Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702

Abstract

Background

Clinically, abdominal aortic aneurysms (AAA) can be treated with surgical intervention, but there is currently no effective drug for the disease.

Methods

This study analyzed the biomedical data of single-cell RNA sequencing (scRNA-seq), RNA-seq and the network medical data of drug-target interaction as well as protein-protein interaction to identify key targets and potential drug compounds of AAA.

Results

Firstly, we identified 10 types of cells from AAA and nonaneurysmal control samples and screened monocyte, mast cell, smooth muscle cell and 327 genes showing significant differences between non-dilated PVATs and dilated PVATs. To further explore the association of three types of cells in AAA, we screened the common DEGs associated with the three types of cells and then identified 10 potential therapeutic targets for AAA. SLC2A3 and IER3 were the key targets that were the most closely related to immune score and significantly related to inflammatory pathways. We then designed a network-based proximity measure to identify potential drugs targeting SLC2A3. Finally, with computer simulation, we found that the compound with the highest affinity to SLC2A3 protein was DB08213, which was embedded into the SLC2A3 protein cavity and formed close contact with various amino acid residues, and was stable during the 100-ns MD simulation.

Conclusion

This study provided a computational framework for drug design and development. It revealed key targets and potential therapeutic drug compounds for AAA, which might contribute to the drug development for AAA.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmp/10.2174/1874467217666230517104426
2023-06-06
2024-11-24
Loading full text...

Full text loading...

/deliver/fulltext/cmp/17/1/CMP-17-E170523216998.html?itemId=/content/journals/cmp/10.2174/1874467217666230517104426&mimeType=html&fmt=ahah

References

  1. SakalihasanN. MichelJ.B. KatsargyrisA. KuivaniemiH. DefraigneJ.O. NchimiA. PowellJ.T. YoshimuraK. HultgrenR. Abdominal aortic aneurysms.Nat. Rev. Dis. Primers2018413410.1038/s41572‑018‑0030‑730337540
    [Google Scholar]
  2. YuanZ. LuY. WeiJ. WuJ. YangJ. CaiZ. Abdominal aortic aneurysm: Roles of inflammatory cells.Front. Immunol.20211160916110.3389/fimmu.2020.60916133613530
    [Google Scholar]
  3. AnagnostakosJ. LalB.K. Abdominal aortic aneurysms.Prog. Cardiovasc. Dis.202165344310.1016/j.pcad.2021.03.00933831398
    [Google Scholar]
  4. NordonI.M. HinchliffeR.J. LoftusI.M. ThompsonM.M. Pathophysiology and epidemiology of abdominal aortic aneurysms.Nat. Rev. Cardiol.2011829210210.1038/nrcardio.2010.18021079638
    [Google Scholar]
  5. HensleyS.E. UpchurchG.R.Jr Repair of abdominal aortic aneurysms.J. Am. Coll. Cardiol.202280882183110.1016/j.jacc.2022.04.06635981826
    [Google Scholar]
  6. HallettR.L. UlleryB.W. FleischmannD. Abdominal aortic aneurysms: Pre and post-procedural imaging.Abdom. Radiol.20184351044106610.1007/s00261‑018‑1520‑529460048
    [Google Scholar]
  7. LeungA.D. YamanouchiD. Osteoclastogenesis in abdominal aortic aneurysms: A new therapeutic target.Curr. Drug Targets201819111233124010.2174/138945011866617092515504428950811
    [Google Scholar]
  8. GolledgeJ. Abdominal aortic aneurysm: Update on pathogenesis and medical treatments.Nat. Rev. Cardiol.201916422524210.1038/s41569‑018‑0114‑930443031
    [Google Scholar]
  9. GolledgeJ. MoxonJ.V. SinghT.P. BownM.J. ManiK. WanhainenA. Lack of an effective drug therapy for abdominal aortic aneurysm.J. Intern. Med.2020288162210.1111/joim.1295831278799
    [Google Scholar]
  10. BarabásiA.L. GulbahceN. LoscalzoJ. Network medicine: A network-based approach to human disease.Nat. Rev. Genet.2011121566810.1038/nrg291821164525
    [Google Scholar]
  11. SonawaneA.R. WeissS.T. GlassK. SharmaA. Network medicine in the age of biomedical big data.Front. Genet.20191029410.3389/fgene.2019.0029431031797
    [Google Scholar]
  12. GerringZ.F. GamazonE.R. WhiteA. DerksE.M. Integrative network-based analysis reveals gene networks and novel drug repositioning candidates for Alzheimer disease.Neurol. Genet.202175e62210.1212/NXG.000000000000062234532569
    [Google Scholar]
  13. KimK.J. MoonS.J. ParkK.S. TagkopoulosI. Network-based modeling of drug effects on disease module in systemic sclerosis.Sci. Rep.20201011339310.1038/s41598‑020‑70280‑y32770109
    [Google Scholar]
  14. QuanP. WangK. YanS. WenS. WeiC. ZhangX. CaoJ. YaoL. Integrated network analysis identifying potential novel drug candidates and targets for Parkinson’s disease.Sci. Rep.20211111315410.1038/s41598‑021‑92701‑234162989
    [Google Scholar]
  15. WeiX. HouW. LiangJ. FangP. DouB. WangZ. SaiJ. XuT. MaC. ZhangQ. ChengF. WangX. WangQ. Network pharmacology-based analysis on the potential biological mechanisms of sinisan against non-alcoholic fatty liver disease.Front. Pharmacol.20211269370110.3389/fphar.2021.69370134512330
    [Google Scholar]
  16. HaoY. HaoS. Andersen-NissenE. MauckW.M.III ZhengS. ButlerA. LeeM.J. WilkA.J. DarbyC. ZagerM. HoffmanP. StoeckiusM. PapalexiE. MimitouE.P. JainJ. SrivastavaA. StuartT. FlemingL.M. YeungB. RogersA.J. McElrathJ.M. BlishC.A. GottardoR. SmibertP. SatijaR. Integrated analysis of multimodal single-cell data.Cell20211841335733587.e2910.1016/j.cell.2021.04.04834062119
    [Google Scholar]
  17. HänzelmannS. CasteloR. GuinneyJ. GSVA: gene set variation analysis for microarray and RNA-Seq data.BMC Bioinformatics2013141710.1186/1471‑2105‑14‑723323831
    [Google Scholar]
  18. WangJ. VasaikarS. ShiZ. GreerM. ZhangB. WebGestalt 2017: A more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit.Nucleic Acids Res.201745W1W130W13710.1093/nar/gkx35628472511
    [Google Scholar]
  19. WishartD.S. FeunangY.D. GuoA.C. LoE.J. MarcuA. GrantJ.R. SajedT. JohnsonD. LiC. SayeedaZ. AssempourN. IynkkaranI. LiuY. MaciejewskiA. GaleN. WilsonA. ChinL. CummingsR. LeD. PonA. KnoxC. WilsonM. DrugBank 5.0: A major update to the DrugBank database for 2018.Nucleic Acids Res.201846D1D1074D108210.1093/nar/gkx103729126136
    [Google Scholar]
  20. SzklarczykD. KirschR. KoutrouliM. NastouK. MehryaryF. HachilifR. GableA.L. FangT. DonchevaN.T. PyysaloS. BorkP. JensenL.J. von MeringC. The STRING database in 2023: Protein–protein association networks and functional enrichment analyses for any sequenced genome of interest.Nucleic Acids Res.202351D1D638D64610.1093/nar/gkac100036370105
    [Google Scholar]
  21. JiménezJ. DoerrS. Martínez-RosellG. RoseA.S. De FabritiisG. DeepSite: Protein-binding site predictor using 3D-convolutional neural networks.Bioinformatics201733193036304210.1093/bioinformatics/btx35028575181
    [Google Scholar]
  22. TrottO. OlsonA.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.201031245546119499576
    [Google Scholar]
  23. HessB. KutznerC. van der SpoelD. LindahlE. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation.J. Chem. Theory Comput.20084343544710.1021/ct700301q26620784
    [Google Scholar]
  24. RaffortJ. LareyreF. ClémentM. Hassen-KhodjaR. ChinettiG. MallatZ. Monocytes and macrophages in abdominal aortic aneurysm.Nat. Rev. Cardiol.201714845747110.1038/nrcardio.2017.5228406184
    [Google Scholar]
  25. EagletonM.J. Inflammation in abdominal aortic aneurysms: Cellular infiltrate and cytokine profiles.Vascular201220527828310.1258/vasc.2011.20120723091264
    [Google Scholar]
  26. YeT. ZhangG. LiuH. ShiJ. QiuH. LiuY. HanF. HouN. Relationships between perivascular adipose tissue and abdominal aortic aneurysms.Front. Endocrinol.20211270484510.3389/fendo.2021.70484534194399
    [Google Scholar]
  27. ZhaoG. LuH. ChangZ. ZhaoY. ZhuT. ChangL. GuoY. Garcia-BarrioM.T. ChenY.E. ZhangJ. Single-cell RNA sequencing reveals the cellular heterogeneity of aneurysmal infrarenal abdominal aorta.Cardiovasc. Res.202111751402141610.1093/cvr/cvaa21432678909
    [Google Scholar]
  28. TsurudaT. KatoJ. HatakeyamaK. KojimaK. YanoM. YanoY. NakamuraK. Nakamura-UchiyamaF. MatsushimaY. ImamuraT. OnitsukaT. AsadaY. NawaY. EtoT. KitamuraK. Adventitial mast cells contribute to pathogenesis in the progression of abdominal aortic aneurysm.Circ. Res.2008102111368137710.1161/CIRCRESAHA.108.17368218451339
    [Google Scholar]
  29. RomboutsK.B. MerrienboerT.A.R. KetJ.C.F. BogunovicN. VeldenJ. YeungK.K. The role of vascular smooth muscle cells in the development of aortic aneurysms and dissections.Eur. J. Clin. Invest.2022524e1369710.1111/eci.1369734698377
    [Google Scholar]
  30. TsurudaT. HatakeyamaK. NagamachiS. SekitaY. SakamotoS. EndoG.J. NishimuraM. MatsuyamaM. YoshimuraK. SatoY. OnitsukaT. ImamuraT. AsadaY. KitamuraK. Inhibition of development of abdominal aortic aneurysm by glycolysis restriction.Arterioscler. Thromb. Vasc. Biol.20123261410141710.1161/ATVBAHA.111.23706522499992
    [Google Scholar]
  31. ZhangW. ChienJ. YongJ. KuangR. Network-based machine learning and graph theory algorithms for precision oncology.NPJ Precis. Oncol.2017112510.1038/s41698‑017‑0029‑729872707
    [Google Scholar]
  32. RintalaT.J. GhoshA. FortinoV. Network approaches for modeling the effect of drugs and diseases.Brief. Bioinform.2022234bbac22910.1093/bib/bbac22935704883
    [Google Scholar]
/content/journals/cmp/10.2174/1874467217666230517104426
Loading
/content/journals/cmp/10.2174/1874467217666230517104426
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test