Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702

Abstract

Nasopharyngeal cancer is a rare cancer with unique ethnic and geographic distribution. Since nasopharyngeal cancer often originates from the pharyngeal crypt, early symptoms are not obvious. They are difficult to detect in time, and the disease is usually diagnosed and treated only when it has progressed to an advanced-stage. Since angiogenesis is essential for the growth and invasion of solid tumors, antiangiogenic therapy has become a common treatment strategy for many solid tumors, and it has also achieved remarkable results in the treatment of nasopharyngeal carcinoma, which is prone to recurrence and distant metastasis. In this paper, we review the latest research progress of antiangiogenic drugs for nasopharyngeal carcinoma and their antiangiogenic mechanism of action and further propose some promising antiangiogenic therapeutic targets.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmp/10.2174/0118761429290933240408071812
2024-04-19
2025-01-23
Loading full text...

Full text loading...

/deliver/fulltext/cmp/17/1/e18761429290933.html?itemId=/content/journals/cmp/10.2174/0118761429290933240408071812&mimeType=html&fmt=ahah

References

  1. WongK.C.W. HuiE.P. LoK.W. LamW.K.J. JohnsonD. LiL. TaoQ. ChanK.C.A. ToK.F. KingA.D. MaB.B.Y. ChanA.T.C. Nasopharyngeal carcinoma: An evolving paradigm.Nat. Rev. Clin. Oncol.2021181167969510.1038/s41571‑021‑00524‑x34194007
    [Google Scholar]
  2. LongZ. WangW. LiuW. WangF. MengS. LiuJ. LiuY. QiJ. WangL. ZhouM. YinP. Trend of nasopharyngeal carcinoma mortality and years of life lost in China and its provinces from 2005 to 2020.Int. J. Cancer2022151568469110.1002/ijc.3399835285029
    [Google Scholar]
  3. DuX-J. WangG-Y. ZhuX-D. HanY-Q. LeiF. ShenL-F. YangK-Y. ChenL. MaoY-P. TangL-L. LiL. WuZ. XuG-Q. ZhouQ. HuangJ. GuoR. ZhangY. LiuX. ZhouG-Q. LiW-F. XuC. LinL. ChenY-P. ChenF-P. LiangX-Y. ChenS-Y. LiS-Q. CuiC-Y. LiJ-B. RenJ. ChenM-Y. LiuL-Z. SunY. MaJ. Refining the 8th edition TNM classification for EBV related nasopharyngeal carcinomaCancer Cell2024
    [Google Scholar]
  4. LiangT. ChenH. LiuL. ZhengY. MaZ. MinL. ZhangJ. WuL. MaJ. LiuZ. ZhangQ. LuoK. HuD. JiT. YuX. Antibody profiling of pan-cancer viral proteome reveals biomarkers for nasopharyngeal carcinoma diagnosis and prognosis.Mol. Cell. Proteomics202423310072910.1016/j.mcpro.2024.10072938309569
    [Google Scholar]
  5. LiuH. TangL. LiY. XieW. ZhangL. TangH. XiaoT. YangH. GuW. WangH. ChenP. Nasopharyngeal carcinoma: Current views on the tumor microenvironment’s impact on drug resistance and clinical outcomes.Mol. Cancer20242312010.1186/s12943‑023‑01928‑238254110
    [Google Scholar]
  6. van VelsenJ.S. van der VegtB. PlaatB.E.C. LangendijkJ.A. Epskamp-KuijpersC.C.H.J. van DijkB.A.C. OostingS.F. Nasopharyngeal carcinoma: Nationwide trends in subtype-specific incidence and survival over 3 decades in a non-endemic area.J. Cancer Res. Clin. Oncol.202415024910.1007/s00432‑023‑05547‑838285234
    [Google Scholar]
  7. CremoliniC. AntoniottiC. RossiniD. LonardiS. LoupakisF. PietrantonioF. BordonaroR. LatianoT.P. TamburiniE. SantiniD. PassardiA. MarmorinoF. GrandeR. AprileG. ZaniboniA. MurgioniS. GranettoC. BuonadonnaA. MorettoR. CoralloS. CordioS. AntonuzzoL. TomaselloG. MasiG. RonzoniM. Di DonatoS. CarlomagnoC. ClavarezzaM. RitortoG. MambriniA. RoselliM. CupiniS. MammolitiS. FenocchioE. CorgnaE. ZagonelV. FontaniniG. UgoliniC. BoniL. FalconeA. FalconeA. LonardiS. De BraudF.G.M. BordonaroR. MaielloE. TamburiniE. SantiniD. FrassinetiG.L. GamucciT. AprileG. ZaniboniA. GranettoC. BuonadonnaA. Di CostanzoF. TomaselloG. GianniL. Di DonatoS. CarlomagnoC. ClavarezzaM. RaccaP. MambriniA. RoselliM. AllegriniG. SobreroA. AgliettaM. CorgnaE. CortesiE. CorsiD.C. BallestreroA. BonettiA. Di ClementeF. RuggeriE. CiardielloF. BenassoM. VitelloS. CinieriS. MosconiS. SilvestrisN. FrassoldatiA. CupiniS. BertoliniA. TortoraG. BengalaC. FerrariD. ArdizzoiaA. MilandriC. ChiaraS. RomanoG. MiragliaS. ScaltritiL. PucciF. BlasiL. BrugnatelliS. FiorettoL. RibeccoA.S. LongariniR. FrisinghelliM. BanziM. Upfront FOLFOXIRI plus bevacizumab and reintroduction after progression versus mFOLFOX6 plus bevacizumab followed by FOLFIRI plus bevacizumab in the treatment of patients with metastatic colorectal cancer (TRIBE2): A multicentre, open-label, phase 3, randomised, controlled trial.Lancet Oncol.202021449750710.1016/S1470‑2045(19)30862‑932164906
    [Google Scholar]
  8. RobertN.J. DiérasV. GlaspyJ. BrufskyA.M. BondarenkoI. LipatovO.N. PerezE.A. YardleyD.A. ChanS.Y.T. ZhouX. PhanS.C. O’ShaughnessyJ. RIBBON-1: Randomized, double-blind, placebo-controlled, phase III trial of chemotherapy with or without bevacizumab for first-line treatment of human epidermal growth factor receptor 2-negative, locally recurrent or metastatic breast cancer.J. Clin. Oncol.201129101252126010.1200/JCO.2010.28.098221383283
    [Google Scholar]
  9. EscudierB. BellmuntJ. NégrierS. BajettaE. MelicharB. BracardaS. RavaudA. GoldingS. JethwaS. SnellerV. Phase III trial of bevacizumab plus interferon alfa-2a in patients with metastatic renal cell carcinoma (AVOREN): Final analysis of overall survival.J. Clin. Oncol.201028132144215010.1200/JCO.2009.26.784920368553
    [Google Scholar]
  10. ShenJ. YanJ. DuJ. LiX. WeiJ. LiuQ. YongH. WangX. ChangX. DingZ. SunW. LiuC. ZhuS. GuoJ. LiH. LiuY. ZhangW. LiuZ. LiR. LiuB. Multicenter, single-arm, phase II study (CAP) of radiotherapy plus liposomal irinotecan followed by camrelizumab and anti-angiogenic treatment in advanced solid tumors.Front. Immunol.202314113368910.3389/fimmu.2023.113368937056765
    [Google Scholar]
  11. LeeY. KimH.R. HongM.H. LeeK.H. ParkK.U. LeeG.K. KimH.Y. LeeS.H. LimK.Y. YoonS.J. ChoB.C. HanJ.Y. A randomized Phase 2 study to compare erlotinib with or without bevacizumab in previously untreated patients with advanced non–small cell lung cancer with EGFR mutation.Cancer2023129340541410.1002/cncr.3455336451343
    [Google Scholar]
  12. WangF. JinF. ChengB. ZhangY. ZhouQ. WangS. The real-world efficacy and safety of anlotinib in advanced non-small cell lung cancer.J. Cancer Res. Clin. Oncol.202214871721173510.1007/s00432‑021‑03752‑x34357411
    [Google Scholar]
  13. YuanS. FuQ. ZhaoL. FuX. LiT. HanL. QinP. RenY. HuoM. LiZ. LuC. YuanL. GaoQ. WangZ. Efficacy and safety of apatinib in patients with recurrent or refractory melanoma.Oncologist2022276e463e47010.1093/oncolo/oyab06835348754
    [Google Scholar]
  14. ZhaoJ. HeM. LiJ. LiD. ZhaoY. LiX. ZhangX. ChenX. LiuY. ZhaoL. Apatinib combined with paclitaxel and cisplatin neoadjuvant chemotherapy for locally advanced esophageal squamous cell carcinoma.Cancer Biother. Radiopharm.202237432433110.1089/cbr.2021.008634524004
    [Google Scholar]
  15. KenmotsuH. MoriK. MizunoR. MamesayaN. KobayashiH. OmoriS. WakudaK. OnoA. NaitoT. MurakamiH. TakahashiT. Phase 1b study of ramucirumab in combination with irinotecan plus cisplatin in chemo-naïve patients with extensive-stage small-cell lung cancer.Lung Cancer2022164394510.1016/j.lungcan.2021.12.01134974224
    [Google Scholar]
  16. ShiY. LeiK. JiaY. NiB. HeZ. BiM. WangX. ShiJ. ZhouM. SunQ. WangG. ChenD. ShuY. LiuL. GuoZ. LiuY. YangJ. WangK. XiaoK. WuL. YiT. SunD. KangM. MaT. MaoY. ShiJ. TangT. WangY. XingP. LvD. LiaoW. LuoZ. WangB. WuX. ZhuX. HanS. GuoQ. LiuR. LuZ. ZhangJ. FangJ. HuC. JiY. LiuG. LuH. WuD. ZhangJ. ZhuS. LiuZ. QiuW. YeF. YuY. ZhaoY. ZhengQ. ChenJ. PanZ. ZhangY. LianW. JiangB. QiuB. ZhangG. ZhangH. ChenY. ChenY. DuanH. LiM. LiuS. MaL. PanH. YuanX. YuanX. ZhengY. GaoE. ZhaoL. WangS. WuC. Bevacizumab biosimilar LY01008 compared with bevacizumab (Avastin) as first-line treatment for Chinese patients with unresectable, metastatic, or recurrent non-squamous non–small-cell lung cancer: A multicenter, randomized, double-blinded, phase III trial.Cancer Commun.202141988990310.1002/cac2.1217934184418
    [Google Scholar]
  17. ZhouT. YangY. MaS. LinL. ZhouT. ZhangC. DingX. WangR. FengG. ChenY. XuR. HuangY. ZhangL. Bevacizumab versus placebo in combination with paclitaxel and carboplatin as first-line treatment for recurrent or metastatic nasopharyngeal carcinoma: A multicentre, randomised, open-label, phase II trial.ESMO Open20216610031310.1016/j.esmoop.2021.10031334837744
    [Google Scholar]
  18. MohamedA.W. ElbassiounyM. ElkhodaryD.A. ShawkiM.A. SaadA.S. The effect of itraconazole on the clinical outcomes of patients with advanced non-small cell lung cancer receiving platinum-based chemotherapy: A randomized controlled study.Med. Oncol.20213832310.1007/s12032‑021‑01475‑033559053
    [Google Scholar]
  19. BrennerA.J. PetersK.B. VredenburghJ. BoksteinF. BlumenthalD.T. Yust-KatzS. PeretzI. ObermanB. FreedmanL.S. EllingsonB.M. CloughesyT.F. SherN. CohenY.C. Lowenton-SpierN. Rachmilewitz MineiT. YakovN. MendelI. BreitbartE. WenP.Y. Safety and efficacy of VB-111, an anticancer gene therapy, in patients with recurrent glioblastoma: Results of a phase I/II study.Neuro-oncol.202022569470410.1093/neuonc/noz23131844886
    [Google Scholar]
  20. ZhangX. ZhangZ. CaoM. LiuB. MoriM. LuohS.W. BerganR. LiuY. LiuY. A randomized parallel controlled phase II trial of recombinant human endostatin added to neoadjuvant chemotherapy for stage III breast cancer.Clin. Breast Cancer2020204291299.e310.1016/j.clbc.2020.04.00932482525
    [Google Scholar]
  21. ZhaiY. MaH. HuiZ. ZhaoL. LiD. LiangJ. WangX. XuL. ChenB. TangY. WuR. XuY. PangQ. ChenM. WangL. HELPER study: A phase II trial of continuous infusion of endostar combined with concurrent etoposide plus cisplatin and radiotherapy for treatment of unresectable stage III non-small-cell lung cancer.Radiother. Oncol.2019131273410.1016/j.radonc.2018.10.03230773184
    [Google Scholar]
  22. WuF. ZhangS. XiongA. GaoG. LiW. CaiW. SuC. ChenX. ZhouF. ZhaoJ. RenS. ZhouC. A Phase II clinical trial of apatinib in pretreated advanced non-squamous non–small-cell lung cancer.Clin. Lung Cancer2018196e831e84210.1016/j.cllc.2018.06.00230026059
    [Google Scholar]
  23. LiuX. GuoL. XieF.-Y. HuW.-H. ChenM.-Y. HeQ.-M. XuZ.-M. ZhangC.-Q. PengY.-L. TangL.-L. MaoY.-P. SunR. LiJ.-B. ArgirisA. HuiE. P. SunY. MaJ. Adjuvant apatinib in nasopharyngeal carcinoma with residual epstein-barr virus DNA after radiation therapy: A biomarker-driven, phase 2 trial.Int. J. Rad. Oncol.2022113510631071
    [Google Scholar]
  24. YuanL. JiaG.D. LvX.F. XieS.Y. GuoS.S. LinD.F. LiuL.T. LuoD.H. LiY.F. DengS.W. GuoL. ZengM.S. CaiX.Y. LiuS.L. SunX.S. LiX.Y. LiS.C. ChenQ.Y. TangL.Q. MaiH.Q. Camrelizumab combined with apatinib in patients with first-line platinum-resistant or PD-1 inhibitor resistant recurrent/metastatic nasopharyngeal carcinoma: A single-arm, phase 2 trial.Nat. Commun.2023141489310.1038/s41467‑023‑40402‑x37580352
    [Google Scholar]
  25. ApteR.S. ChenD.S. FerraraN. VEGF in signaling and disease: Beyond discovery and development.Cell201917661248126410.1016/j.cell.2019.01.02130849371
    [Google Scholar]
  26. PapeJ. MagdeldinT. StamatiK. NygaA. LoizidouM. EmbertonM. CheemaU. Cancer-associated fibroblasts mediate cancer progression and remodel the tumouroid stroma.Br. J. Cancer202012371178119010.1038/s41416‑020‑0973‑932641866
    [Google Scholar]
  27. ChenL. LinG. ChenK. LiangR. WanF. ZhangC. TianG. ZhuX. VEGF promotes migration and invasion by regulating EMT and MMPs in nasopharyngeal carcinoma.J. Cancer202011247291730110.7150/jca.4642933193893
    [Google Scholar]
  28. PengF.W. LiuD.K. ZhangQ.W. XuY.G. ShiL. VEGFR-2 inhibitors and the therapeutic applications thereof: A patent review (2012-2016).Expert Opin. Ther. Pat.2017279987100410.1080/13543776.2017.134421528621580
    [Google Scholar]
  29. PeiN. WanR. ChenX. LiA. ZhangY. LiJ. DuH. ChenB. WeiW. QiY. ZhangY. KatovichM.J. SumnersC. ZhengH. LiH. Angiotensin-(1-7) decreases cell growth and angiogenesis of human nasopharyngeal carcinoma xenografts.Mol. Cancer Ther.2016151374710.1158/1535‑7163.MCT‑14‑098126671566
    [Google Scholar]
  30. MingH. LanY. HeF. XiaoX. ZhouX. ZhangZ. LiP. HuangG. Cytochrome b5 reductase 2 suppresses tumor formation in nasopharyngeal carcinoma by attenuating angiogenesis.Chin. J. Cancer20153434210.1186/s40880‑015‑0044‑426275421
    [Google Scholar]
  31. ChenH. KoJ.M.Y. WongV.C.L. HyytiainenM. Keski-OjaJ. ChuaD. NichollsJ.M. CheungF.M.F. LeeA.W.M. KwongD.L. ChiuP.M. ZabarovskyE.R. TsaoS.W. TaoQ. KanR. ChanS.H.K. StanbridgeE.J. LungM.L. LTBP-2 confers pleiotropic suppression and promotes dormancy in a growth factor permissive microenvironment in nasopharyngeal carcinoma.Cancer Lett.20123251899810.1016/j.canlet.2012.06.00522743615
    [Google Scholar]
  32. LuJ. ZhaoF.P. PengZ. ZhangM.W. LinS.X. LiangB.J. ZhangB. LiuX. WangL. LiG. TianW.D. PengY. HeM.L. LiX.P. EZH2 promotes angiogenesis through inhibition of miR-1/Endothelin-1 axis in nasopharyngeal carcinoma.Oncotarget2014522113191133210.18632/oncotarget.243525237831
    [Google Scholar]
  33. DuanB. ShiS. YueH. YouB. ShanY. ZhuZ. BaoL. YouY. Exosomal miR-17-5p promotes angiogenesis in nasopharyngeal carcinoma via targeting BAMBI.J. Cancer201910266681669210.7150/jca.3075731777597
    [Google Scholar]
  34. ChenX. WengY. LiY. FuW. HuangZ. PanY. HongW. LinW. LinX. QiuS. Upregulation of PNCK promotes metastasis and angiogenesis via Activating NF-κB/VEGF pathway in nasopharyngeal carcinoma.J. Oncol.2022202211410.1155/2022/854158235535310
    [Google Scholar]
  35. LuoW. Garcia-GonzalezI. Fernández-ChacónM. Casquero-GarciaV. Sanchez-MuñozM.S. MühlederS. Garcia-OrtegaL. AndradeJ. PotenteM. BeneditoR. Arterialization requires the timely suppression of cell growth.Nature2021589784243744110.1038/s41586‑020‑3018‑x33299176
    [Google Scholar]
  36. Del GaudioF. LiuD. LendahlU. Notch signalling in healthy and diseased vasculature.Open Biol.202212422000410.1098/rsob.22000435472289
    [Google Scholar]
  37. SwaminathanB. YounS.W. NaicheL.A. DuJ. VillaS.R. MetzJ.B. FengH. ZhangC. KopanR. SimsP.A. KitajewskiJ.K. Endothelial Notch signaling directly regulates the small GTPase RND1 to facilitate Notch suppression of endothelial migration.Sci. Rep.2022121165510.1038/s41598‑022‑05666‑135102202
    [Google Scholar]
  38. SunJ.X. DouG.R. YangZ.Y. LiangL. DuanJ.L. RuanB. LiM.H. ChangT.F. XuX.Y. ChenJ.J. WangY.S. YanX.C. HanH. Notch activation promotes endothelial quiescence by repressing MYC expression via miR-218.Mol. Ther. Nucleic Acids20212555456610.1016/j.omtn.2021.07.02334589277
    [Google Scholar]
  39. SchaafM.B. HoubaertD. MeçeO. AgostinisP. Autophagy in endothelial cells and tumor angiogenesis.Cell Death Differ.201926466567910.1038/s41418‑019‑0287‑830692642
    [Google Scholar]
  40. FuW. LuY. HuB. LiangW. ZhuX. YangH. LiG. ZhangJ. Long noncoding RNA hotair mediated angiogenesis in nasopharyngeal carcinoma by direct and indirect signaling pathways.Oncotarget2016744712472310.18632/oncotarget.673126717040
    [Google Scholar]
  41. FelsherD.W. Cancer revoked: Oncogenes as therapeutic targets.Nat. Rev. Cancer20033537537910.1038/nrc107012724735
    [Google Scholar]
  42. ZhouQ. OlivoM. LyeK.Y.K. MooreS. SharmaA. ChowbayB. Enhancing the therapeutic responsiveness of photodynamic therapy with the antiangiogenic agents SU5416 and SU6668 in murine nasopharyngeal carcinoma models.Cancer Chemother. Pharmacol.200556656957710.1007/s00280‑005‑1017‑016001166
    [Google Scholar]
  43. YeeK. SooK. OlivoM. Anti-angiogenic effects of Hypericin-photodynamic therapy in combination with Celebrex® in the treatment of human nasopharyngeal carcinoma.Int. J. Mol. Med.2005166993100210.3892/ijmm.16.6.99316273277
    [Google Scholar]
  44. BhuvaneswariR. GanY. YeeK. SooK. OlivoM. Effect of hypericin-mediated photodynamic therapy on the expression of vascular endothelial growth factor in human nasopharyngeal carcinoma.Int. J. Mol. Med.200720442142810.3892/ijmm.20.4.42117786271
    [Google Scholar]
  45. LuoY. LiuY. WangC. GanR. Signaling pathways of EBV-induced oncogenesis.Cancer Cell Int.20212119310.1186/s12935‑021‑01793‑333549103
    [Google Scholar]
  46. WangZ. JiaoP. ZhongY. JiH. ZhangY. SongH. DuH. DingX. WuH. The endoplasmic reticulum-stressed head and neck squamous cell carcinoma cells induced exosomal mir-424-5p inhibits angiogenesis and migration of humanumbilical vein endothelial cells through LAMC1-Mediated Wnt/β-catenin signaling pathway.Cell Transplant.20223110.1177/0963689722108354935315295
    [Google Scholar]
  47. WangS. YangT. HeZ. Investigations on the Role of the MicroRNA-338-5p/Wnt family member 2B (WNT2B) axis in regulating the pathogenesis of nasopharyngeal carcinoma (NPC).Front. Oncol.20211168446210.3389/fonc.2021.68446234268117
    [Google Scholar]
  48. ZhangP. TianQ. GaoH. ZhaoA. ShaoY. YangJ. Inhibition of MAC30 exerts antitumor effects in nasopharyngeal carcinoma via affecting the Akt/GSK-3β/β-catenin pathway.J. Biochem. Mol. Toxicol.2022367e2306110.1002/jbt.2306135373413
    [Google Scholar]
  49. ZhangT. ChenZ. DengJ. XuK. CheD. LinJ. JiangP. GuX. XuB. Epstein–Barr virus-encoded microRNA BART22 serves as novel biomarkers and drives malignant transformation of nasopharyngeal carcinoma.Cell Death Dis.202213766410.1038/s41419‑022‑05107‑x35907914
    [Google Scholar]
  50. ChenL. ChiangY.C. ChanL.S. ChauW.Y. LungM.L. KahnM. LoK.W. MakN.K. LungH.L. The CBP/β-Catenin Antagonist, ICG-001, inhibits tumor metastasis via Blocking of the miR-134/ITGB1 axis-mediated cell adhesion in nasopharyngeal carcinoma.Cancers (Basel)20221413312510.3390/cancers1413312535804897
    [Google Scholar]
  51. LuZ. ZhouY. JingQ. Wnt5a-mediated autophagy promotes radiation resistance of nasopharyngeal carcinoma.J. Cancer20221372388239610.7150/jca.7152635517407
    [Google Scholar]
  52. ShenZ. WuY. HeG. Long non-coding RNA PTPRG-AS1/microRNA-124-3p regulates radiosensitivity of nasopharyngeal carcinoma via the LIM Homeobox 2-dependent Notch pathway through competitive endogenous RNA mechanism.Bioengineered20221348208822510.1080/21655979.2022.203736435300558
    [Google Scholar]
  53. ChenB. JiangW. HuangY. ZhangJ. YuP. WuL. PengH. N7-methylguanosine tRNA modification promotes tumorigenesis and chemoresistance through WNT/β-catenin pathway in nasopharyngeal carcinoma.Oncogene202241152239225310.1038/s41388‑022‑02250‑935217794
    [Google Scholar]
  54. PlotnikovA. FloresK. Maik-RachlineG. ZehoraiE. Kapri-PardesE. BertiD.A. HanochT. BesserM.J. SegerR. The nuclear translocation of ERK1/2 as an anticancer target.Nat. Commun.201561668510.1038/ncomms768525819065
    [Google Scholar]
  55. PuaL.J.W. MaiC.W. ChungF.F.L. KhooA.S.B. LeongC.O. LimW.M. HiiL.W. Functional Roles of JNK and p38 MAPK signaling in nasopharyngeal carcinoma.Int. J. Mol. Sci.2022233110810.3390/ijms2303110835163030
    [Google Scholar]
  56. PatonE.L. TurnerJ.A. SchlaepferI.R. Overcoming resistance to therapies targeting the MAPK pathway in BRAF-mutated tumours.J. Oncol.2020202011410.1155/2020/107982732411231
    [Google Scholar]
  57. ChoeM.S. ZhangX. ShinH.J.C. ShinD.M. ChenZ.G. Interaction between epidermal growth factor receptor– and cyclooxygenase 2–mediated pathways and its implications for the chemoprevention of head and neck cancer.Mol. Cancer Ther.2005491448145510.1158/1535‑7163.MCT‑04‑025116170038
    [Google Scholar]
  58. YipW. LeongV. AbdullahM. YusoffS. SeowH. Overexpression of phospho-Akt correlates with phosphorylation of EGF receptor, FKHR and BAD in nasopharyngeal carcinoma.Oncol. Rep.200819231932810.3892/or.19.2.31918202777
    [Google Scholar]
  59. NormannoN. De LucaA. BiancoC. StrizziL. MancinoM. MaielloM.R. CarotenutoA. De FeoG. CaponigroF. SalomonD.S. Epidermal growth factor receptor (EGFR) signaling in cancer.Gene2006366121610.1016/j.gene.2005.10.01816377102
    [Google Scholar]
  60. PengX. ZhouY. TaoY. LiuS. Nasopharyngeal Carcinoma: The Role of the EGFR in epstein–barr virus infection.Pathogens2021109111310.3390/pathogens1009111334578147
    [Google Scholar]
  61. YangT. YouC. MengS. LaiZ. AiW. ZhangJ. EBV infection and its regulated metabolic reprogramming in nasopharyngeal tumorigenesis.Front. Cell. Infect. Microbiol.20221293520510.3389/fcimb.2022.93520535846746
    [Google Scholar]
  62. Shigeyuki MuronoH. I. Induction of cyclooxygenase-2 by Epstein–Barr virus latent membrane protein 1 is involved in vascular endothelial growth factor production in nasopharyngeal carcinoma cells.Proc. Natl. Acad. Sci.2001981269056910
    [Google Scholar]
  63. YeJ. WeiJ. LuoY. DengY. QueT. ZhangX. LiuF. ZhangJ. LuoX. Epstein-barr virus promotes tumor angiogenesis by activating STIM1-Dependent Ca2+ signaling in nasopharyngeal carcinoma.Pathogens20211010127510.3390/pathogens1010127534684224
    [Google Scholar]
  64. YouB. PanS. GuM. ZhangK. XiaT. ZhangS. ChenW. XieH. FanY. YaoH. ChengT. ZhangP. LiuD. YouY. Extracellular vesicles rich in HAX1 promote angiogenesis by modulating ITGB6 translation.J. Extracell. Vesicles2022115e1222110.1002/jev2.1222135524442
    [Google Scholar]
  65. GuM. LiL. ZhangZ. ChenJ. ZhangW. ZhangJ. HanL. TangM. YouB. ZhangQ. YouY. PFKFB3 promotes proliferation, migration and angiogenesis in nasopharyngeal carcinoma.J. Cancer20178183887389610.7150/jca.1911229151977
    [Google Scholar]
  66. wuA. LuoN. Xu DuN. LiL. LiuQ. Exosomal LBH inhibits epithelial-mesenchymal transition and angiogenesis in nasopharyngeal carcinoma via downregulating VEGFA signaling.Int. J. Biol. Sci.202218124226010.7150/ijbs.6650634975330
    [Google Scholar]
  67. LuJ. LiuQ.H. WangF. TanJ.J. DengY.Q. PengX.H. LiuX. ZhangB. XuX. LiX.P. Exosomal miR-9 inhibits angiogenesis by targeting MDK and regulating PDK/AKT pathway in nasopharyngeal carcinoma.J. Exp. Clin. Cancer Res.201837114710.1186/s13046‑018‑0814‑330001734
    [Google Scholar]
  68. ZhaoC. ZhaoF. ChenH. LiuY. SuJ. MicroRNA-424-5p inhibits the proliferation, migration, and invasion of nasopharyngeal carcinoma cells by decreasing AKT3 expression.Braz. J. Med. Biol. Res.2020537e902910.1590/1414‑431x2020902932520206
    [Google Scholar]
  69. SunQ. WangY. JiH. SunX. XieS. ChenL. LiS. ZengW. ChenR. TangQ. ZuoJ. HouL. HosakaK. LuY. LiuY. YeY. YangY. Lenvatinib for effectively treating antiangiogenic drug-resistant nasopharyngeal carcinoma.Cell Death Dis.202213872410.1038/s41419‑022‑05171‑335985991
    [Google Scholar]
  70. DengY. LiuX. HuangY. YeJ. HeQ. LuoY. ChenY. LiQ. LinY. LiangR. LiY. WeiJ. ZhangJ. STIM1-regulated exosomal EBV-LMP1 empowers endothelial cells with an aggressive phenotype by activating the Akt/ERK pathway in nasopharyngeal carcinoma.Cell Oncol20234649871000
    [Google Scholar]
  71. TianX. LiuY. WangZ. WuS. miR-144 delivered by nasopharyngeal carcinoma-derived EVs stimulates angiogenesis through the FBXW7/HIF-1α/VEGF-A axis.Mol. Ther. Nucleic Acids2021241000101110.1016/j.omtn.2021.03.01634094717
    [Google Scholar]
  72. AlajezN.M. LenarduzziM. ItoE. HuiA.B.Y. ShiW. BruceJ. YueS. HuangS.H. XuW. WaldronJ. O’SullivanB. LiuF.F. MiR-218 suppresses nasopharyngeal cancer progression through downregulation of survivin and the SLIT2-ROBO1 pathway.Cancer Res.20117162381239110.1158/0008‑5472.CAN‑10‑275421385904
    [Google Scholar]
  73. ChenS. LvL. ZhanZ. WangX. YouZ. LuoX. YouH. Silencing of long noncoding RNA SRRM2-AS exerts suppressive effects on angiogenesis in nasopharyngeal carcinoma via activating MYLK-mediated cGMP-PKG signaling pathway.J. Cell. Physiol.2020235117757776810.1002/jcp.2938231742692
    [Google Scholar]
  74. FanC.W. TangJ. JiangJ.C. ZhouM.M. LiM.S. WangH.S. Pentagalloylglucose suppresses the growth and migration of human nasopharyngeal cancer cells via the GSK3β/β-catenin pathway in vitro and in vivo.Phytomedicine202210215419210.1016/j.phymed.2022.15419235636179
    [Google Scholar]
  75. ZengX. LiaoH. WangF. MicroRNA-384 inhibits nasopharyngeal carcinoma growth and metastasis via binding to Smad5 and suppressing the Wnt/β-catenin axis.Cytotechnology202173220321510.1007/s10616‑021‑00458‑333911345
    [Google Scholar]
  76. ZhaoW. MaN. WangS. MoY. ZhangZ. HuangG. MidorikawaK. HirakuY. OikawaS. MurataM. TakeuchiK. RERG suppresses cell proliferation, migration and angiogenesis through ERK/NF-κB signaling pathway in nasopharyngeal carcinoma.J. Exp. Clin. Cancer Res.20173618810.1186/s13046‑017‑0554‑928659184
    [Google Scholar]
  77. LiH. HuangH. ZhangT. FengH. WangS. ZhangY. JiX. ChengX. ZhaoR. Apatinib: A novel antiangiogenic drug in monotherapy or combination immunotherapy for digestive system malignancies.Front. Immunol.20221393730710.3389/fimmu.2022.93730735844616
    [Google Scholar]
  78. TangL.Q. LiX.Y. LiZ.M. LiuZ.G. LinM.Z. ZhouH. YuQ.W. ZhouJ. ZhaoC. ChenZ.B. WangX.C. PengJ.Y. ChenQ.Y. FangW.F. YangY.P. ZhangB. XiaL.P. HuP.L. HuW.H. LiY.J. MaiH.Q. CaiX.Y. The efficacy and safety of apatinib plus capecitabine in platinum-refractory metastatic and/or recurrent nasopharyngeal carcinoma: A prospective, phase II trial.BMC Med.20232119410.1186/s12916‑023‑02790‑136927541
    [Google Scholar]
  79. LuN. JiangY.F. XiaW.X. HuangY. XieC.M. XuC. YeY.F. LiuG.Y. BeiW.X. KeL.R. LiW.Z. ZhangC. WangX. LiuQ. ChenX. ChenZ.X. XieC. LiangH. XiangY.Q. Efficacy and safety of sintilimab plus bevacizumab in metastatic nasopharyngeal carcinoma after failure of platinum-based chemotherapy: An open-label phase 2 study.EClinical Medicine20236210213610.1016/j.eclinm.2023.10213637593221
    [Google Scholar]
  80. PengF. XuZ. WangJ. ChenY. LiQ. ZuoY. ChenJ. HuX. ZhouQ. WangY. MaH. BaoY. ChenM. ChenM. Recombinant human endostatin normalizes tumor vasculature and enhances radiation response in xenografted human nasopharyngeal carcinoma models.PLoS One201274e3464610.1371/journal.pone.003464622496834
    [Google Scholar]
  81. LooiC.K. FoongL.C. ChungF.F.L. KhooA.S.B. LooE.M. LeongC.O. MaiC.W. Targeting the crosstalk of epigenetic modifications and immune evasion in nasopharyngeal cancer.Cell Biol. Toxicol.20233962501252610.1007/s10565‑023‑09830‑937755585
    [Google Scholar]
  82. Elgui de OliveiraD. Müller-CoanB.G. PaganoJ.S. Viral carcinogenesis beyond malignant transformation: EBV in the progression of human cancers.Trends Microbiol.201624864966410.1016/j.tim.2016.03.00827068530
    [Google Scholar]
  83. AhmedN. AbusalahM.A.H.A. FarzandA. AbsarM. YusofN.Y. RabaanA.A. AlSaihatiH. AlshengetiA. AlwarthanS. AlsuwailemH.S. AlrumaihZ.A. AlsayyahA. YeanC.Y. Updates on epstein–barr virus (EBV)-associated nasopharyngeal carcinoma: Emphasis on the latent gene products of EBV.Medicina20225912
    [Google Scholar]
  84. DochiH. KondoS. KomuraS. Moriyama-KitaM. KomoriT. NanboA. SakaguchiM. FukuyoM. Hamabe-HoriikeT. TanakaM. MizokamiH. KanoM. KitagawaY. KobayashiE. HiraiN. UenoT. NakanishiY. EndoK. SugimotoH. HanayamaR. KanedaA. YoshizakiT. Peritumoral SPARC expression induced by exosomes from nasopharyngeal carcinoma infected Epstein-Barr virus: A poor prognostic marker.Int. J. Cancer2024154589591110.1002/ijc.3477737907830
    [Google Scholar]
  85. TsujiA. WakisakaN. KondoS. MuronoS. FurukawaM. YoshizakiT. Induction of receptor for advanced glycation end products by EBV latent membrane protein 1 and its correlation with angiogenesis and cervical lymph node metastasis in nasopharyngeal carcinoma.Clin. Cancer Res.200814175368537510.1158/1078‑0432.CCR‑08‑019818765528
    [Google Scholar]
  86. ZhuL. LamaS. TuL. DustingG.J. WangJ.H. LiuG.S. TAK1 signaling is a potential therapeutic target for pathological angiogenesis.Angiogenesis202124345347010.1007/s10456‑021‑09787‑533973075
    [Google Scholar]
  87. WangJ. JiangQ. FaletiO.D. TsangC.M. ZhaoM. WuG. TsaoS.W. FuM. ChenY. DingT. ChongT. LongY. YangX. ZhangY. CaiY. LiH. PengM. LyuX. LiX. Exosomal delivery of antagomirs targeting viral and cellular micrornas synergistically inhibits cancer angiogenesis.Mol. Ther. Nucleic Acids20202215316510.1016/j.omtn.2020.08.01732927364
    [Google Scholar]
  88. ChanK.C. KoJ.M.Y. LungH.L. SedlacekR. ZhangZ.F. LuoD.Z. FengZ.B. ChenS. ChenH. ChanK.W. TsaoS.W. ChuaD.T. ZabarovskyE.R. StanbridgeE.J. LungM.L. Catalytic activity of matrix metalloproteinase-19 is essential for tumor suppressor and anti-angiogenic activities in nasopharyngeal carcinoma.Int. J. Cancer201112981826183710.1002/ijc.2585521165953
    [Google Scholar]
  89. PapatsirouM. ArtemakiP.I. KarousiP. ScorilasA. KontosC.K. Circular RNAs: Emerging regulators of the major signaling pathways involved in cancer progression.Cancer20211311274410.3390/cancers1311274434205978
    [Google Scholar]
  90. ChanY.K. ZhangH. LiuP. TsaoS.W. LungM.L. MakN.K. Ngok-Shun WongR. Ying-Kit YueP. Proteomic analysis of exosomes from nasopharyngeal carcinoma cell identifies intercellular transfer of angiogenic proteins.Int. J. Cancer201513781830184110.1002/ijc.2956225857718
    [Google Scholar]
  91. WangJ. LiuY. ZhangY. LiX. FangM. QianD. Targeting exosomes enveloped EBV-miR-BART1-5p-antagomiRs for NPC therapy through both anti-vasculogenic mimicry and anti-angiogenesis.Cancer Med.20231211126081262110.1002/cam4.594137097161
    [Google Scholar]
  92. ZhangK. LiuD. ZhaoJ. ShiS. HeX. DaP. YouY. YouB. Nuclear exosome HMGB3 secreted by nasopharyngeal carcinoma cells promotes tumour metastasis by inducing angiogenesis.Cell Death Dis.202112655410.1038/s41419‑021‑03845‑y34050127
    [Google Scholar]
  93. ZhangC. ChenW. PanS. ZhangS. XieH. ZhangZ. LeiW. BaoL. YouY. SEVs-mediated miR-6750 transfer inhibits pre-metastatic niche formation in nasopharyngeal carcinoma by targeting M6PR.Cell Death Discov.202391210.1038/s41420‑022‑01262‑436609569
    [Google Scholar]
  94. LuoZ. DaiY. zhangL. JiangC. LiZ. YangJ. McCarthyJ.B. SheX. ZhangW. MaJ. XiongW. WuM. LuJ. LiX. LiX. XiangJ. LiG. miR-18a promotes malignant progression by impairing microRNA biogenesis in nasopharyngeal carcinoma.Carcinogenesis201334241542510.1093/carcin/bgs32923097559
    [Google Scholar]
  95. TangX.R. WenX. HeQ.M. LiY.Q. RenX.Y. YangX.J. ZhangJ. WangY.Q. MaJ. LiuN. MicroRNA-101 inhibits invasion and angiogenesis through targeting ITGA3 and its systemic delivery inhibits lung metastasis in nasopharyngeal carcinoma.Cell Death Dis.201781e256610.1038/cddis.2016.48628102841
    [Google Scholar]
  96. BaoL. YouB. ShiS. ShanY. ZhangQ. YueH. ZhangJ. ZhangW. ShiY. LiuY. WangX. LiuD. YouY. Metastasis-associated miR-23a from nasopharyngeal carcinoma-derived exosomes mediates angiogenesis by repressing a novel target gene TSGA10.Oncogene201837212873288910.1038/s41388‑018‑0183‑629520105
    [Google Scholar]
  97. GaoW. ChanJ.Y.W. WongT.S. Curcumin exerts inhibitory effects on undifferentiated nasopharyngeal carcinoma by inhibiting the expression of miR-125a-5p.Clin. Sci.2014127957157910.1042/CS2014001024896104
    [Google Scholar]
  98. LiD. LiX. FanG. BianG. Identification of the regulatory role of the circ_0004788/ miR -515-5p/ FGF2 network in nasopharyngeal carcinoma development.Head Neck20224471631164510.1002/hed.2706635460538
    [Google Scholar]
  99. WangJ. LinY. JiangD.H. YangX. HeX.G. CircRNA ZNF609 promotes angiogenesis in nasopharyngeal carcinoma by regulating miR -145/ STMN1 axis.Kaohsiung J. Med. Sci.202137868669810.1002/kjm2.1238133943007
    [Google Scholar]
  100. ChenX. WuG. QingJ. LiC. ChenX. ShenJ. LINC00240 knockdown inhibits nasopharyngeal carcinoma progress by targeting miR-26a-5p.J. Clin. Lab. Anal.2022365e2442410.1002/jcla.2442435421264
    [Google Scholar]
  101. CaoC. ZhouS. HuJ. Long noncoding RNA MAGI2-AS3/miR-218-5p/GDPD5/SEC61A1 axis drives cellular proliferation and migration and confers cisplatin resistance in nasopharyngeal carcinoma.Int. Forum Allergy Rhinol.20201081012102310.1002/alr.2256232450008
    [Google Scholar]
/content/journals/cmp/10.2174/0118761429290933240408071812
Loading
/content/journals/cmp/10.2174/0118761429290933240408071812
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test