD.W. VilellaE. WangS.H. XuS. DaiN. WenwenQ. WildenauerD.B. AgianandaF. AmirN. AntoniR. ArsiantiT. AsmarahadiA. DiatriH. DjatmikoP. IrmansyahI. KhalimahS. KusumadewiI. KusumaningrumP. LukmanP.R. NasrunM.W. SafyuniN.S. PrasetyawanP. SemenG. SisteK. TobingH. WidiasihN. WigunaT. WulandariD. EvalinaN. HanantoA.J. IsmoyoJ.H. MariniT.M. HenuhiliS. RezaM. YusnadewiS. AbyzovA. AkbarianS. Ashley-KochA. van BakelH. BreenM. BrownM. BryoisJ. CarlyleB. CharneyA. CoetzeeG. CrawfordG. DrachevaS. EmaniP. FarnhamP. FromerM. GaleevT. GandalM. GersteinM. GiaseG. GirdharK. GoesF. GrennanK. GuM. GuerraB. GursoyG. HoffmanG. HydeT. JaffeA. JiangS. JiangY. KefiA. KimY. KitchenR. KnowlesJ.A. LayF. LeeD. LiM. LiuC. LiuS. MatteiE. NavarroF. PanX. PetersM.A. PintoD. PochareddyS. PolioudakisD. PurcaroM. PurcellS. PrattH. ReddyT. RhieS. RoussosP. RozowskyJ. SandersS. SestanN. SethiA. ShiX. ShiehA. SwarupV. SzekelyA. WangD. WarrellJ. WeissmanS. WengZ. WhiteK. WisemanJ. WittH. WonH. WoodS. WuF. XuX. YaoL. ZandiP. ArranzM.J. BakkerS. BenderS. BramonE. CollierD.A. Crepo-FacorroB. HallJ. IyegbeC. KahnR. LawrieS. LewisC. LinK. LinszenD.H. MataI. McIntoshA. MurrayR.M. OphoffR.A. van OsJ. PowellJ. RujescuD. WalsheM. WeisbrodM. AchselT. Andres-AlonsoM. BagniC. BayésÀ. BiedererT. BroseN. BrownT.C. ChuaJ.J.E. CobaM.P. CornelisseL.N. de JongA.P.H. de Juan-SanzJ. DieterichD.C. FengG. GoldschmidtH.L. GundelfingerE.D. HoogenraadC. HuganirR.L. HymanS.E. ImigC. JahnR. JungH. KaeserP.S. KimE. KoopmansF. KreutzM.R. LipsteinN. MacGillavryH.D. MalenkaR. McPhersonP.S. O’ConnorV. PielotR. RyanT.A. SahasrabudheD. SalaC. ShengM. SmallaK-H. SmitA.B. SüdhofT.C. ThomasP.D. ToonenR.F. van WeeringJ.R.T. VerhageM. VerpelliC. AdolfssonR. ArangoC. BauneB.T. BelangeroS.I. BørglumA.D. BraffD. BramonE. BuxbaumJ.D. CampionD. CervillaJ.A. CichonS. CollierD.A. CorvinA. CurtisD. FortiM.D. DomeniciE. EhrenreichH. Escott-PriceV. EskoT. FanousA.H. GareevaA. GawlikM. GejmanP.V. GillM. GlattS.J. GolimbetV. HongK.S. HultmanC.M. HymanS.E. IwataN. JönssonE.G. KahnR.S. KennedyJ.L. KhusnutdinovaE. KirovG. KnowlesJ.A. KrebsM-O. Laurent-LevinsonC. LeeJ. LenczT. LevinsonD.F. LiQ.S. LiuJ. MalhotraA.K. MalhotraD. McIntoshA. McQuillinA. MenezesP.R. MorganV.A. MorrisD.W. MowryB.J. MurrayR.M. NimgaonkarV. NöthenM.M. OphoffR.A. PacigaS.A. PalotieA. PatoC.N. QinS. RietschelM. RileyB.P. RiveraM. RujescuD. SakaM.C. SandersA.R. SchwabS.G. SerrettiA. ShamP.C. ShiY. St ClairD. StefánssonH. StefanssonK. TsuangM.T. van OsJ. VawterM.P. WeinbergerD.R. WergeT. WildenauerD.B. YuX. YueW. HolmansP.A. PocklingtonA.J. RoussosP. VassosE. VerhageM. VisscherP.M. YangJ. PosthumaD. AndreassenO.A. KendlerK.S. OwenM.J. WrayN.R. DalyM.J. HuangH. NealeB.M. SullivanP.F. RipkeS. WaltersJ.T.R. O’DonovanM.C. de HaanL. van AmelsvoortT. van WinkelR. GareevaA. ShamP.C. ShiY. St ClairD. van OsJ. Mapping genomic loci implicates genes and synaptic biology in Schizophrenia.Nature2022604790650250810.1038/s41586‑022‑04434‑535396580
    [Google Scholar]
  29. BenkeT.A. ParkK. KreyI. CampC.R. SongR. RamseyA.J. YuanH. TraynelisS.F. LemkeJ. Clinical and therapeutic significance of genetic variation in the GRIN gene family encoding NMDARs.Neuropharmacology202119910880510.1016/j.neuropharm.2021.10880534560056
    [Google Scholar]
  30. SinghT. PoterbaT. CurtisD. AkilH. Al EissaM. BarchasJ.D. BassN. BigdeliT.B. BreenG. BrometE.J. BuckleyP.F. BunneyW.E. Bybjerg-GrauholmJ. ByerleyW.F. ChapmanS.B. ChenW.J. ChurchhouseC. CraddockN. CusickC.M. DeLisiL. DodgeS. EscamillaM.A. EskelinenS. FanousA.H. FaraoneS.V. FiorentinoA. FrancioliL. GabrielS.B. GageD. Gagliano TaliunS.A. GannaA. GenoveseG. GlahnD.C. GroveJ. HallM.H. HämäläinenE. HeyneH.O. HoliM. HougaardD.M. HowriganD.P. HuangH. HwuH.G. KahnR.S. KangH.M. KarczewskiK.J. KirovG. KnowlesJ.A. LeeF.S. LehrerD.S. LescaiF. MalaspinaD. MarderS.R. McCarrollS.A. McIntoshA.M. MedeirosH. MilaniL. MorleyC.P. MorrisD.W. MortensenP.B. MyersR.M. NordentoftM. O’BrienN.L. OlivaresA.M. OngurD. OuwehandW.H. PalmerD.S. PaunioT. QuestedD. RapaportM.H. ReesE. RollinsB. SatterstromF.K. SchatzbergA. ScolnickE. ScottL.J. SharpS.I. SklarP. SmollerJ.W. SobellJ.L. SolomonsonM. StahlE.A. StevensC.R. SuvisaariJ. TiaoG. WatsonS.J. WattsN.A. BlackwoodD.H. BørglumA.D. CohenB.M. CorvinA.P. EskoT. FreimerN.B. GlattS.J. HultmanC.M. McQuillinA. PalotieA. PatoC.N. PatoM.T. PulverA.E. St ClairD. TsuangM.T. VawterM.P. WaltersJ.T. WergeT.M. OphoffR.A. SullivanP.F. OwenM.J. BoehnkeM. O’DonovanM.C. NealeB.M. DalyM.J. Rare coding variants in ten genes confer substantial risk for schizophrenia.Nature2022604790650951610.1038/s41586‑022‑04556‑w35396579
    [Google Scholar]
  31. PoltavskayaE.G. KornetovaE.G. FreidinM.B. PozhidaevI.V. PaderinaD.Z. BocharovaA.V. SemkeA.V. BokhanN.A. IvanovaS.A. FedorenkoO.Y. The role of glutamatergic gene polymorphisms in the clinical phenotypes of Schizophrenia.Genes (Basel)202314357510.3390/genes1403057536980845
    [Google Scholar]
  32. PoltavskayaE.G. FedorenkoO.Y. KornetovaE.G. LoonenA.J.M. KornetovA.N. BokhanN.A. IvanovaS.A. Study of early onset Schizophrenia: Associations of GRIN2A and GRIN2B Polymorphisms.Life (Basel)2021111099710.3390/life1110099734685369
    [Google Scholar]
  33. TraynelisS.F. WollmuthL.P. McBainC.J. MennitiF.S. VanceK.M. OgdenK.K. HansenK.B. YuanH. MyersS.J. DingledineR. Glutamate receptor ion channels: Structure, regulation, and function.Pharmacol. Rev.201062340549610.1124/pr.109.00245120716669
    [Google Scholar]
  34. SunQ. CaoW. LuoJ. The roles of GluN3-containing N-methyl-D-aspartate receptor in central nerve system.Zhejiang Da Xue Xue Bao Yi Xue Ban202150565165810.3724/zdxbyxb‑2021‑016734986531
    [Google Scholar]
  35. VieiraM. YongX.L.H. RocheK.W. AnggonoV. Regulation of NMDA glutamate receptor functions by the GluN2 subunits.J. Neurochem.2020154212114310.1111/jnc.1497031978252
    [Google Scholar]
  36. HansenK.B. YiF. PerszykR.E. FurukawaH. WollmuthL.P. GibbA.J. TraynelisS.F. Structure, function, and allosteric modulation of NMDA receptors.J. Gen. Physiol.201815081081110510.1085/jgp.20181203230037851
    [Google Scholar]
  37. MonyerH. BurnashevN. LaurieD.J. SakmannB. SeeburgP.H. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors.Neuron199412352954010.1016/0896‑6273(94)90210‑07512349
    [Google Scholar]
  38. WatanabeM. InoueY. SakimuraK. MishinaM. Developmental changes in distribution of NMDA receptor channel subunit mRNAs.Neuroreport19923121138114010.1097/00001756‑199212000‑000271493227
    [Google Scholar]
  39. LadaguA.D. OlopadeF.E. AdejareA. OlopadeJ.O. GluN2A and GluN2B N-Methyl-D-aspartate receptor (NMDARs) subunits: Their roles and therapeutic antagonists in neurological diseases.Pharmaceuticals (Basel)20231611153510.3390/ph1611153538004401
    [Google Scholar]
  40. NicollR.A. RocheK.W. Long-term potentiation: Peeling the onion.Neuropharmacology201374182210.1016/j.neuropharm.2013.02.01023439383
    [Google Scholar]
  41. LauC.G. ZukinR.S. NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders.Nat. Rev. Neurosci.20078641342610.1038/nrn215317514195
    [Google Scholar]
  42. BaiN. HayashiH. AidaT. NamekataK. HaradaT. MishinaM. TanakaK. Dock3 interaction with a glutamate-receptor NR2D subunit protects neurons from excitotoxicity.Mol. Brain2013612210.1186/1756‑6606‑6‑2223641686
    [Google Scholar]
  43. ShengM. CummingsJ. RoldanL.A. JanY.N. JanL.Y. Changing subunit composition of heteromeric NMDA receptors during development of rat cortex.Nature1994368646714414710.1038/368144a08139656
    [Google Scholar]
  44. AkazawaC. ShigemotoR. BesshoY. NakanishiS. MizunoN. Differential expression of five N‐methyl‐D‐aspartate receptor subunit mRNAs in the cerebellum of developing and adult rats.J. Comp. Neurol.1994347115016010.1002/cne.9034701127798379
    [Google Scholar]
  45. HerzogL.E. WangL. YuE. ChoiS. FarsiZ. SongB.J. PanJ.Q. ShengM. Mouse mutants in schizophrenia risk genes GRIN2A and AKAP11 show EEG abnormalities in common with schizophrenia patients.Transl. Psychiatry20231319210.1038/s41398‑023‑02393‑736914641
    [Google Scholar]
  46. MyersK.A. SchefferI.E. GRIN2A-related speech disorders and epilepsy. In: Gene Reviews; Pagon, R.A.; Adam, M.P.; Ardinger, H.H.; Wallace, S.E.; Amemiya, A.; Bean, L.J.H.; Bird, T.D.; Ledbetter, N.; Mefford, H.C.; Smith, R.J.H.; Stephens, K., Eds.; University of Washington, Seattle: Seattle(WA)201619932024
    [Google Scholar]
  47. HojloM.A. GhebrelulM. GenettiC.A. SmithR. RockowitzS. DeasoE. BeggsA.H. AgrawalP.B. GlahnD.C. Gonzalez-HeydrichJ. BrownsteinC.A. Children with early-onset psychosis have increased burden of rare GRIN2A Variants.Genes (Basel)202314477910.3390/genes1404077937107537
    [Google Scholar]
  48. PrabhakarS.K. RajaguruH. KimS.H. Schizophrenia EEG signal classification based on swarm intelligence computing.Comput. Intell. Neurosci.2020202011410.1155/2020/885383533335544
    [Google Scholar]
  49. TekellJ.L. HoffmannR. HendrickseW. GreeneR.W. RushA.J. ArmitageR. High frequency EEG activity during sleep: characteristics in schizophrenia and depression.Clin. EEG Neurosci.2005361253510.1177/15500594050360010715683195
    [Google Scholar]
  50. KimH.K. BlumbergerD.M. DaskalakisZ.J. Neurophysiological biomarkers in Schizophrenia-P50, mismatch negativity, and TMS-EMG and TMS-EEG.Front. Psychiatry20201179510.3389/fpsyt.2020.0079532848953
    [Google Scholar]
  51. HaighS.M. CoffmanB.A. SalisburyD.F. Mismatch negativity in first-episode Schizophrenia.Clin. EEG Neurosci.201748131010.1177/155005941664598027170669
    [Google Scholar]
  52. SalmiM. Del GalloF. MinlebaevM. ZakharovA. PaulyV. PerronP. Pons-BennaceurA. Corby-PellegrinoS. AniksztejnL. Lenck-SantiniP.P. EpszteinJ. KhazipovR. BurnashevN. BertiniG. SzepetowskiP. Impaired vocal communication, sleep-related discharges, and transient alteration of slow-wave sleep in developing mice lacking the GluN2A subunit of N-methyl-d-aspartate receptors.Epilepsia20196071424143710.1111/epi.1606031158310
    [Google Scholar]
  53. ManoachD.S. StickgoldR. Abnormal sleep spindles, memory consolidation, and Schizophrenia.Annu. Rev. Clin. Psychol.201915145147910.1146/annurev‑clinpsy‑050718‑09575430786245
    [Google Scholar]
  54. KaskieR.E. GillK.M. FerrarelliF. Reduced frontal slow wave density during sleep in first-episode psychosis.Schizophr. Res.201920631832410.1016/j.schres.2018.10.02430377012
    [Google Scholar]
  55. ValléeA. Neuroinflammation in Schizophrenia: The Key Role of the WNT/β-Catenin Pathway.Int. J. Mol. Sci.2022235281010.3390/ijms2305281035269952
    [Google Scholar]
  56. NaK.S. JungH.Y. KimY.K. The role of pro-inflammatory cytokines in the neuroinflammation and neurogenesis of schizophrenia.Prog. Neuropsychopharmacol. Biol. Psychiatry20144827728610.1016/j.pnpbp.2012.10.02223123365
    [Google Scholar]
  57. KimY.K. WonE. The influence of stress on neuroinflammation and alterations in brain structure and function in major depressive disorder.Behav. Brain Res.201732961110.1016/j.bbr.2017.04.02028442354
    [Google Scholar]
  58. YuX. QiX. WeiL. ZhaoL. DengW. GuoW. WangQ. MaX. HuX. NiP. LiT. Fingolimod ameliorates schizophrenia‐like cognitive impairments induced by phencyclidine in male rats.Br. J. Pharmacol.2023180216117310.1111/bph.1595436106568
    [Google Scholar]
  59. SunT. LiuJ. DingJ. ZhangC. ZhangY-W. MaQ-R. LiuY.M. N-methyl-D-aspartate receptor subunit 1 regulates neurogenesis in the hippocampal dentate gyrus of schizophrenia-like mice.Neural Regen. Res.201914122112211710.4103/1673‑5374.26259731397349
    [Google Scholar]
  60. TanakaM. TörökN. TóthF. SzabóÁ. VécseiL. Co-Players in chronic Pain: Neuroinflammation and the Tryptophan-Kynurenine metabolic pathway.Biomedicines20219889710.3390/biomedicines908089734440101
    [Google Scholar]
  61. SathyasaikumarK.V. StachowskiE.K. WonodiI. RobertsR.C. RassoulpourA. McMahonR.P. SchwarczR. Impaired kynurenine pathway metabolism in the prefrontal cortex of individuals with schizophrenia.Schizophr. Bull.20113761147115610.1093/schbul/sbq11221036897
    [Google Scholar]
  62. ErhardtS. SchwielerL. ImbeaultS. EngbergG. The kynurenine pathway in schizophrenia and bipolar disorderNeuropharmacology2017112Pt B29730610.1016/j.neuropharm.2016.05.02027245499
    [Google Scholar]
  63. SuY. LianJ. HodgsonJ. ZhangW. DengC. Prenatal poly I:C challenge affects behaviors and neurotransmission via elevated neuroinflammation responses in female juvenile rats.Int. J. Neuropsychopharmacol.202225216017110.1093/ijnp/pyab08734893855
    [Google Scholar]
  64. MeehanC. HarmsL. FrostJ.D. BarretoR. ToddJ. SchallU. Shannon WeickertC. ZavitsanouK. MichieP.T. HodgsonD.M. Effects of immune activation during early or late gestation on schizophrenia-related behaviour in adult rat offspring.Brain Behav. Immun.20176382010.1016/j.bbi.2016.07.14427423491
    [Google Scholar]
  65. MeyerU. NyffelerM. EnglerA. UrwylerA. SchedlowskiM. KnueselI. YeeB.K. FeldonJ. The time of prenatal immune challenge determines the specificity of inflammation-mediated brain and behavioral pathology.J. Neurosci.200626184752476210.1523/JNEUROSCI.0099‑06.200616672647
    [Google Scholar]
  66. GogosA. SbisaA. WitkampD. van den BuuseM. Sex differences in the effect of maternal immune activation on cognitive and psychosis‐like behaviour in Long Evans rats.Eur. J. Neurosci.20205212614262610.1111/ejn.1467131901174
    [Google Scholar]
  67. HaddadF.L. PatelS.V. SchmidS. Maternal immune activation by poly I:C as a preclinical model for neurodevelopmental disorders: A focus on autism and Schizophrenia.Neurosci. Biobehav. Rev.202011354656710.1016/j.neubiorev.2020.04.01232320814
    [Google Scholar]
  68. LiangX.S. QianT.L. XiongY.F. LiangX.T. DingY.W. ZhuX.Y. LiY.L. ZhouJ.L. TanL.Y. LiW.P. XieW. IRAK-M ablation promotes status epilepticus-induced neuroinflammation via activating M1 microglia and impairing excitatory synaptic function.Mol. Neurobiol.20236095199521310.1007/s12035‑023‑03407‑737277682
    [Google Scholar]
  69. DengY. LiaoY. HuangP. YaoY. LiuW. GuY. WengG. IRAK-M deficiency exacerbates dopaminergic neuronal damage in a mouse model of sub-acute Parkinson’s disease.Neuroreport202334946347010.1097/WNR.000000000000191337161987
    [Google Scholar]
  70. HenstridgeC.M. TziorasM. PaolicelliR.C. Glial contribution to excitatory and inhibitory synapse loss in neurodegeneration.Front. Cell. Neurosci.2019136310.3389/fncel.2019.0006330863284
    [Google Scholar]
  71. RahmanT. Purves-TysonT. GeddesA.E. HuangX.F. NewellK.A. WeickertC.S. N-Methyl-aspartate receptor and inflammation in dorsolateral prefrontal cortex in schizophrenia.Schizophr. Res.2022240617010.1016/j.schres.2021.11.04534952289
    [Google Scholar]
  72. ShishkinaG.T. KalininaT.S. LanshakovD.A. BulyginaV.V. KomyshevaN.P. BannovaA.V. DrozdU.S. DygaloN.N. Genes involved by dexamethasone in prevention of long-term memory impairment caused by lipopolysaccharide-induced neuroinflammation.Biomedicines20231110259510.3390/biomedicines1110259537892969
    [Google Scholar]
  73. WuA. ZhangJ. Neuroinflammation, memory, and depression: new approaches to hippocampal neurogenesis.J. Neuroinflammation202320128310.1186/s12974‑023‑02964‑x38012702
    [Google Scholar]
  74. SunY. ChengX. ZhangL. HuJ. chen, Y.; Zhan, L.; Gao, Z. The functional and molecular properties, physiological functions, and pathophysiological roles of GluN2A in the central nervous system.Mol. Neurobiol.20175421008102110.1007/s12035‑016‑9715‑726797520
    [Google Scholar]
  75. Ronald De KoloetE. Why dexamethasone poorly penetrates in brain.Stress199721131910.3109/102538997090147349787252
    [Google Scholar]
  76. HuR. ChenJ. LujanB. LeiR. ZhangM. WangZ. LiaoM. LiZ. WanY. LiuF. FengH. WanQ. Glycine triggers a non-ionotropic activity of GluN2A-containing NMDA receptors to confer neuroprotection.Sci. Rep.2016613445910.1038/srep3445927694970
    [Google Scholar]
  77. ShepardN. Baez-NietoD. IqbalS. KurganovE. BudnikN. CampbellA.J. PanJ.Q. ShengM. FarsiZ. Differential functional consequences of GRIN2A mutations associated with schizophrenia and neurodevelopmental disorders.Sci. Rep.2024141279810.1038/s41598‑024‑53102‑338307912
    [Google Scholar]
  78. CardisR. CabungcalJ.H. DwirD. DoK.Q. SteulletP. A lack of GluN2A-containing NMDA receptors confers a vulnerability to redox dysregulation: Consequences on parvalbumin interneurons, and their perineuronal netsNeurobiol. Dis.2018109Pt A647510.1016/j.nbd.2017.10.00629024713
    [Google Scholar]
  79. SteulletP. CabungcalJ-H. CoyleJ. DidriksenM. GillK. GraceA.A. HenschT.K. LaMantiaA-S. LindemannL. MaynardT.M. MeyerU. MorishitaH. O’DonnellP. PuhlM. CuenodM. DoK.Q. Oxidative stress-driven parvalbumin interneuron impairment as a common mechanism in models of schizophrenia.Mol. Psychiatry201722793694310.1038/mp.2017.4728322275
    [Google Scholar]
  80. GawandeD.Y. S.Narasimhan K.K.; Shelkar, G.P.; Pavuluri, R.; Stessman, H.A.F.; Dravid, S.M. GluN2D subunit in parvalbumin interneurons regulates prefrontal cortex feedforward inhibitory circuit and molecular networks relevant to Schizophrenia.Biol. Psychiatry202394429730910.1016/j.biopsych.2023.03.02037004850
    [Google Scholar]
  81. LewisD.A. CurleyA.A. GlausierJ.R. VolkD.W. Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia.Trends Neurosci.2012351576710.1016/j.tins.2011.10.00422154068
    [Google Scholar]
  82. AkbarianS. HuangH.S. Molecular and cellular mechanisms of altered GAD1/GAD67 expression in Schizophrenia and related disorders.Brain Res. Brain Res. Rev.200652229330410.1016/j.brainresrev.2006.04.00116759710
    [Google Scholar]
  83. ZhangZ. SunQ.Q. Development of NMDA NR2 subunits and their roles in critical period maturation of neocortical GABAergic interneurons.Dev. Neurobiol.201171322124510.1002/dneu.2084420936660
    [Google Scholar]
  84. KinneyJ.W. DavisC.N. TabareanI. ContiB. BartfaiT. BehrensM.M. A specific role for NR2A-containing NMDA receptors in the maintenance of parvalbumin and GAD67 immunoreactivity in cultured interneurons.J. Neurosci.20062651604161510.1523/JNEUROSCI.4722‑05.200616452684
    [Google Scholar]
  85. PhensyA. LindquistK.L. LindquistK.A. BairutyD. GaubaE. GuoL. TianJ. DuH. KroenerS. Deletion of the mitochondrial matrix protein CyclophilinD prevents parvalbumin interneuron dysfunctionand cognitive deficits in a mouse model of NMDA hypofunction.J. Neurosci.202040326121613210.1523/JNEUROSCI.0880‑20.202032605939
    [Google Scholar]
  86. CabungcalJ.H. SteulletP. MorishitaH. KraftsikR. CuenodM. HenschT.K. DoK.Q. Perineuronal nets protect fast-spiking interneurons against oxidative stress.Proc. Natl. Acad. Sci. USA2013110229130913510.1073/pnas.130045411023671099
    [Google Scholar]
  87. AcutainM.F. BaezM.V. Reduced expression of GluN2A induces a delay in neuron maturationJ. Neurochem.2023,jnc.1602310.1111/jnc.1602338037434
    [Google Scholar]
  88. EastwoodS.L. The synaptic pathology of schizophrenia: Is aberrant neurodevelopment and plasticity to blame?Int. Rev. Neurobiol.200459477210.1016/S0074‑7742(04)59003‑715006484
    [Google Scholar]
  89. SarkarA. MarchettoM.C. GageF.H. Synaptic activity: An emerging player in schizophrenia.Brain Res.20171656687510.1016/j.brainres.2015.12.02826723567
    [Google Scholar]
  90. AhammadI. JamalT.B. BhattacharjeeA. ChowdhuryZ.M. RahmanS. HassanM.R. HossainM.U. DasK.C. KeyaC.A. SalimullahM. Impact of highly deleterious non-synonymous polymorphisms on GRIN2A protein’s structure and function.PLoS One2023186e028691710.1371/journal.pone.028691737319252
    [Google Scholar]
  91. ElfvingB. MüllerH.K. OliverasI. ØsterbøgT.B. Rio-AlamosC. Sanchez-GonzalezA. TobeñaA. Fernandez-TeruelA. AznarS. Differential expression of synaptic markers regulated during neurodevelopment in a rat model of schizophrenia-like behavior.Prog. Neuropsychopharmacol. Biol. Psychiatry20199510966910.1016/j.pnpbp.2019.10966931228641
    [Google Scholar]
  92. SønderstrupM. BatiukM.Y. MantasP. Tapias-EspinosaC. OliverasI. CañeteT. Sampedro-VianaD. BrudekT. RydbirkR. KhodosevichK. Fernandez-TeruelA. ElfvingB. AznarS. A maturational shift in the frontal cortex synaptic transcriptional landscape underlies schizophrenia-relevant behavioural traits: A congenital rat model.Eur. Neuropsychopharmacol.202374324610.1016/j.euroneuro.2023.05.00137263043
    [Google Scholar]
  93. WangC.S. KavalaliE.T. MonteggiaL.M. BDNF signaling in context: From synaptic regulation to psychiatric disorders.Cell20221851627610.1016/j.cell.2021.12.00334963057
    [Google Scholar]
  94. VyklickyV. KorinekM. SmejkalovaT. BalikA. KrausovaB. KaniakovaM. LichnerovaK. CernyJ. KrusekJ. DittertI. HorakM. VyklickyL. Structure, function, and pharmacology of NMDA receptor channels.Physiol. Res.201463S191S20310.33549/physiolres.93267824564659
    [Google Scholar]
  95. ZhangY. LiP. FengJ. WuM. Dysfunction of NMDA receptors in Alzheimer’s disease.Neurol. Sci.20163771039104710.1007/s10072‑016‑2546‑526971324
    [Google Scholar]
  96. LiQ.Q. ChenJ. HuP. JiaM. SunJ.H. FengH.Y. QiaoF.C. ZangY.Y. ShiY.Y. ChenG. ShengN. XuY. YangJ.J. XuZ. ShiY.S. Enhancing GluN2A-type NMDA receptors impairs long-term synaptic plasticity and learning and memory.Mol. Psychiatry20222783468347810.1038/s41380‑022‑01579‑735484243
    [Google Scholar]
  97. LundbyeC.J. ToftA.K.H. BankeT.G. Inhibition of GluN2A NMDA receptors ameliorates synaptic plasticity deficits in the Fmr1 −/y mouse model.J. Physiol.2018596205017503110.1113/JP27630430132892
    [Google Scholar]
  98. IntsonK. GeissahS. McCullumsmithR.E. RamseyA.J. A role for endothelial NMDA receptors in the pathophysiology of schizophrenia.Schizophr. Res.2022249637310.1016/j.schres.2020.10.00433189520
    [Google Scholar]
  99. TangJ. ChenX. XuX. WuR. ZhaoJ. HuZ. XiaK. Significant linkage and association between a functional (GT)n polymorphism in promoter of the N-methyl-d-aspartate receptor subunit gene (GRIN2A) and schizophrenia.Neurosci. Lett.20064091808210.1016/j.neulet.2006.09.02217011703
    [Google Scholar]
  100. ItokawaM. YamadaK. YoshitsuguK. ToyotaT. SugaT. OhbaH. WatanabeA. HattoriE. ShimizuH. KumakuraT. EbiharaM. MeerabuxJ.M.A. ToruM. YoshikawaT. A microsatellite repeat in the promoter of the N-methyl-d-aspartate receptor 2A subunit (GRIN2A) gene suppresses transcriptional activity and correlates with chronic outcome in schizophrenia.Pharmacogenetics200313527127810.1097/00008571‑200305000‑0000612724619
    [Google Scholar]
  101. KrzystanekM. AsmanM. WiteckaJ. PałaszA. WiaderkiewiczR. Exploratory study of selected nucleotide variants in GRIN1, GRIN2A and GRIN2B encoding subunits of the NMDA receptor in a targeted group of schizophrenia patients with chronic cognitive impairment.Pharmacol. Rep.202173126927710.1007/s43440‑020‑00192‑133237434
    [Google Scholar]
  102. KarakasE. FurukawaH. Crystal structure of a heterotetrameric NMDA receptor ion channel.Science2014344618799299710.1126/science.125191524876489
    [Google Scholar]
  103. HansenK.B. YiF. PerszykR.E. MennitiF.S. TraynelisS.F. NMDA receptors in the central nervous system.Methods Mol. Biol.2017167718010.1007/978‑1‑4939‑7321‑7_128986865
    [Google Scholar]
/content/journals/cn/10.2174/011570159X327712241023084944
Loading
/content/journals/cn/10.2174/011570159X327712241023084944
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): GRIN2A; mutations; NMDAR; pathophysiology; Schizophrenia; synaptic signalling
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test