Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702

Abstract

Background:

As people age, physical impairments may have a deleterious role on skeletal muscles. Sarcopenia Clinical Practice Guidelines 2017 and the European Working Group on Sarcopenia in older people are two organizations that have published essential guidelines on the definition of “Sarcopenia”. Sarcopenia is a geriatric syndrome, characterized by skeletal muscle mass degeneration brought on by ageing, which lowers muscular function and quality. Moreover, Sarcopenia can be classified as primary or age-associated Sarcopenia and secondary Sarcopenia. Also, secondary Sarcopenia occurs when other diseases such as diabetes, obesity, cancer, cirrhosis, myocardial failure, chronic obstructive pulmonary disease, and inflammatory bowel disease also contribute to muscle loss. Furthermore, Sarcopenia is linked with a high risk of negative outcomes, considering a gradual reduction in physical mobility, poor balance, and increased fracture risks which ultimately leads to poor quality of life.

Objective:

In this comprehensive review, we have elaborated on the pathophysiology, and various signaling pathways linked with Sarcopenia. Also, discussed the preclinical models and current interventional therapeutics to treat muscle wasting in older patients.

Conclusion:

In a nutshell, a comprehensive description of the pathophysiology, mechanisms, animal models, and interventions of Sarcopenia. We also shed light on pharmacotherapeutics present in clinical trials which are being developed as potential therapeutic options for wasting diseases. Thus, this review could fill in the knowledge gaps regarding Sarcopenia-related muscle loss and muscle quality for both researchers and clinicians.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmp/10.2174/1874467216666230308142137
2023-05-03
2025-01-23
Loading full text...

Full text loading...

/deliver/fulltext/cmp/17/1/e080323214478.html?itemId=/content/journals/cmp/10.2174/1874467216666230308142137&mimeType=html&fmt=ahah

References

  1. RosenbergI.H. Sarcopenia: Origins and clinical relevance.J. Nutr.1997127S5990S991S10.1093/jn/127.5.990S9164280
    [Google Scholar]
  2. DhillonR.J.S. HasniS. Pathogenesis and management of Sarcopenia.Clin. Geriatr. Med.2017331172610.1016/j.cger.2016.08.00227886695
    [Google Scholar]
  3. RahmanR. WilsonB.P. PaulT.V. YadavB. Kango GopalG. ViggeswarpuS. Prevalence and factors contributing to primary Sarcopenia in relatively healthy older Indians attending the outpatient department in a tertiary care hospital: A cross-sectional study.Aging Med.20214425726510.1002/agm2.1218634964006
    [Google Scholar]
  4. TherakomenV. PetchlorlianA. LakananurakN. Prevalence and risk factors of primary Sarcopenia in community-dwelling outpatient elderly: a cross-sectional study.Sci. Rep.20201011955110.1038/s41598‑020‑75250‑y33177536
    [Google Scholar]
  5. Cruz-JentoftA.J. BahatG. BauerJ. BoirieY. BruyèreO. CederholmT. CooperC. LandiF. RollandY. SayerA.A. SchneiderS.M. SieberC.C. TopinkovaE. VandewoudeM. VisserM. ZamboniM. BautmansI. BaeyensJ-P. CesariM. CherubiniA. KanisJ. MaggioM. MartinF. MichelJ-P. PitkalaK. ReginsterJ-Y. RizzoliR. Sánchez-RodríguezD. ScholsJ. Sarcopenia: Revised European consensus on definition and diagnosis.Age Ageing2019481163110.1093/ageing/afy16930312372
    [Google Scholar]
  6. LimW.S. CheongC.Y. LimJ.P. TanM.M.Y. ChiaJ.Q. MalikN.A. TayL. Singapore clinical practice guidelines for Sarcopenia: Screening, diagnosis, management and prevention.J. Frailty Aging202211434836910.14283/jfa.2022.5936346721
    [Google Scholar]
  7. BaiT. FangF. LiF. RenY. HuJ. CaoJ. Sarcopenia is associated with hypertension in older adults: A systematic review and meta-analysis.BMC Geriatr.202020127910.1186/s12877‑020‑01672‑y32762638
    [Google Scholar]
  8. ChungS.M. MoonJ.S. ChangM.C. Prevalence of Sarcopenia and its association with diabetes: A meta-analysis of community-dwelling Asian population.Front. Med.2021868123210.3389/fmed.2021.68123234095184
    [Google Scholar]
  9. LeeB. ChoY. KimJ.W. JeungH.C. LeeI.J. Prognostic significance of Sarcopenia in advanced biliary tract cancer patients.Front. Oncol.202010158110.3389/fonc.2020.0158132984018
    [Google Scholar]
  10. ChunH.S. LeeM. LeeH.A. OhS.Y. BaekH.J. MoonJ.W. Association of physical activity with risk of liver fibrosis, Sarcopenia, and cardiovascular disease in nonalcoholic fatty liver disease.Clin. Gastroenterol. Hepatol.2022S1542-3565(22)01111-910.1016/j.cgh.2022.11.03134998993
    [Google Scholar]
  11. DierkesJ. DahlH. Lervaag WellandN. SandnesK. SæleK. SekseI. MartiH-P. High rates of central obesity and Sarcopenia in CKD irrespective of renal replacement therapy – an observational cross-sectional study.BMC Nephrol.201819125910.1186/s12882‑018‑1055‑629304774
    [Google Scholar]
  12. BellafronteN.T. de QueirósM.O.A. ChiarelloP.G. Sarcopenic obesity in chronic kidney disease: Challenges in diagnosis using different diagnostic criteria.Med. Princ. Pract.202130547748610.1159/00051759733271569
    [Google Scholar]
  13. LeeD.Y. ShinS. Sarcopenia is associated with metabolic syndrome in korean adults aged over 50 years: A cross-sectional study.Int. J. Environ. Res. Public Health2022193133010.3390/ijerph1903133035162353
    [Google Scholar]
  14. BruyèreO. BeaudartC. EthgenO. ReginsterJ.Y. LocquetM. The health economics burden of Sarcopenia: A systematic review.Maturitas2019119616910.1016/j.maturitas.2018.11.00330502752
    [Google Scholar]
  15. DharM. KapoorN. SuastikaK. KhamsehM.E. SelimS. KumarV. RazaS.A. AzmatU. PathaniaM. Rai MahadebY.P. SinghalS. NaseriM.W. AryanaI.G.P.S. ThapaS.D. JacobJ. SomasundaramN. LatheefA. DhakalG.P. KalraS. South Asian Working Action Group on Sarcopenia (SWAG-SARCO) – A consensus document.Osteoporos. Sarcopenia202282355710.1016/j.afos.2022.04.00135832416
    [Google Scholar]
  16. FieldingR.A. VellasB. EvansW.J. BhasinS. MorleyJ.E. NewmanA.B. Abellan van KanG. AndrieuS. BauerJ. BreuilleD. CederholmT. ChandlerJ. De MeynardC. DoniniL. HarrisT. KanntA. Keime GuibertF. OnderG. PapanicolaouD. RollandY. RooksD. SieberC. SouhamiE. VerlaanS. ZamboniM. Sarcopenia: An undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on Sarcopenia.J. Am. Med. Dir. Assoc.201112424925610.1016/j.jamda.2011.01.00321527165
    [Google Scholar]
  17. LiC. YuK. Shyh-ChangN. JiangZ. LiuT. MaS. LuoL. GuangL. LiangK. MaW. MiaoH. CaoW. LiuR. JiangL. YuS. LiC. LiuH. XuL. LiuR. ZhangX. LiuG. Pathogenesis of Sarcopenia and the relationship with fat mass: descriptive review.J. Cachexia Sarcopenia Muscle202213278179410.1002/jcsm.1290135106971
    [Google Scholar]
  18. ZamboniM. GattazzoS. RossiA.P. Myosteatosis: A relevant, yet poorly explored element of Sarcopenia.Springer20195610.1007/s41999‑018‑0134‑3
    [Google Scholar]
  19. HeymsfieldS.B. GonzalezM.C. LuJ. JiaG. ZhengJ. Skeletal muscle mass and quality: Evolution of modern measurement concepts in the context of Sarcopenia.Proc. Nutr. Soc.201574435536610.1017/S002966511500012925851205
    [Google Scholar]
  20. ZiaaldiniM.M. MarzettiE. PiccaA. MurlasitsZ. Biochemical pathways of Sarcopenia and their modulation by physical exercise: a narrative review.Front. Med.2017416710.3389/fmed.2017.0016729046874
    [Google Scholar]
  21. SpeachtT.L. KrauseA.R. SteinerJ.L. LangC.H. DonahueH.J. Combination of hindlimb suspension and immobilization by casting exaggerates Sarcopenia by stimulating autophagy but does not worsen osteopenia.Bone2018110293710.1016/j.bone.2018.01.02629414598
    [Google Scholar]
  22. KoY.C. ChieW.C. WuT.Y. HoC.Y. YuW.R. A cross-sectional study about the relationship between physical activity and Sarcopenia in Taiwanese older adults.Sci. Rep.20211111148810.1038/s41598‑021‑90869‑134075104
    [Google Scholar]
  23. BauerJ.M. VerlaanS. BautmansI. BrandtK. DoniniL.M. MaggioM. McMurdoM.E.T. MetsT. SealC. WijersS.L. CedaG.P. De VitoG. DondersG. DreyM. GreigC. HolmbäckU. NariciM. McPheeJ. PoggiogalleE. PowerD. ScafoglieriA. SchultzR. SieberC.C. CederholmT. Effects of a vitamin D and leucine-enriched whey protein nutritional supplement on measures of Sarcopenia in older adults, the PROVIDE study: a randomized, double-blind, placebo-controlled trial.J. Am. Med. Dir. Assoc.201516974074710.1016/j.jamda.2015.05.02126170041
    [Google Scholar]
  24. FonsecaG.W.P.D. DworatzekE. EbnerN. Von HaehlingS. Selective androgen receptor modulators (SARMs) as pharmacological treatment for muscle wasting in ongoing clinical trials.Expert Opin. Investig. Drugs202029888189110.1080/13543784.2020.177727532476495
    [Google Scholar]
  25. LongD.E. PeckB.D. MartzJ.L. TuggleS.C. BushH.M. McGwinG. KernP.A. BammanM.M. PetersonC.A. Metformin to Augment Strength Training Effective Response in Seniors (MASTERS): Study protocol for a randomized controlled trial.Trials201718119210.1186/s13063‑017‑1932‑528441958
    [Google Scholar]
  26. AtaA.M. KaraM. EkizT. KaraÖ. CulhaM.A. RicciV. KoyuncuE.G. ÖzcanF. KaymakB. ÖzçakarL. Reassessing Sarcopenia in hypertension: STAR and ACE inhibitors excel.Int. J. Clin. Pract.2021753e1380010.1111/ijcp.1380033108697
    [Google Scholar]
  27. PannérecA. SpringerM. MigliavaccaE. IrelandA. PiaseckiM. KarazS. JacotG. MétaironS. DanenbergE. RaymondF. DescombesP. McPheeJ.S. FeigeJ.N. A robust neuromuscular system protects rat and human skeletal muscle from Sarcopenia.Aging20168471272810.18632/aging.10092627019136
    [Google Scholar]
  28. JangY.C. LustgartenM.S. LiuY. MullerF.L. BhattacharyaA. LiangH. SalmonA.B. BrooksS.V. LarkinL. HayworthC.R. RichardsonA. Van RemmenH. Increased superoxide in vivo accelerates age-associated muscle atrophy through mitochondrial dysfunction and neuromuscular junction degeneration.FASEB J.20102451376139010.1096/fj.09‑14630820040516
    [Google Scholar]
  29. CarnioS. LoVersoF. BaraibarM.A. LongaE. KhanM.M. MaffeiM. ReischlM. CanepariM. LoeflerS. KernH. BlaauwB. FriguetB. BottinelliR. RudolfR. SandriM. Autophagy impairment in muscle induces neuromuscular junction degeneration and precocious aging.Cell Rep.2014851509152110.1016/j.celrep.2014.07.06125176656
    [Google Scholar]
  30. GungorO. UluS. HasbalN.B. AnkerS.D. Kalantar-ZadehK. Effects of hormonal changes on Sarcopenia in chronic kidney disease: where are we now and what can we do?J. Cachexia Sarcopenia Muscle20211261380139210.1002/jcsm.1283934676694
    [Google Scholar]
  31. BianA. MaY. ZhouX. GuoY. WangW. ZhangY. WangX. Association between Sarcopenia and levels of growth hormone and insulin-like growth factor-1 in the elderly.BMC Musculoskelet. Disord.202021121410.1186/s12891‑020‑03236‑y32264885
    [Google Scholar]
  32. DelivanisD.A. Iñiguez-ArizaN.M. ZebM.H. MoynaghM.R. TakahashiN. McKenzieT.J. ThomasM.A. GogosC. YoungW.F. BancosI. KyriazopoulouV. Impact of hypercortisolism on skeletal muscle mass and adipose tissue mass in patients with adrenal adenomas.Clin. Endocrinol.201888220921610.1111/cen.1351229115003
    [Google Scholar]
  33. AscenziF. BarberiL. DobrowolnyG. Villa Nova BacurauA. NicolettiC. RizzutoE. RosenthalN. ScicchitanoB.M. MusaròA. Effects of IGF-1 isoforms on muscle growth and Sarcopenia.Aging Cell2019183e1295410.1111/acel.1295430953403
    [Google Scholar]
  34. UranoT. ShirakiM. KurodaT. TanakaS. UenishiK. InoueS. Preventive effects of raloxifene treatment on agerelated weight loss in postmenopausal women.J. Bone Miner. Metab.201735110811310.1007/s00774‑015‑0733‑826754796
    [Google Scholar]
  35. SaadF. RöhrigG. von HaehlingS. TraishA. Testosterone deficiency and testosterone treatment in older men.Gerontology201763214415610.1159/00045249927855417
    [Google Scholar]
  36. ChenM. WangY. DengS. LianZ. YuK. Skeletal muscle oxidative stress and inflammation in aging: Focus on antioxidant and anti-inflammatory therapy.Front. Cell Dev. Biol.20221096413010.3389/fcell.2022.96413036111339
    [Google Scholar]
  37. BianA.L. HuH.Y. RongY.D. WangJ. WangJ.X. ZhouX.Z. A study on relationship between elderly Sarcopenia and inflammatory factors IL-6 and TNF-α.Eur. J. Med. Res.20172212510.1186/s40001‑017‑0266‑928701179
    [Google Scholar]
  38. ÖztürkZ.A. KulS. Türkbeylerİ.H. SayınerZ.A. AbiyevA. Is increased neutrophil lymphocyte ratio remarking the inflammation in Sarcopenia?Exp. Gerontol.201811022322910.1016/j.exger.2018.06.01329928932
    [Google Scholar]
  39. YingL. ZhangQ. YangY. ZhouJ. A combination of serum biomarkers in elderly patients with Sarcopenia: A cross-sectional observational study.Int. J. Endocrinol.202220221710.1155/2022/402694035237317
    [Google Scholar]
  40. AsoudehF. DashtiF. RaeesiS. HeshmatR. BidkhoriM. JalilianZ. HashemiR. Inflammatory cytokines and Sarcopenia in Iranian adults-results from SARIR study.Sci. Rep.2022121547110.1038/s41598‑022‑09139‑335361818
    [Google Scholar]
  41. ChenY.Y. KaoT.W. ChiuY.L. PengT.C. YangH.F. ChenW.L. Association between interleukin-12 and Sarcopenia.J. Inflamm. Res.2021142019202910.2147/JIR.S31308534040414
    [Google Scholar]
  42. AoiW. Myokines: A potential key factor in development, treatment, and biomarker of Sarcopenia. Sarcopenia.Elsevier2021171185
    [Google Scholar]
  43. ParisM.T. BellK.E. MourtzakisM. Myokines and adipokines in Sarcopenia: understanding cross-talk between skeletal muscle and adipose tissue and the role of exercise.Curr. Opin. Pharmacol.202052616610.1016/j.coph.2020.06.00332668398
    [Google Scholar]
  44. LeeM.J. LeeS.A. NamB.Y. ParkS. LeeS.H. RyuH.J. KwonY.E. KimY.L. ParkK.S. OhH.J. ParkJ.T. HanS.H. RyuD.R. KangS.W. YooT.H. Irisin, a novel myokine is an independent predictor for Sarcopenia and carotid atherosclerosis in dialysis patients.Atherosclerosis2015242247648210.1016/j.atherosclerosis.2015.08.00226298738
    [Google Scholar]
  45. ParkH.S. KimH.C. ZhangD. YeomH. LimS.K. The novel myokine irisin: Clinical implications and potential role as a biomarker for Sarcopenia in postmenopausal women.Endocrine201964234134810.1007/s12020‑018‑1814‑y30570737
    [Google Scholar]
  46. KalinkovichA. LivshitsG. Sarcopenic obesity or obese Sarcopenia: A cross talk between age-associated adipose tissue and skeletal muscle inflammation as a main mechanism of the pathogenesis.Ageing Res. Rev.20173520022110.1016/j.arr.2016.09.00827702700
    [Google Scholar]
  47. Corona-MerazF.I. Vázquez-Del MercadoM. OrtegaF.J. Ruiz-QuezadaS.L. Guzmán-OrnelasM.O. Navarro-HernándezR.E. Ageing influences the relationship of circulating miR-33a and miR - 33b levels with insulin resistance and adiposity.Diab. Vasc. Dis. Res.201916324425310.1177/147916411881665930537863
    [Google Scholar]
  48. Correa-de-AraujoR. AddisonO. MiljkovicI. GoodpasterB.H. BergmanB.C. ClarkR.V. ElenaJ.W. EsserK.A. FerrucciL. Harris-LoveM.O. KritchevskyS.B. LorbergsA. ShepherdJ.A. ShulmanG.I. RosenC.J. Myosteatosis in the context of skeletal muscle function deficit: an interdisciplinary workshop at the national institute on aging.Front. Physiol.20201196310.3389/fphys.2020.0096332903666
    [Google Scholar]
  49. LortieJ. RushB. OsterbauerK. ColganT. TamadaD. GarlapatiS. Myosteatosis as a shared biomarker for Sarcopenia and cachexia using MRI and ultrasound.Frontiers in Rehabilitation Sciences.2022310.1016/j.archger.2013.06.001
    [Google Scholar]
  50. MeisterF.A. LurjeG. VerhoevenS. WiltbergerG. HeijL. LiuW.J. JiangD. BrunersP. LangS.A. UlmerT.F. NeumannU.P. BednarschJ. CziganyZ. The role of Sarcopenia and myosteatosis in short- and long-term outcomes following curative-intent surgery for hepatocellular carcinoma in a european cohort.Cancers202214372010.3390/cancers1403072035158988
    [Google Scholar]
  51. ZoicoE. CorzatoF. BambaceC. RossiA.P. MiccioloR. CintiS. HarrisT.B. ZamboniM. Myosteatosis and myofibrosis: Relationship with aging, inflammation and insulin resistance.Arch. Gerontol. Geriatr.201357341141610.1016/j.archger.2013.06.00123809667
    [Google Scholar]
  52. SnijdersT. PariseG. Role of muscle stem cells in Sarcopenia.Curr. Opin. Clin. Nutr. Metab. Care201720318619010.1097/MCO.000000000000036028376051
    [Google Scholar]
  53. GuoY. NiuK. OkazakiT. WuH. YoshikawaT. OhruiT. FurukawaK. IchinoseM. YanaiK. AraiH. HuangG. NagatomiR. Coffee treatment prevents the progression of Sarcopenia in aged mice in vivo and in vitro. Exp. Gerontol.2014501810.1016/j.exger.2013.11.00524269808
    [Google Scholar]
  54. AbreuP. KowaltowskiA.J. Satellite cell self-renewal in endurance exercise is mediated by inhibition of mitochondrial oxygen consumption.J. Cachexia Sarcopenia Muscle20201161661167610.1002/jcsm.1260132748470
    [Google Scholar]
  55. Fernández-LázaroD. GarrosaE. Seco-CalvoJ. GarrosaM. Potential satellite cell-linked biomarkers in aging skeletal muscle tissue: Proteomics and proteogenomics to monitor sarcopenia.Proteomes20221032910.3390/proteomes1003002935997441
    [Google Scholar]
  56. BudaiZ. BaloghL. SarangZ. Altered gene expression of muscle satellite cells contributes to age-related Sarcopenia in mice.Curr. Aging Sci.201911316517210.2174/187460981166618092510424130251615
    [Google Scholar]
  57. HarperC. GopalanV. GohJ. Exercise rescues mitochondrial coupling in aged skeletal muscle: A comparison of different modalities in preventing Sarcopenia.J. Transl. Med.20211917110.1186/s12967‑021‑02737‑133593349
    [Google Scholar]
  58. KitaokaY. TamuraY. TakahashiK. TakedaK. TakemasaT. HattaH. Effects of Nrf2 deficiency on mitochondrial oxidative stress in aged skeletal muscle.Physiol. Rep.201973e1399810.14814/phy2.1399830756520
    [Google Scholar]
  59. MigliavaccaE. TayS.K.H. PatelH.P. SonntagT. CivilettoG. McFarlaneC. ForresterT. BartonS.J. LeowM.K. AntounE. CharpagneA. Seng ChongY. DescombesP. FengL. Francis-EmmanuelP. GarrattE.S. GinerM.P. GreenC.O. KarazS. KothandaramanN. MarquisJ. MetaironS. MocoS. NelsonG. NgoS. PleasantsT. RaymondF. SayerA.A. Ming SimC. Slater-JefferiesJ. SyddallH.E. Fang TanP. TitcombeP. VazC. WestburyL.D. WongG. YonghuiW. CooperC. SheppardA. GodfreyK.M. LillycropK.A. KarnaniN. FeigeJ.N. Mitochondrial oxidative capacity and NAD+ biosynthesis are reduced in human Sarcopenia across ethnicities.Nat. Commun.2019101580810.1038/s41467‑019‑13694‑131862890
    [Google Scholar]
  60. SembaR.D. MoaddelR. ZhangP. RamsdenC.E. FerrucciL. Tetra-linoleoyl cardiolipin depletion plays a major role in the pathogenesis of Sarcopenia.Med. Hypotheses201912714214910.1016/j.mehy.2019.04.01531088638
    [Google Scholar]
  61. VincentA.E. GradyJ.P. RochaM.C. AlstonC.L. RygielK.A. BarresiR. TaylorR.W. TurnbullD.M. Mitochondrial dysfunction in myofibrillar myopathy.Neuromuscul. Disord.2016261069170110.1016/j.nmd.2016.08.00427618136
    [Google Scholar]
  62. IsanejadA. SamadiA. AminiH. AminiH. The effect of resistance training with theraband on the transforming growth factor-β in the elderly women.Immunoregulation201812818610.32598/IMMUNOREGULATION.1.2.75
    [Google Scholar]
  63. LiuH.W. ChangS.J. Moderate exercise suppresses NF-κB signaling and activates the SIRT1-AMPK-PGC1α Axis to attenuate muscle loss in diabetic db/db mice.Front. Physiol.2018963610.3389/fphys.2018.0063629896118
    [Google Scholar]
  64. ShangG.K. HanL. WangZ.H. LiuY.P. YanS.B. SaiW.W. WangD. LiY.H. ZhangW. ZhongM. Sarcopenia is attenuated by TRB3 knockout in aging mice via the alleviation of atrophy and fibrosis of skeletal muscles.J. Cachexia Sarcopenia Muscle20201141104112010.1002/jcsm.1256032096609
    [Google Scholar]
  65. LiT.C. WuC.W. LiC.I. WuF.Y. LiaoL.N. LiuC.S. LinC.H. WangM.C. YangC.W. LinC.C. Interactions among IGF-1, AKT2, FOXO1, and FOXO3 variations and between genes and physical activities on physical performance in community-dwelling elders.PLoS One2020159e023953010.1371/journal.pone.023953032986769
    [Google Scholar]
  66. ReggioA. RosinaM. PalmaA. Cerquone PerpetuiniA. PetrilliL.L. GargioliC. FuocoC. MicarelliE. GiulianiG. CerretaniM. BrescianiA. SaccoF. CastagnoliL. CesareniG. Adipogenesis of skeletal muscle fibro/adipogenic progenitors is affected by the WNT5a/GSK3/β-catenin axis.Cell Death Differ.202027102921294110.1038/s41418‑020‑0551‑y32382110
    [Google Scholar]
  67. BarclayR.D. BurdN.A. TylerC. TillinN.A. MackenzieR.W. The role of the IGF-1 signaling cascade in muscle protein synthesis and anabolic resistance in aging skeletal muscle.Front. Nutr.2019614610.3389/fnut.2019.0014631552262
    [Google Scholar]
  68. ShangY. KuangM. WangZ. HuangY. LiuL. ZhaoX. ZhangR. ZhaoY. PengR. SunS. YangQ. YangZ. An ultrashort peptide-based supramolecular hydrogel mimicking IGF-1 to alleviate glucocorticoid-induced Sarcopenia.ACS Appl. Mater. Interfaces20201231346783468810.1021/acsami.0c0997332668906
    [Google Scholar]
  69. HuangL. LiM. DengC. QiuJ. WangK. ChangM. ZhouS. GuY. ShenY. WangW. HuangZ. SunH. Potential therapeutic strategies for skeletal muscle atrophy.Antioxidants20221214410.3390/antiox1201004436670909
    [Google Scholar]
  70. SungB. HwangS.Y. KimM.J. KimM. JeongJ.W. KimC.M. ChungH.Y. KimN.D. Loquat leaf extract enhances myogenic differentiation, improves muscle function and attenuates muscle loss in aged rats.Int. J. Mol. Med.201536379280010.3892/ijmm.2015.228626178971
    [Google Scholar]
  71. MøllerA.B. VendelboM.H. SchjerlingP. CouppéC. MøllerN. KjærM. HansenM. JessenN. Immobilization decreases FOXO3a phosphorylation and increases autophagy-related gene and protein expression in human skeletal muscle.Front. Physiol.20191073610.3389/fphys.2019.0073631258486
    [Google Scholar]
  72. MilanG. RomanelloV. PescatoreF. ArmaniA. PaikJ.H. FrassonL. SeydelA. ZhaoJ. AbrahamR. GoldbergA.L. BlaauwB. DePinhoR.A. SandriM. Regulation of autophagy and the ubiquitin–proteasome system by the FoxO transcriptional network during muscle atrophy.Nat. Commun.201561667010.1038/ncomms767025858807
    [Google Scholar]
  73. HiroseY. OnishiT. MiuraS. HatazawaY. KameiY. Vitamin D attenuates FOXO1-target atrophy gene expression in C2C12 muscle cells.J. Nutr. Sci. Vitaminol.201864322923210.3177/jnsv.64.22929962435
    [Google Scholar]
  74. FanJ. YangX. LiJ. ShuZ. DaiJ. LiuX. LiB. JiaS. KouX. YangY. ChenN. Spermidine coupled with exercise rescues skeletal muscle atrophy from D-gal-induced aging rats through enhanced autophagy and reduced apoptosis via AMPK-FOXO3a signal pathway.Oncotarget2017811174751749010.18632/oncotarget.1572828407698
    [Google Scholar]
  75. SonY.H. JangE.J. KimY.W. LeeJ.H. Sulforaphane prevents dexamethasone-induced muscle atrophy via regulation of the Akt/Foxo1 axis in C2C12 myotubes.Biomed. Pharmacother.2017951486149210.1016/j.biopha.2017.09.00228946211
    [Google Scholar]
  76. DowlingL. DusejaA. VilacaT. WalshJ.S. Goljanek-WhysallK. MicroRNAs in obesity, Sarcopenia, and commonalities for sarcopenic obesity: a systematic review.J. Cachexia Sarcopenia Muscle2022131688510.1002/jcsm.1287834984856
    [Google Scholar]
  77. JangY.J. SonH.J. KimJ.S. JungC.H. AhnJ. HurJ. HaT.Y. Coffee consumption promotes skeletal muscle hypertrophy and myoblast differentiation.Food Funct.2018921102111110.1039/C7FO01683B29359224
    [Google Scholar]
  78. HanX. MøllerL.L.V. De GrooteE. Bojsen-MøllerK.N. DaveyJ. Henríquez-OlguinC. LiZ. KnudsenJ.R. JensenT.E. MadsbadS. GregorevicP. RichterE.A. SylowL. Mechanisms involved in follistatin-induced hypertrophy and increased insulin action in skeletal muscle.J. Cachexia Sarcopenia Muscle20191061241125710.1002/jcsm.1247431402604
    [Google Scholar]
  79. LeeK.P. ShinY.J. KwonK.S. microRNA for determining the age-related myogenic capabilities of skeletal muscle.BMB Rep.2015481159559610.5483/BMBRep.2015.48.11.21126521942
    [Google Scholar]
  80. WengS. GaoF. WangJ. LiX. ChuB. WangJ. YangG. Improvement of muscular atrophy by AAV–SaCas9-mediated myostatin gene editing in aged mice.Cancer Gene Ther.2020271296097510.1038/s41417‑020‑0178‑732398787
    [Google Scholar]
  81. ParentéA. BoukredineA. BaraigeF. DupratN. Gondran-TellierV. MagnolL. BlanquetV. GASP-2 overexpressing mice exhibit a hypermuscular phenotype with contrasting molecular effects compared to GASP-1 transgenics.FASEB J.20203434026404010.1096/fj.201901220R31960486
    [Google Scholar]
  82. OwenED PollockN JacksonMJ VasilakiA McArdleA Characterisation of NF-Kappa Beta activation in regenerating fibres of old mice.FASEB J201832907.5510.1096/fasebj.2018.32.1_supplement.907.5
    [Google Scholar]
  83. LiuH.W. ChenY.J. ChangY.C. ChangS.J. Oligonol, a low-molecular weight polyphenol derived from lychee, alleviates muscle loss in diabetes by suppressing Atrogin-1 and MuRF1.Nutrients201799104010.3390/nu909104028930190
    [Google Scholar]
  84. ZhangN. ValentineJ.M. ZhouY. LiM.E. ZhangY. BhattacharyaA. WalshM.E. FischerK.E. AustadS.N. OsmulskiP. GaczynskaM. ShoelsonS.E. Van RemmenH. ChenH.I. ChenY. LiangH. MusiN. Sustained NFκB inhibition improves insulin sensitivity but is detrimental to muscle health.Aging Cell201716484785810.1111/acel.1261328556540
    [Google Scholar]
  85. OhJ. SinhaI. TanK.Y. RosnerB. DreyfussJ.M. GjataO. TranP. ShoelsonS.E. WagersA.J. Age-associated NF-κB signaling in myofibers alters the satellite cell niche and re-strains muscle stem cell function.Aging20168112871289610.18632/aging.10109827852976
    [Google Scholar]
  86. TomidaT Adachi-AkahaneS. Roles of p38 MAPK signaling in the skeletal muscle formation, regeneration, and pathology.Nihon Yakurigaku Zasshi2020155424124710.1254/fpj20030
    [Google Scholar]
  87. LeeH. TuongL.T. JeongJ.H. LeeS.J. BaeG.U. RyuJ.H. Isoquinoline alkaloids from Coptis japonica stimulate the myoblast differentiation via p38 MAP-kinase and Akt signaling pathway.Bioorg. Med. Chem. Lett.20172761401140410.1016/j.bmcl.2017.02.00328228365
    [Google Scholar]
  88. KinoshitaH. OritaS. InageK. YamauchiK. AbeK. InoueM. NorimotoM. UmimuraT. EguchiY. FujimotoK. ShigaY. KanamotoH. AokiY. FuruyaT. SuzukiM. AkazawaT. TakahashiK. OhtoriS. Skeletal muscle cell oxidative stress as a possible therapeutic target in a denervation-induced experimental sarcopenic model.Spine2019448E446E45510.1097/BRS.000000000000289130299418
    [Google Scholar]
  89. YuasaK. OkuboK. YodaM. OtsuK. IshiiY. NakamuraM. ItohY. HoriuchiK. Targeted ablation of p38α MAPK suppresses denervation-induced muscle atrophy.Sci. Rep.201881903710.1038/s41598‑018‑26632‑w29311619
    [Google Scholar]
  90. DingH. ZhangG. SinK.W.T. LiuZ. LinR.K. LiM. LiY.P. Activin A induces skeletal muscle catabolism via p38β mitogen-activated protein kinase.J. Cachexia Sarcopenia Muscle20178220221210.1002/jcsm.1214527897407
    [Google Scholar]
  91. ZhengY. KongJ. LiQ. WangY. LiJ. Role of miRNAs in skeletal muscle aging.Clin. Interv. Aging2018132407241910.2147/CIA.S16920230538437
    [Google Scholar]
  92. LiuS. GaoF. WenL. OuyangM. WangY. WangQ. LuoL. JianZ. Osteocalcin induces proliferation via positive activation of the PI3K/Akt, P38 MAPK pathways and promotes differentiation through activation of the GPRC6A-ERK1/2 pathway in C2C12 myoblast cells.Cell. Physiol. Biochem.20174331100111210.1159/00048175228977794
    [Google Scholar]
  93. AckersI. MalgorR. Interrelationship of canonical and non-canonical Wnt signalling pathways in chronic metabolic diseases.Diab. Vasc. Dis. Res.201815131310.1177/147916411773844229113510
    [Google Scholar]
  94. NusseR. CleversH. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities.Cell2017169698599910.1016/j.cell.2017.05.01628575679
    [Google Scholar]
  95. MumfordP.W. RomeroM.A. MaoX. MobleyC.B. KephartW.C. HaunC.T. RobersonP.A. YoungK.C. MartinJ.S. YarrowJ.F. BeckD.T. RobertsM.D. Cross talk between androgen and Wnt signaling potentially contributes to age-related skeletal muscle atrophy in rats.J. Appl. Physiol.2018125248649410.1152/japplphysiol.00768.201729722624
    [Google Scholar]
  96. LiuS. LiuH. LiuY. ZhangJ. LiuZ. ZhengZ. LuoE. Adiponectin receptors activation performs dual effects on regulating myogenesis and adipogenesis of young and aged muscle satellite cells.Cell Prolif.2022e13370e1337010.1111/cpr.1337036484401
    [Google Scholar]
  97. LukjanenkoL KarazS StuelsatzP Gurriaran-RodriguezU MichaudJ DammoneG Aging disrupts muscle stem cell function by impairing matricellular WISP1 secretion from fibro-adipogenic progenitors.Cell stem cell.201924343346.e710.1016/j.stem.2018.12.014
    [Google Scholar]
  98. YoshidaN. EndoJ. KinouchiK. KitakataH. MoriyamaH. KataokaM. YamamotoT. ShirakawaK. MorimotoS. NishiyamaA. HashiguchiA. HiguchiI. FukudaK. IchiharaA. SanoM. (Pro)renin receptor accelerates development of Sarcopenia via activation of Wnt/YAP signaling axis.Aging Cell2019185e1299110.1111/acel.1299131282603
    [Google Scholar]
  99. GilbertM.J.H. ZerullaT.C. TierneyK.B. Zebrafish (Danio rerio) as a model for the study of aging and exercise: Physical ability and trainability decrease with age.Exp. Gerontol.20145010611310.1016/j.exger.2013.11.01324316042
    [Google Scholar]
  100. FellnerC. SchickF. KobR. HechtlC. VorbuchnerM. BüttnerR. HamerO.W. SieberC.C. StroszczynskiC. BollheimerL.C. Diet-induced and age-related changes in the quadriceps muscle: MRI and MRS in a rat model of Sarcopenia.Gerontology201460653053810.1159/00036028924924578
    [Google Scholar]
  101. TardifN. SallesJ. GuilletC. TordjmanJ. ReggioS. LandrierJ.F. GiraudetC. PatracV. Bertrand-MichelJ. MigneC. CollinM.L. ChardignyJ.M. BoirieY. WalrandS. Muscle ectopic fat deposition contributes to anabolic resistance in obese sarcopenic old rats through e IF 2α activation.Aging Cell20141361001101110.1111/acel.1226325139155
    [Google Scholar]
  102. KungT.A. CedernaP.S. van der MeulenJ.H. UrbanchekM.G. KuzonW.M.Jr FaulknerJ.A. Motor unit changes seen with skeletal muscle Sarcopenia in oldest old rats.J. Gerontol. A Biol. Sci. Med. Sci.201469665766510.1093/gerona/glt13524077596
    [Google Scholar]
  103. KobR. FellnerC. BertschT. WittmannA. MishuraD. SieberC.C. FischerB.E. StroszczynskiC. BollheimerC.L. Gender-specific differences in the development of Sarcopenia in the rodent model of the ageing high-fat rat.J. Cachexia Sarcopenia Muscle20156218119110.1002/jcsm.1201926136194
    [Google Scholar]
  104. GatineauE. Savary-AuzelouxI. MignéC. PolakofS. DardevetD. MosoniL. Chronic intake of sucrose accelerates Sarcopenia in older male rats through alterations in insulin sensitivity and muscle protein synthesis.J. Nutr.2015145592393010.3945/jn.114.20558325809681
    [Google Scholar]
  105. FryC.S. LeeJ.D. MulaJ. KirbyT.J. JacksonJ.R. LiuF. YangL. MendiasC.L. Dupont-VersteegdenE.E. McCarthyJ.J. PetersonC.A. Inducible depletion of satellite cells in adult, sedentary mice impairs muscle regenerative capacity without affecting Sarcopenia.Nat. Med.2015211768010.1038/nm.371025501907
    [Google Scholar]
  106. LiuW. KloseA. FormanS. ParisN.D. Wei-LaPierreL. Cortés-LopézM. TanA. FlahertyM. MiuraP. DirksenR.T. ChakkalakalJ.V. Loss of adult skeletal muscle stem cells drives age-related neuromuscular junction degeneration.eLife20176e2646410.7554/eLife.2646428583253
    [Google Scholar]
  107. ChoiR.H. McConahayA. JeongH.W. McClellanJ.L. HardeeJ.P. CarsonJ.A. HirshmanM.F. GoodyearL.J. KohH.J. Tribbles 3 regulates protein turnover in mouse skeletal muscle.Biochem. Biophys. Res. Commun.201749331236124210.1016/j.bbrc.2017.09.13428962861
    [Google Scholar]
  108. TakayamaK. KawakamiY. LavasaniM. MuX. CumminsJ.H. YurubeT. KurodaR. KurosakaM. FuF.H. RobbinsP.D. NiedernhoferL.J. HuardJ. mTOR signaling plays a critical role in the defects observed in muscle-derived stem/progenitor cells isolated from a murine model of accelerated aging.J. Orthop. Res.20173571375138210.1002/jor.2340927572850
    [Google Scholar]
  109. SeldeenKL LaskyG LeikerMM PangM PersoniusKE TroenBR High intensity interval training improves physical performance and frailty in aged mice.J. Gerontol.201873442943710.1093/gerona/glx120
    [Google Scholar]
  110. OnishiS. IshinoM. KitazawaH. YotoA. ShimbaY. MochizukiY. UnnoK. MeguroS. TokimitsuI. MiuraS. Green tea extracts ameliorate high-fat diet–induced muscle atrophy in senescence-accelerated mouse prone-8 mice.PLoS One2018134e019575310.1371/journal.pone.019575329630667
    [Google Scholar]
  111. ZhaoJ. TianZ. KadomatsuT. XieP. MiyataK. SugizakiT. EndoM. ZhuS. FanH. HoriguchiH. MorinagaJ. TeradaK. YoshizawaT. YamagataK. OikeY. Age-dependent increase in angiopoietin-like protein 2 accelerates skeletal muscle loss in mice.J. Biol. Chem.201829351596160910.1074/jbc.M117.81499629191837
    [Google Scholar]
  112. SayedRK Fernández-OrtizM Diaz-CasadoME Aranda-MartínezP Fernández-MartínezJ Guerra-LibreroA Lack of NLRP3 inflammasome activation reduces age-dependent Sarcopenia and mitochondrial dysfunction, favoring the prophylactic effect of melatonin.J Gerontol A Biol Sci Med Sci201974111699170810.1093/gerona/glz079
    [Google Scholar]
  113. TakigawaK. MatsudaR. UchitomiR. OnishiT. HatazawaY. KameiY. Effects of long-term physical exercise on skeletal muscles in senescence-accelerated mice (SAMP8).Biosci. Biotechnol. Biochem.201983351852410.1080/09168451.2018.154762530537907
    [Google Scholar]
  114. JosephG.A. WangS.X. JacobsC.E. ZhouW. KimbleG.C. TseH.W. EashJ.K. ShavlakadzeT. GlassD.J. Partial inhibition of mTORC1 in aged rats counteracts the decline in muscle mass and reverses molecular signaling associated with Sarcopenia.Mol. Cell. Biol.20193919e00141-1910.1128/MCB.00141‑1931308131
    [Google Scholar]
  115. HuangD.D. FanS.D. ChenX.Y. YanX.L. ZhangX.Z. MaB.W. YuD.Y. XiaoW.Y. ZhuangC.L. YuZ. Nrf2 deficiency exacerbates frailty and Sarcopenia by impairing skeletal muscle mitochondrial biogenesis and dynamics in an age-dependent manner.Exp. Gerontol.2019119617310.1016/j.exger.2019.01.02230690066
    [Google Scholar]
  116. Hernández-ÁlvarezD. Mena-MontesB. Toledo-PérezR. Pedraza-VázquezG. López-CervantesS.P. Morales-SalazarA. Hernández-CruzE. Lazzarini-LechugaR. Vázquez-CárdenasR.R. Vilchis-DeLaRosaS. Posadas-RodríguezP. Santín-MárquezR. Rosas-CarrascoO. Ibañez-ContrerasA. Alarcón-AguilarA. López-DíazguerreroN.E. Luna-LópezA. KönigsbergM. Long-term moderate exercise combined with metformin treatment induces an hormetic response that prevents strength and muscle mass loss in old female wistar rats.Oxid. Med. Cell. Longev.2019201911410.1155/2019/342854331814870
    [Google Scholar]
  117. ChoiR.H. McConahayA. SilvestreJ.G. MoriscotA.S. CarsonJ.A. KohH.J. TRB3 regulates skeletal muscle mass in food deprivation–induced atrophy.FASEB J.20193345654566610.1096/fj.201802145RR30681896
    [Google Scholar]
  118. ChenL.H. HuangS.Y. HuangK.C. HsuC.C. YangK.C. LiL.A. ChanC.H. HuangH.Y. Lactobacillus paracasei PS23 decelerated age-related muscle loss by ensuring mitochondrial function in SAMP8 mice.Aging (Albany NY)201911275677010.18632/aging.10178230696799
    [Google Scholar]
  119. Delrio-LorenzoA. Rojo-RuizJ. AlonsoM.T. García-SanchoJ. Sarcoplasmic reticulum Ca2+ decreases with age and correlates with the decline in muscle function in Drosophila.J. Cell Sci.20201336jcs.24087910.1242/jcs.24087932005702
    [Google Scholar]
  120. LiJ. YiX. YaoZ. ChakkalakalJ.V. XingL. BoyceB.F. TNF receptor-associated factor 6 mediates TNFα-induced skeletal muscle atrophy in mice during aging.J. Bone Miner. Res.20203581535154810.1002/jbmr.402132267572
    [Google Scholar]
  121. ChenQ.N. FanZ. LyuA.K. WuJ. GuoA. YangY.F. ChenJ.L. XiaoQ. Effect of sarcolipin-mediated cell transdifferentiation in Sarcopenia-associated skeletal muscle fibrosis.Exp. Cell Res.2020389111189010.1016/j.yexcr.2020.11189032035132
    [Google Scholar]
  122. AokiK. KonnoM. HondaK. AbeT. NagataT. TakeharaM. SugasawaT. TakekoshiK. OhmoriH. Habitual aerobic exercise diminishes the effects of Sarcopenia in senescence-accelerated mice Prone8 model.Geriatrics (Basel)2020534810.3390/geriatrics503004832916898
    [Google Scholar]
  123. GraberTG MarotoR FryCS BrightwellCR RasmussenBB Measuring exercise capacity and physical function in adult and older mice.J. Gerontol. A Biol. Sci. Med. Sci.202176581982410.1093/gerona/glaa205
    [Google Scholar]
  124. PalusS. SpringerJ.I. DoehnerW. von HaehlingS. AnkerM. AnkerS.D. SpringerJ. Models of Sarcopenia: Short review.Int. J. Cardiol.2017238192110.1016/j.ijcard.2017.03.15228465116
    [Google Scholar]
  125. Morey-HoltonE. GlobusR.K. KaplanskyA. DurnovaG. The hindlimb unloading rat model: literature overview, technique update and comparison with space flight data.Adv. Space Biol. Med.20051074010.1016/S1569‑2574(05)10002‑116101103
    [Google Scholar]
  126. LawlerJ. SongW. DemareeS.R. Hindlimb unloading increases oxidative stress and disrupts antioxidant capacity in skeletal muscle.Free Radic. Biol. Med.200335191610.1016/S0891‑5849(03)00186‑212826251
    [Google Scholar]
  127. OliveiraJ.R.S. MohamedJ.S. MyersM.J. BrooksM.J. AlwayS.E. Effects of hindlimb suspension and reloading on gastrocnemius and soleus muscle mass and function in geriatric mice.Exp. Gerontol.2019115193110.1016/j.exger.2018.11.01130448397
    [Google Scholar]
  128. HuangW. ChenC. LiuX. Hindlimb suspension-induced cell apoptosis in the posterior parietal cortex and lateral geniculate nucleus: corresponding changes in c-Fos protein and the PI3K/Akt signaling pathway.Acta Neurobiol. Exp. (Warsz.)2018783220230Available from: https://pubmed.ncbi.element.nih.gov/30295679/ 10.21307/ane‑2018‑02030295679
    [Google Scholar]
  129. MortreuxM. RiverosD. BouxseinM.L. RutkoveS.B. Mimicking a space mission to mars using hindlimb unloading and partial weight bearing in rats.J. Vis. Exp.20194146e5932710.3791/59327‑v31009001
    [Google Scholar]
  130. Bar-ShaiM. CarmeliE. ColemanR. RozenN. PerekS. FuchsD. ReznickA.Z. The effect of hindlimb immobilization on acid phosphatase, metalloproteinases and nuclear factor-κB in muscles of young and old rats.Mech. Ageing Dev.2005126228929710.1016/j.mad.2004.08.03015621209
    [Google Scholar]
  131. BurksTN Andres-MateosE MarxR MejiasR Van ErpC SimmersJL Losartan restores skeletal muscle remodeling and protects against disuse atrophy in Sarcopenia.Sci Transl Med201138282ra3782ra3710.1126/scitranslmed.3002227
    [Google Scholar]
  132. CaronA.Z. DrouinG. DesrosiersJ. TrenszF. GrenierG. A novel hindlimb immobilization procedure for studying skeletal muscle atrophy and recovery in mouse.J. Appl. Physiol.200910662049205910.1152/japplphysiol.91505.200819342435
    [Google Scholar]
  133. BaptistaI.L. SilvaW.J. ArtioliG.G. GuilhermeJ.P.L.F. LealM.L. AokiM.S. MiyabaraE.H. MoriscotA.S. Leucine and HMB differentially modulate proteasome system in skeletal muscle under different sarcopenic conditions.PLoS One2013810e7675210.1371/journal.pone.007675224124592
    [Google Scholar]
  134. RomanickM. ThompsonL.V. Brown-BorgH.M. Murine models of atrophy, cachexia, and Sarcopenia in skeletal muscle.Biochim. Biophys. Acta Mol. Basis Dis.2013183291410142010.1016/j.bbadis.2013.03.01123523469
    [Google Scholar]
  135. MankhongS. KimS. MoonS. KwakH.B. ParkD.H. KangJ.H. Experimental models of Sarcopenia: bridging molecular mechanism and therapeutic strategy.Cells202096138510.3390/cells906138532498474
    [Google Scholar]
  136. BriocheT. PaganoA.F. PyG. ChopardA. Muscle wasting and aging: Experimental models, fatty infiltrations, and prevention.Mol. Aspects Med.201650568710.1016/j.mam.2016.04.00627106402
    [Google Scholar]
  137. DayaA. DonakaR. KarasikD. Zebrafish models of Sarcopenia.Dis. Model. Mech.2020133dmm04268910.1242/dmm.04268932298234
    [Google Scholar]
  138. TournadreA. VialG. CapelF. SoubrierM. BoirieY. Sarcopenia.Joint Bone Spine201986330931410.1016/j.jbspin.2018.08.00130098424
    [Google Scholar]
  139. HuangY. ZhuX. ChenK. LangH. ZhangY. HouP. RanL. ZhouM. ZhengJ. YiL. MiM. ZhangQ. Resveratrol prevents sarcopenic obesity by reversing mitochondrial dysfunction and oxidative stress via the PKA/LKB1/AMPK pathway.Aging (Albany NY)20191182217224010.18632/aging.10191030988232
    [Google Scholar]
  140. JinH. OhH.J. NahS.Y. LeeB.Y. Gintonin-enriched fraction protects against sarcopenic obesity by promoting energy expenditure and attenuating skeletal muscle atrophy in high-fat diet-fed mice.J. Ginseng Res.202246345446310.1016/j.jgr.2021.10.00335600770
    [Google Scholar]
  141. ShinJ.E. JeonS.H. LeeS.J. ChoungS.Y. The Administration of Panax Ginseng Berry Extract Attenuates High-Fat-Diet-Induced Sarcopenic Obesity in C57BL/6 Mice.Nutrients2022149174710.3390/nu1409174735565712
    [Google Scholar]
  142. ChristianC.J. BenianG.M. Animal models of Sarcopenia.Aging Cell20201910e1322310.1111/acel.1322332857472
    [Google Scholar]
  143. JinH. YooH.J. KimY.A. LeeJ.H. LeeY. KwonS. SeoY.J. LeeS.H. KohJ.M. JiY. DoA.R. WonS. SeoJ.H. Unveiling genetic variants for age-related Sarcopenia by conducting a genome-wide association study on Korean cohorts.Sci. Rep.2022121350110.1038/s41598‑022‑07567‑935241739
    [Google Scholar]
  144. ChoJ. LeeI. KangH. ACTN3 gene and susceptibility to Sarcopenia and osteoporotic status in older Korean adults.BioMed Res. Int.201720171810.1155/2017/423964828626757
    [Google Scholar]
  145. WalshS. LudlowA.T. MetterE.J. FerrucciL. RothS.M. Replication study of the vitamin D receptor (VDR) genotype association with skeletal muscle traits and Sarcopenia.Aging Clin. Exp. Res.201628343544210.1007/s40520‑015‑0447‑826415498
    [Google Scholar]
  146. LinC-H. LinC-C. TsaiC-W. ChangW-S. YangM-D. BauD-T. A novel caveolin-1 biomarker for clinical outcome of Sarcopenia. in vivo 201428338338924815842
    [Google Scholar]
  147. UrziF. PokornyB. BuzanE. Pilot study on genetic associations with age-related Sarcopenia.Front. Genet.20211161523810.3389/fgene.2020.61523833505434
    [Google Scholar]
  148. SinghA.N. GasmanB. Disentangling the genetics of Sarcopenia: prioritization of NUDT3 and KLF5 as genes for lean mass & HLA-DQB1-AS1 for hand grip strength with the associated enhancing SNPs & a scoring system.BMC Med. Genet.20202114010.1186/s12881‑020‑0977‑632093658
    [Google Scholar]
  149. AliS. GarciaJ.M. Sarcopenia, cachexia and aging: diagnosis, mechanisms and therapeutic options - a mini-review.Gerontology201460429430510.1159/00035676024731978
    [Google Scholar]
  150. ZhuL.Y. ChanR. KwokT. ChengK.C.C. HaA. WooJ. Effects of exercise and nutrition supplementation in community-dwelling older Chinese people with Sarcopenia: a randomized controlled trial.Age Ageing201948222022810.1093/ageing/afy17930462162
    [Google Scholar]
  151. HsuK-J. LiaoC-D. TsaiM-W. ChenC-N. Effects of exercise and nutritional intervention on body composition, metabolic health, and physical performance in adults with sarcopenic obesity: a meta-analysis.Nutrients2019119216310.3390/nu1109216331505890
    [Google Scholar]
  152. SeoJ.H. LeeY. Association of physical activity with Sarcopenia evaluated based on muscle mass and strength in older adults: 2008–2011 and 2014 − 2018 Korea National Health and Nutrition Examination Surveys.BMC Geriatr.202222121710.1186/s12877‑022‑02900‑335296249
    [Google Scholar]
  153. Ribeiro SantosV. Dias CorreaB. De Souza PereiraC.G. Alberto GobboL. Physical activity decreases the risk of Sarcopenia and sarcopenic obesity in older adults with the incidence of clinical factors: 24-month prospective study.Exp. Aging Res.202046216617710.1080/0361073X.2020.171615631971091
    [Google Scholar]
  154. YeungS.S.Y. ZhuZ.L.Y. KwokT. WooJ. Serum amino acids patterns and 4-year sarcopenia risk in community-dwelling chinese older adults.Gerontology202268773674510.1159/00051841234515116
    [Google Scholar]
  155. DaiM. LinT. YueJ. DaiL. Signatures and clinical significance of amino acid flux in Sarcopenia: a systematic review and Meta-Analysis.Front. Endocrinol. (Lausanne)20211272551810.3389/fendo.2021.72551834589057
    [Google Scholar]
  156. EnglundDA KirnDR KoochekA ZhuH TravisonTG ReidKF Nutritional supplementation with physical activity improves muscle composition in mobility-limited older adults, the VIVE2 study: A randomized, double-blind, placebo-controlled trial.J Gerontol A Biol Sci Med Sci20187319510110.1093/gerona/glx141
    [Google Scholar]
  157. Boutry-RegardC. Vinyes-ParésG. BreuilléD. MoritaniT. Supplementation with whey protein, omega-3 fatty acids and polyphenols combined with electrical muscle stimulation increases muscle strength in elderly adults with limited mobility: a randomized controlled trial.Nutrients2020126186610.3390/nu1206186632585837
    [Google Scholar]
  158. WangX. WeiH. CaoJ. LiZ. HeP. Metabolomics analysis of muscle from piglets fed low protein diets supplemented with branched chain amino acids using HPLC-high-resolution MS.Electrophoresis201536182250225810.1002/elps.20150000725820777
    [Google Scholar]
  159. GilmartinS. O’BrienN. GiblinL. Whey for Sarcopenia; Can whey peptides, hydrolysates or proteins play a beneficial role?Foods20209675010.3390/foods906075032517136
    [Google Scholar]
  160. XiaZ. CholewaJ. ZhaoY. ShangH.Y. YangY.Q. Araújo PessôaK. SuQ.S. Lima-SoaresF. ZanchiN.E. Targeting inflammation and downstream protein metabolism in Sarcopenia: a brief up-dated description of concurrent exercise and leucine-based multimodal intervention.Front. Physiol.2017843410.3389/fphys.2017.0043428690550
    [Google Scholar]
  161. SandersL.H. McCoyJ. HuX. MastroberardinoP.G. DickinsonB.C. ChangC.J. ChuC.T. Van HoutenB. GreenamyreJ.T. Mitochondrial DNA damage: Molecular marker of vulnerable nigral neurons in Parkinson’s disease.Neurobiol. Dis.20147021422310.1016/j.nbd.2014.06.01424981012
    [Google Scholar]
  162. KobayashiH. Amino acid nutrition in the prevention and treatment of Sarcopenia. Yakugaku Zasshi.Yakugaku Zasshi2018138101277128310.1248/yakushi.18‑00091‑430270272
    [Google Scholar]
  163. YoshimuraY. BiseT. ShimazuS. TanoueM. TomiokaY. ArakiM. NishinoT. KuzuharaA. TakatsukiF. Effects of a leucine-enriched amino acid supplement on muscle mass, muscle strength, and physical function in post-stroke patients with Sarcopenia: A randomized controlled trial.Nutrition2019581610.1016/j.nut.2018.05.02830273819
    [Google Scholar]
  164. LuikingY.C. DeutzN.E.P. MemelinkR.G. VerlaanS. WolfeR.R. Postprandial muscle protein synthesis is higher after a high whey protein, leucine-enriched supplement than after a dairy-like product in healthy older people: a randomized controlled trial.Nutr. J.2014131910.1186/1475‑2891‑13‑924450500
    [Google Scholar]
  165. RondanelliM. NichettiM. PeroniG. FalivaM.A. NasoM. GasparriC. PernaS. ObertoL. Di PaoloE. RivaA. PetrangoliniG. GuerreschiG. TartaraA. Where to find leucine in food and how to feed elderly with Sarcopenia in order to counteract loss of muscle mass: Practical advice.Front. Nutr.2021762239110.3389/fnut.2020.62239133585538
    [Google Scholar]
  166. VerreijenA.M. VerlaanS. EngberinkM.F. SwinkelsS. de Vogel-van den BoschJ. WeijsP.J.M. A high whey protein–, leucine-, and vitamin D–enriched supplement preserves muscle mass during intentional weight loss in obese older adults: a double-blind randomized controlled trial.Am. J. Clin. Nutr.2015101227928610.3945/ajcn.114.09029025646324
    [Google Scholar]
  167. LibermanK. NjeminiR. LuikingY. FortiL.N. VerlaanS. BauerJ.M. MemelinkR. BrandtK. DoniniL.M. MaggioM. MetsT. WijersS.L.J. SieberC. CederholmT. BautmansI. Thirteen weeks of supplementation of vitamin D and leucine-enriched whey protein nutritional supplement attenuates chronic low-grade inflammation in sarcopenic older adults: the PROVIDE study.Aging Clin. Exp. Res.201931684585410.1007/s40520‑019‑01208‑431049877
    [Google Scholar]
  168. El HajjC. FaresS. ChardignyJ.M. BoirieY. WalrandS. Vitamin D supplementation and muscle strength in pre-sarcopenic elderly Lebanese people: a randomized controlled trial.Arch. Osteoporos.2019141410.1007/s11657‑018‑0553‑230569340
    [Google Scholar]
  169. ChengS.H. ChenK.H. ChenC. ChuW.C. KangY.N. The optimal strategy of vitamin d for Sarcopenia: A network meta-analysis of randomized controlled trials.Nutrients20211310358910.3390/nu1310358934684590
    [Google Scholar]
  170. YangA. LvQ. ChenF. WangY. LiuY. ShiW. LiuY. WangD. The effect of vitamin D on Sarcopenia depends on the level of physical activity in older adults.J. Cachexia Sarcopenia Muscle202011367868910.1002/jcsm.1254532020783
    [Google Scholar]
  171. KimY.S. HongK.W. HanK. ParkY.C. ParkJ.M. KimK. KimB.T. Longitudinal observation of muscle mass over 10 years according to serum calcium levels and calcium intake among Korean adults aged 50 and older: The Korean Genome and Epidemiology Study.Nutrients2020129285610.3390/nu1209285632961901
    [Google Scholar]
  172. van DronkelaarC van VelzenA AbdelrazekM van der SteenA WeijsPJ TielandM Minerals and Sarcopenia; the role of calcium, iron, magnesium, phosphorus, potassium, selenium, sodium, and zinc on muscle mass, muscle strength, and physical performance in older adults: a systematic review.J. Am. Med. Dir. Assoc.201819161110.1016/j.jamda.2017.05.026
    [Google Scholar]
  173. DuY. OhC. NoJ. Is Calcium the Main Nutrient in the Diet Plan for Sarcopenia among the Elderly?: A Systematic Review and Meta-Analysis. Europe PMC.202210.21203/rs.3.rs‑1359964/v1
  174. BirdJ.K. TroeschB. WarnkeI. CalderP.C. The effect of long chain omega-3 polyunsaturated fatty acids on muscle mass and function in Sarcopenia: A scoping systematic review and meta-analysis.Clin. Nutr. ESPEN202146738610.1016/j.clnesp.2021.10.01134857251
    [Google Scholar]
  175. SmithG.I. JulliandS. ReedsD.N. SinacoreD.R. KleinS. MittendorferB. Fish oil–derived n−3 PUFA therapy increases muscle mass and function in healthy older adults1.Am. J. Clin. Nutr.2015102111512210.3945/ajcn.114.10583325994567
    [Google Scholar]
  176. BoirieY. GuilletC. Fast digestive proteins and Sarcopenia of aging.Curr. Opin. Clin. Nutr. Metab. Care2018211374110.1097/MCO.000000000000042729028650
    [Google Scholar]
  177. RondanelliM. RigonC. PernaS. GasparriC. IannelloG. AkberR. AlalwanT.A. FreijeA.M. Novel insights on intake of fish and prevention of Sarcopenia: All reasons for an adequate consumption.Nutrients202012230710.3390/nu1202030731991560
    [Google Scholar]
  178. LaliaA.Z. DasariS. RobinsonM.M. AbidH. MorseD.M. KlausK.A. LanzaI.R. Influence of omega-3 fatty acids on skeletal muscle protein metabolism and mitochondrial bioenergetics in older adults.Aging (Albany NY)2017941096112910.18632/aging.10121028379838
    [Google Scholar]
  179. CandowD.G. ForbesS.C. ChilibeckP.D. CornishS.M. AntonioJ. KreiderR.B. Variables influencing the effectiveness of creatine supplementation as a therapeutic intervention for Sarcopenia.Front. Nutr.2019612410.3389/fnut.2019.0012431448281
    [Google Scholar]
  180. ChilibeckP.D. CandowD.G. LanderyouT. KavianiM. Paus-JenssenL. Effects of creatine and resistance training on bone health in postmenopausal women.Med. Sci. Sports Exerc.20154781587159510.1249/MSS.000000000000057125386713
    [Google Scholar]
  181. DolanE. ArtioliG.G. PereiraR.M.R. GualanoB. Muscular atrophy and Sarcopenia in the elderly: is there a role for creatine supplementation?Biomolecules201991164210.3390/biom911064231652853
    [Google Scholar]
  182. VillaniA. WrightH. SlaterG. BuckleyJ. A randomised controlled intervention study investigating the efficacy of carotenoid-rich fruits and vegetables and extra-virgin olive oil on attenuating sarcopenic symptomology in overweight and obese older adults during energy intake restriction: protocol paper.BMC Geriatr.2018181210.1186/s12877‑017‑0700‑429304744
    [Google Scholar]
  183. Besora-MorenoM. LlauradóE. VallsR.M. TarroL. PedretA. SolàR. Antioxidant-rich foods, antioxidant supplements, and Sarcopenia in old-young adults ≥55 years old: A systematic review and meta-analysis of observational studies and randomized controlled trials.Clin. Nutr.202241102308232410.1016/j.clnu.2022.07.03536099667
    [Google Scholar]
  184. WelchA.A. JenningsA. KelaiditiE. SkinnerJ. StevesC.J. Cross-sectional associations between dietary antioxidant vitamins C, E and carotenoid intakes and sarcopenic indices in women aged 18–79 years.Calcif. Tissue Int.2020106433134210.1007/s00223‑019‑00641‑x31813016
    [Google Scholar]
  185. OtsukaY. IidakaT. HoriiC. MurakiS. OkaH. NakamuraK. IzumoT. RogiT. ShibataH. TanakaS. YoshimuraN. Dietary intake of vitamin E and fats associated with Sarcopenia in community-dwelling older Japanese people: a cross-sectional study from the fifth survey of the ROAD study.Nutrients2021135173010.3390/nu1305173034065253
    [Google Scholar]
  186. Ministry of Health L, Welfare. Dietary reference intakes for Japanese.2015Available from: https://www.mhlw.go.jp/file/06-Seisakujouhou-10900000-Kenkoukyoku/Full_DRIs2015.pdf
  187. ChungE. MoH. WangS. ZuY. ElfakhaniM. RiosS.R. ChyuM.C. YangR.S. ShenC.L. Potential roles of vitamin E in age-related changes in skeletal muscle health.Nutr. Res.201849233610.1016/j.nutres.2017.09.00529420990
    [Google Scholar]
  188. SalucciS. FalcieriE. Polyphenols and their potential role in preventing skeletal muscle atrophy.Nutr. Res.202074102210.1016/j.nutres.2019.11.00431895993
    [Google Scholar]
  189. KouX. LiJ. LiuX. YangX. FanJ. ChenN. Ampelopsin attenuates the atrophy of skeletal muscle from d -gal-induced aging rats through activating AMPK/SIRT1/PGC-1α signaling cascade.Biomed. Pharmacother.20179031132010.1016/j.biopha.2017.03.07028364603
    [Google Scholar]
  190. ItoM. KudoN. MiyakeY. ImaiT. UnnoT. YamashitaY. HirotaY. AshidaH. OsakabeN. Flavan 3-ol delays the progression of disuse atrophy induced by hindlimb suspension in mice.Exp. Gerontol.20179812012310.1016/j.exger.2017.07.01028807824
    [Google Scholar]
  191. AsamiY. AizawaM. KinoshitaM. IshikawaJ. SakumaK. Resveratrol attenuates denervation-induced muscle atrophy due to the blockade of atrogin-1 and p62 accumulation.Int. J. Med. Sci.201815662863710.7150/ijms.2272329725254
    [Google Scholar]
  192. ChangY.C. LiuH.W. ChanY.C. HuS.H. LiuM.Y. ChangS.J. The green tea polyphenol epigallocatechin-3-gallate attenuates age-associated muscle loss via regulation of miR-486-5p and myostatin.Arch. Biochem. Biophys.202069210851110.1016/j.abb.2020.10851132710883
    [Google Scholar]
  193. AnnunziataG. Jimenez-GarcíaM. TejadaS. MorantaD. ArnoneA. CiampagliaR. TenoreG.C. SuredaA. NovellinoE. CapóX. Grape polyphenols ameliorate muscle decline reducing oxidative stress and oxidative damage in aged rats.Nutrients2020125128010.3390/nu1205128032365992
    [Google Scholar]
  194. KwonI.S. ParkD.S. ShinH.C. SeokM.G. OhJ.K. Effects of marine oligomeric polyphenols on body composition and physical ability of elderly individuals with Sarcopenia: a pilot study.Phys. Act. Nutr.20212531710.20463/pan.2021.001434727682
    [Google Scholar]
  195. FeliceF. CesareM.M. FredianelliL. De LeoM. ContiV. BracaA. Di StefanoR. Effect of tomato peel extract grown under drought stress condition in a sarcopenia model.Molecules2022278256310.3390/molecules2708256335458760
    [Google Scholar]
  196. NASSO R D’ERRICO A, MASULLO M, ARCONE R. Effects of physical exercise and plant polyphenols on human mitochondrial health.J. Phys. Educ. Sport202222710.7752/jpes.2022.07229
    [Google Scholar]
  197. KimC. HwangJ.K. Flavonoids: nutraceutical potential for counteracting muscle atrophy.Food Sci. Biotechnol.202029121619164010.1007/s10068‑020‑00816‑533282430
    [Google Scholar]
  198. PriegoT. MartínA. González-HedströmD. GranadoM. López-CalderónA. Role of hormones in Sarcopenia. Vitamins and Hormones. 115.Elsevier2021535570
    [Google Scholar]
  199. ShinM.J. JeonY.K. KimI.J. Testosterone and Sarcopenia.World J. Mens Health201836319219810.5534/wjmh.18000129756416
    [Google Scholar]
  200. Moctezuma-VelázquezC. LowG. MourtzakisM. MaM. BurakK.W. TandonP. Montano-LozaA.J. Association between low testosterone levels and Sarcopenia in cirrhosis: a cross-sectional study.Ann. Hepatol.201817461562310.5604/01.3001.0012.093029893704
    [Google Scholar]
  201. Diago-GalmésA. Guillamón-EscuderoC. Tenías-BurilloJ.M. SorianoJ.M. Fernández-GarridoJ. Salivary testosterone and cortisol as biomarkers for the diagnosis of Sarcopenia and Sarcopenic obesity in community-dwelling older adults.Biology (Basel)20211029310.3390/biology1002009333513704
    [Google Scholar]
  202. RheeH. NavaratnamA. OleinikovaI. GilroyD. ScuderiY. HeathcoteP. NguyenT. WoodS. HoK.K.Y. A novel liver-targeted testosterone therapy for Sarcopenia in androgen deprived men with prostate cancer.J. Endocr. Soc.202159bvab11610.1210/jendso/bvab11634308090
    [Google Scholar]
  203. GharahdaghiN. RudrappaS. BrookM.S. IdrisI. CrosslandH. HamrockC. Abdul AzizM.H. KadiF. TarumJ. GreenhaffP.L. Constantin-TeodosiuD. CegielskiJ. PhillipsB.E. WilkinsonD.J. SzewczykN.J. SmithK. AthertonP.J. Testosterone therapy induces molecular programming augmenting physiological adaptations to resistance exercise in older men.J. Cachexia Sarcopenia Muscle20191061276129410.1002/jcsm.1247231568675
    [Google Scholar]
  204. UrbanR.J. DillonE.L. ChoudharyS. ZhaoY. HorstmanA.M. TiltonR.G. Sheffield-MooreM. Translational studies in older men using testosterone to treat Sarcopenia.Trans. Am. Clin. Climatol. Assoc.20141252742Available from: https://pubmed.ncbi.element.nih.gov/25125716/ 25125716
    [Google Scholar]
  205. SinclairM. GrossmannM. HoermannR. AngusP.W. GowP.J. Testosterone therapy increases muscle mass in men with cirrhosis and low testosterone: A randomised controlled trial.J. Hepatol.201665590691310.1016/j.jhep.2016.06.00727312945
    [Google Scholar]
  206. NarayananR. CossC.C. DaltonJ.T. Development of selective androgen receptor modulators (SARMs).Mol. Cell. Endocrinol.201846513414210.1016/j.mce.2017.06.01328624515
    [Google Scholar]
  207. PapanicolaouD.A. AtherS.N. ZhuH. ZhouY. LutkiewiczJ. ScottB.B. ChandlerJ. A phase IIA randomized, placebo-controlled clinical trial to study the efficacy and safety of the selective androgen receptor modulator (SARM), MK-0773 in female participants with Sarcopenia.J. Nutr. Health Aging201317653354310.1007/s12603‑013‑0335‑x23732550
    [Google Scholar]
  208. MorimotoM. AikawaK. HaraT. YamaokaM. Prevention of body weight loss and Sarcopenia by a novel selective androgen receptor modulator in cancer cachexia models.Oncol. Lett.20171468066807110.3892/ol.2017.720029344250
    [Google Scholar]
  209. MutaY. TanakaT. HamaguchiY. HamanoueN. MotonagaR. TanabeM. NomiyamaT. NawataH. YanaseT. Selective androgen receptor modulator, S42 has anabolic and anti-catabolic effects on cultured myotubes.Biochem. Biophys. Rep.20191717718110.1016/j.bbrep.2019.01.00630705972
    [Google Scholar]
  210. RochP.J. WolgastV. GebhardtM.M. BökerK.O. HoffmannD.B. SaulD. SchillingA.F. SehmischS. KomrakovaM. Combination of selective androgen and estrogen receptor modulators in orchiectomized rats.J. Endocrinol. Invest.20224581555156810.1007/s40618‑022‑01794‑735429299
    [Google Scholar]
  211. YoungJ.A. ZhuS. ListE.O. Duran-OrtizS. SlamaY. BerrymanD.E. Musculoskeletal Effects of Altered GH Action.Front. Physiol.20221386792110.3389/fphys.2022.86792135665221
    [Google Scholar]
  212. BriocheT. KireevR.A. CuestaS. Gratas-DelamarcheA. TresguerresJ.A. Gomez-CabreraM.C. ViñaJ. Growth hormone replacement therapy prevents Sarcopenia by a dual mechanism: improvement of protein balance and of antioxidant defenses.J. Gerontol. A Biol. Sci. Med. Sci.201469101186119810.1093/gerona/glt18724300031
    [Google Scholar]
  213. GascoV. CaputoM. LanfrancoF. GhigoE. GrottoliS. Management of GH treatment in adult GH deficiency.Best Pract. Res. Clin. Endocrinol. Metab.2017311132410.1016/j.beem.2017.03.00128477728
    [Google Scholar]
  214. SgròP. SansoneM. SansoneA. SabatiniS. BorrioneP. RomanelliF. Di LuigiL. Physical exercise, nutrition and hormones: three pillars to fight Sarcopenia.Aging Male2019222758810.1080/13685538.2018.143900429451419
    [Google Scholar]
  215. ChenJ. SplenserA. GuilloryB. LuoJ. MendirattaM. BelinovaB. HalderT. ZhangG. LiY.P. GarciaJ.M. Ghrelin prevents tumour- and cisplatin-induced muscle wasting: characterization of multiple mechanisms involved.J. Cachexia Sarcopenia Muscle20156213214310.1002/jcsm.1202326136189
    [Google Scholar]
  216. FujitsukaN. AsakawaA. MorinagaA. AmitaniM.S. AmitaniH. KatsuuraG. SawadaY. SudoY. UezonoY. MochikiE. SakataI. SakaiT. HanazakiK. YadaT. YakabiK. SakumaE. UekiT. NiijimaA. NakagawaK. OkuboN. TakedaH. AsakaM. InuiA. Increased ghrelin signaling prolongs survival in mouse models of human aging through activation of sirtuin1.Mol. Psychiatry201621111613162310.1038/mp.2015.22026830139
    [Google Scholar]
  217. TemelJ.S. AbernethyA.P. CurrowD.C. FriendJ. DuusE.M. YanY. FearonK.C. Anamorelin in patients with non-small-cell lung cancer and cachexia (ROMANA 1 and ROMANA 2): results from two randomised, double-blind, phase 3 trials.Lancet Oncol.201617451953110.1016/S1470‑2045(15)00558‑626906526
    [Google Scholar]
  218. TamakiM. MiyashitaK. HagiwaraA. WakinoS. InoueH. FujiiK. FujiiC. EndoS. UtoA. MitsuishiM. SatoM. DoiT. ItohH. Ghrelin treatment improves physical decline in Sarcopenia model mice through muscular enhancement and mitochondrial activation.Endocr. J.201764Suppl.S47S5110.1507/endocrj.64.S4728652544
    [Google Scholar]
  219. GuilloryB. ChenJ. PatelS. LuoJ. SplenserA. ModyA. DingM. BaghaieS. AndersonB. IankovaB. HalderT. HernandezY. GarciaJ.M. Deletion of ghrelin prevents aging-associated obesity and muscle dysfunction without affecting longevity.Aging Cell201716485986910.1111/acel.1261828585250
    [Google Scholar]
  220. WuC.N. TienK.J. The impact of antidiabetic agents on Sarcopenia in type 2 diabetes: a literature review.J. Diabetes Res.202020201610.1155/2020/936858332695832
    [Google Scholar]
  221. MaX. LinL. YueJ. WuC.S. GuoC. WangR. YuK.J. DevarajS. MuranoP. ChenZ. SunY. Suppression of ghrelin exacerbates HFCS-induced adiposity and insulin resistance.Int. J. Mol. Sci.2017186130210.3390/ijms1806130228629187
    [Google Scholar]
  222. RyanA.S. SerraM.C. AddisonO. The role of skeletal muscle myostatin in Sarcopenia in older adults.Innov. Aging20171Suppl. 136110.1093/geroni/igx004.1317
    [Google Scholar]
  223. BergenH.R.III FarrJ.N. VanderboomP.M. AtkinsonE.J. WhiteT.A. SinghR.J. KhoslaS. LeBrasseurN.K. Myostatin as a mediator of Sarcopenia versus homeostatic regulator of muscle mass: insights using a new mass spectrometry-based assay.Skelet. Muscle2015512110.1186/s13395‑015‑0047‑526180626
    [Google Scholar]
  224. BeckerC. LordS.R. StudenskiS.A. WardenS.J. FieldingR.A. RecknorC.P. HochbergM.C. FerrariS.L. BlainH. BinderE.F. RollandY. PoiraudeauS. BensonC.T. MyersS.L. HuL. AhmadQ.I. PacuchK.R. GomezE.V. BenichouO. STEADY Group Myostatin antibody (LY2495655) in older weak fallers: a proof-of-concept, randomised, phase 2 trial.Lancet Diabetes Endocrinol.201531294895710.1016/S2213‑8587(15)00298‑326516121
    [Google Scholar]
  225. de SireA. BaricichA. RenòF. CisariC. FuscoN. InvernizziM. Myostatin as a potential biomarker to monitor Sarcopenia in hip fracture patients undergoing a multidisciplinary rehabilitation and nutritional treatment: a preliminary study.Aging Clin. Exp. Res.202032595996210.1007/s40520‑019‑01436‑831838642
    [Google Scholar]
  226. ChewJ. TayL. LimJ.P. LeungB.P. YeoA. YewS. DingY.Y. LimW.S. Serum myostatin and IGF-1 as gender-specific biomarkers of frailty and low muscle mass in community-dwelling older adults.J. Nutr. Health Aging2019231097998610.1007/s12603‑019‑1255‑131781728
    [Google Scholar]
  227. EgermanM.A. CadenaS.M. GilbertJ.A. MeyerA. NelsonH.N. SwalleyS.E. MallozziC. JacobiC. JenningsL.L. ClayI. LaurentG. MaS. BrachatS. Lach-TrifilieffE. ShavlakadzeT. TrendelenburgA.U. BrackA.S. GlassD.J. GDF11 increases with age and inhibits skeletal muscle regeneration.Cell Metab.201522116417410.1016/j.cmet.2015.05.01026001423
    [Google Scholar]
  228. RyanA.S. LiG. Skeletal muscle myostatin gene expression and Sarcopenia in overweight and obese middle-aged and older adults.JCSM Clin. Rep.20216413714210.1002/crt2.4335311023
    [Google Scholar]
  229. Lach-TrifilieffE. MinettiG.C. SheppardK. IbebunjoC. FeigeJ.N. HartmannS. BrachatS. RivetH. KoelbingC. MorvanF. HatakeyamaS. GlassD.J. An antibody blocking activin type II receptors induces strong skeletal muscle hypertrophy and protects from atrophy.Mol. Cell. Biol.201434460661810.1128/MCB.01307‑1324298022
    [Google Scholar]
  230. RooksD. PraestgaardJ. HariryS. LaurentD. PetricoulO. PerryR.G. Lach-TrifilieffE. RoubenoffR. Treatment of Sarcopenia with bimagrumab: results from a phase II, randomized, controlled, proof-of-concept study.J. Am. Geriatr. Soc.20176591988199510.1111/jgs.1492728653345
    [Google Scholar]
  231. PolkeyM.I. PraestgaardJ. BerwickA. FranssenF.M.E. SinghD. SteinerM.C. CasaburiR. TillmannH.C. Lach-TrifilieffE. RoubenoffR. RooksD.S. Activin type II receptor blockade for treatment of muscle depletion in chronic obstructive pulmonary disease. A randomized trial.Am. J. Respir. Crit. Care Med.2019199331332010.1164/rccm.201802‑0286OC30095981
    [Google Scholar]
  232. HeymsfieldSB ColemanLA MillerR RooksDS LaurentD PetricoulO Effect of bimagrumab vs placebo on body fat mass among adults with type 2 diabetes and obesity: A phase 2 randomized clinical trial.JAMA Netw Open202141e203345710.1001/jamanetworkopen.2020.33457
    [Google Scholar]
  233. LodbergA. Principles of the activin receptor signaling pathway and its inhibition.Cytokine Growth Factor Rev.20216011710.1016/j.cytogfr.2021.04.00133933900
    [Google Scholar]
  234. MaX.Y. ChenF.Q. Effects of anti-diabetic drugs on Sarcopenia: Best treatment options for elderly patients with type 2 diabetes mellitus and Sarcopenia.World J. Clin. Cases2021933100641007410.12998/wjcc.v9.i33.1006434904076
    [Google Scholar]
  235. KjøbstedR. HingstJ.R. FentzJ. ForetzM. SanzM.N. PehmøllerC. ShumM. MaretteA. MounierR. TreebakJ.T. WojtaszewskiJ.F.P. ViolletB. LantierL. AMPK in skeletal muscle function and metabolism.FASEB J.20183241741177710.1096/fj.201700442R29242278
    [Google Scholar]
  236. PavlidouT. MarinkovicM. RosinaM. FuocoC. VumbacaS. GargioliC. CastagnoliL. CesareniG. Metformin delays satellite cell activation and maintains quiescence.Stem Cells Int.20192019598046510.1155/2019/598046531249600
    [Google Scholar]
  237. ChenF. XuS. WangY. ChenF. CaoL. LiuT. HuangT. WeiQ. MaG. ZhaoY. WangD. Risk factors for Sarcopenia in the elderly with type 2 diabetes mellitus and the effect of metformin.J. Diabetes Res.20202020395040410.1155/2020/395040433083494
    [Google Scholar]
  238. RennieK.J. WithamM. BradleyP. CleggA. ConnollyS. HancockH.C. HiuS. MarsayL. McDonaldC. RobertsonL. SimmsL. SteelA.J. StevesC.J. StoreyB. WasonJ. WilsonN. von ZglinickiT. SayerA.A.P. MET-PREVENT: metformin to improve physical performance in older people with Sarcopenia and physical prefrailty/frailty – protocol for a double-blind, randomised controlled proof-of-concept trial.BMJ Open2022127e06182310.1136/bmjopen‑2022‑06182335851031
    [Google Scholar]
  239. LyuQ. WenY. HeB. ZhangX. ChenJ. SunY. ZhaoY. XuL. XiaoQ. DengH. The ameliorating effects of metformin on disarrangement ongoing in gastrocnemius muscle of sarcopenic and obese sarcopenic mice.Biochim. Biophys. Acta Mol. Basis Dis.202218681116650810.1016/j.bbadis.2022.16650835905940
    [Google Scholar]
  240. LeeC.G. BoykoE.J. Barrett-ConnorE. MiljkovicI. HoffmanA.R. Everson-RoseS.A. LewisC.E. CawthonP.M. StrotmeyerE.S. OrwollE.S. Osteoporotic Fractures in Men (MrOS) Study Research Group Insulin sensitizers may attenuate lean mass loss in older men with diabetes.Diabetes Care201134112381238610.2337/dc11‑103221926282
    [Google Scholar]
  241. MiyazakiY. MahankaliA. MatsudaM. MahankaliS. HardiesJ. CusiK. MandarinoL.J. DeFronzoR.A. Effect of pioglitazone on abdominal fat distribution and insulin sensitivity in type 2 diabetic patients.J. Clin. Endocrinol. Metab.20028762784279110.1210/jcem.87.6.856712050251
    [Google Scholar]
  242. AspM.L. TianM. WendelA.A. BeluryM.A. Evidence for the contribution of insulin resistance to the development of cachexia in tumor-bearing mice.Int. J. Cancer2010126375676310.1002/ijc.2478419634137
    [Google Scholar]
  243. WangX. HuZ. HuJ. DuJ. MitchW.E. Insulin resistance accelerates muscle protein degradation: Activation of the ubiquitin-proteasome pathway by defects in muscle cell signaling.Endocrinology200614794160416810.1210/en.2006‑025116777975
    [Google Scholar]
  244. MarshA.P. Kyla SheaM. Vance LockeR.M. MillerM.E. IsomS. MillerG.D. NicklasB.J. LylesM.F. CarrJ.J. KritchevskyS.B. Resistance training and pioglitazone lead to improvements in muscle power during voluntary weight loss in older adults.J. Gerontol. A Biol. Sci. Med. Sci.201368782883610.1093/gerona/gls25823292287
    [Google Scholar]
  245. EkizT. KaraM. AtaA.M. RicciV. KaraÖ. ÖzcanF. ÖzçakarL. Rewinding Sarcopenia: a narrative review on the renin–angiotensin system.Aging Clin. Exp. Res.20213392379239210.1007/s40520‑020‑01761‑333394457
    [Google Scholar]
  246. CaulfieldL HeslopP WalesbyKE SumukadasD SayerAA WithamMD Effect of angiotensin system inhibitors on physical performance in older people–a systematic review and meta-analysis.J. Am. Med. Dir. Assoc.20212261215122110.1016/j.jamda.2020.07.012
    [Google Scholar]
  247. SpiraD. WalstonJ. BuchmannN. NikolovJ. DemuthI. Steinhagen-ThiessenE. EckardtR. NormanK. Angiotensin-converting enzyme inhibitors and parameters of Sarcopenia: relation to muscle mass, strength and function: data from the Berlin Aging Study-II (BASE-II).Drugs Aging2016331182983710.1007/s40266‑016‑0396‑827665105
    [Google Scholar]
  248. CoelhoV.A. ProbstV.S. NogariB.M. TeixeiraD.C. FelcarJ.M. SantosD.C. GomesM.V.M. AndrausR.A.C. FernandesK.B.P. Angiotensin-II blockage, muscle strength, and exercise capacity in physically independent older adults.J. Phys. Ther. Sci.201628254755210.1589/jpts.28.54727065543
    [Google Scholar]
  249. Di RaimondoD. TuttolomondoA. ButtàC. MiceliS. LicataG. PintoA. Effects of ACE-inhibitors and angiotensin receptor blockers on inflammation.Curr. Pharm. Des.201218284385441310.2174/13816121280248128222283779
    [Google Scholar]
  250. WhiteWB MarfatiaR SchmidtJ WakefieldDB KaplanRF BohannonRW INtensive versus standard ambulatory blood pressure lowering to prevent functional DeclINe in the ElderlY (INFINITY).Am. Heart J.2013165325826510.1016/j.ahj.2012.11.008
    [Google Scholar]
  251. BandM.M. SumukadasD. StruthersA.D. AvenellA. DonnanP.T. KempP.R. SmithK.T. HumeC.L. HapcaA. WithamM.D. Leucine and ACE inhibitors as therapies for Sarcopenia (LACE trial): study protocol for a randomised controlled trial.Trials2018191610.1186/s13063‑017‑2390‑929301558
    [Google Scholar]
  252. KostkaJ. SikoraJ. GuligowskaA. KostkaT. Associations between ACE-Inhibitors, angiotensin receptor blockers, and lean body mass in community dwelling older women.J Aging Res20212018849109210.12688/f1000research.51208.2
    [Google Scholar]
  253. MileM. BaloghL. PappG. PucsokJ.M. SzabóK. BarnaL. CsikiZ. LekliI. Effects of functional training on Sarcopenia in elderly women in the presence or absence of ACE inhibitors.Int. J. Environ. Res. Public Health20211812659410.3390/ijerph1812659434205250
    [Google Scholar]
  254. KingsleyJ. TorimotoK. HashimotoT. EguchiS. Angiotensin II inhibition: a potential treatment to slow the progression of Sarcopenia.Clin. Sci. (Lond.)2021135212503252010.1042/CS2021071934751393
    [Google Scholar]
  255. SukhanovS. YoshidaT. Michael TabonyA. HigashiY. GalvezS. DelafontaineP. Semprun-PrietoL. Angiotensin II, oxidative stress and skeletal muscle wasting.Am. J. Med. Sci.2011342214314710.1097/MAJ.0b013e318222e62021747283
    [Google Scholar]
  256. BeaJ.W. Wassertheil-SmollerS. WertheimB.C. KlimentidisY. ChenZ. ZaslavskyO. ManiniT.M. WomackC.R. KroenkeC.H. LaCroixA.Z. ThomsonC.A. Associations between ACE-Inhibitors, angiotensin receptor blockers, and lean body mass in community dwelling older women.J. Aging Res.201820181810.1155/2018/849109229670769
    [Google Scholar]
  257. YabumotoC. AkazawaH. YamamotoR. YanoM. Kudo-SakamotoY. SumidaT. KamoT. YagiH. ShimizuY. Saga-KamoA. NaitoA.T. OkaT. LeeJ.K. SuzukiJ. SakataY. UejimaE. KomuroI. Angiotensin II receptor blockade promotes repair of skeletal muscle through down-regulation of aging-promoting C1q expression.Sci. Rep.2015511445310.1038/srep1445326571361
    [Google Scholar]
  258. BrinkM. PriceS.R. ChrastJ. BaileyJ.L. AnwarA. MitchW.E. DelafontaineP. Angiotensin II induces skeletal muscle wasting through enhanced protein degradation and down-regulates autocrine insulin-like growth factor I.Endocrinology200114241489149610.1210/endo.142.4.808211250929
    [Google Scholar]
  259. BedairH.S. KarthikeyanT. QuinteroA. LiY. HuardJ. Angiotensin II receptor blockade administered after injury improves muscle regeneration and decreases fibrosis in normal skeletal muscle.Am. J. Sports Med.20083681548155410.1177/036354650831547018550776
    [Google Scholar]
  260. TakagiH. MizunoY. YamamotoH. GotoS. UmemotoT. All-Literature Investigation of Cardiovascular Evidence Group Effects of telmisartan therapy on interleukin-6 and tumor necrosis factor-alpha levels: a meta-analysis of randomized controlled trials.Hypertens. Res.201336436837310.1038/hr.2012.19623235712
    [Google Scholar]
  261. NgT.P. NguyenT.N. GaoQ. NyuntM.S.Z. YapK.B. WeeS.L. Angiotensin receptor blockers use and changes in frailty, muscle mass, and function indexes: Singapore Longitudinal Ageing Study.JCSM Rapid Commun.20214211112110.1002/rco2.31
    [Google Scholar]
  262. LinC.H. YangH. XueQ.L. ChuangY.F. RoyC.N. AbadirP. WalstonJ.D. Losartan improves measures of activity, inflammation, and oxidative stress in older mice.Exp. Gerontol.20145817417810.1016/j.exger.2014.07.01725077714
    [Google Scholar]
  263. PereiraM.G. SilvaM.T. da CunhaF.M. MoriscotA.S. AokiM.S. MiyabaraE.H. Leucine supplementation improves regeneration of skeletal muscles from old rats.Exp. Gerontol.20157226927710.1016/j.exger.2015.10.00626481769
    [Google Scholar]
  264. FerraroE. PinF. GoriniS. PontecorvoL. FerriA. MollaceV. CostelliP. RosanoG. Improvement of skeletal muscle performance in ageing by the metabolic modulator Trimetazidine.J. Cachexia Sarcopenia Muscle20167444945710.1002/jcsm.1209727239426
    [Google Scholar]
  265. CramerJ.T. Cruz-JentoftA.J. LandiF. HicksonM. ZamboniM. PereiraS.L. HusteadD.S. MustadV.A. Impacts of high-protein oral nutritional supplements among malnourished men and women with Sarcopenia: a multicenter, randomized, double-blinded, controlled trial.J. Am. Med. Dir. Assoc.201617111044105510.1016/j.jamda.2016.08.00927780567
    [Google Scholar]
  266. KolosovaN.G. VitovtovA.O. StefanovaN.A. Metformin reduces the signs of Sarcopenia in old OXYS rats.Adv. Gerontol.2016617074Available from: https://pubmed.ncbi.element.nih. gov/28509488/ 10.1134/S207905701601006928509488
    [Google Scholar]
  267. HofmannM. Schober-HalperB. OesenS. FranzkeB. TschanH. BachlN. StrasserE.M. QuittanM. WagnerK.H. WessnerB. Effects of elastic band resistance training and nutritional supplementation on muscle quality and circulating muscle growth and degradation factors of institutionalized elderly women: the Vienna Active Ageing Study (VAAS).Eur. J. Appl. Physiol.2016116588589710.1007/s00421‑016‑3344‑826931422
    [Google Scholar]
  268. CamporezJ.P.G. PetersenM.C. AbudukadierA. MoreiraG.V. JurczakM.J. FriedmanG. HaqqC.M. PetersenK.F. ShulmanG.I. Anti-myostatin antibody increases muscle mass and strength and improves insulin sensitivity in old mice.Proc. Natl. Acad. Sci. USA201611382212221710.1073/pnas.152579511326858428
    [Google Scholar]
  269. YasudaT. FukumuraK. TomaruT. NakajimaT. Thigh muscle size and vascular function after blood flow-restricted elastic band training in older women.Oncotarget2016723335953360710.18632/oncotarget.956427244884
    [Google Scholar]
  270. BorackM.S. ReidyP.T. HusainiS.H. MarkofskiM.M. DeerR.R. RichisonA.B. LambertB.S. CopeM.B. MukherjeaR. JenningsK. VolpiE. RasmussenB.B. Soy-dairy protein blend or whey protein isolate ingestion induces similar postexercise muscle mechanistic target of rapamycin complex 1 signaling and protein synthesis responses in older men.J. Nutr.2016146122468247510.3945/jn.116.23115927798330
    [Google Scholar]
  271. TrappeT.A. RatchfordS.M. BrowerB.E. LiuS.Z. LavinK.M. CarrollC.C. JemioloB. TrappeS.W. COX inhibitor influence on skeletal muscle fiber size and metabolic adaptations to resistance exercise in older adults.J. Gerontol. A Biol. Sci. Med. Sci.201671101289129410.1093/gerona/glv23126817469
    [Google Scholar]
  272. LaksmiP.W. SetiatiS. TaminT.Z. SoewondoP. RochmahW. NafrialdiN. PrihartonoJ. Effect of metformin on handgrip strength, gait speed, myostatin serum level, and health-related quality of life: a double blind randomized controlled trial among non-diabetic pre-frail elderly patients.Acta Med. Indones.2017492118127Available from: https://pubmed.ncbi.element.nih.gov/28790226/ 28790226
    [Google Scholar]
  273. FujiiC. MiyashitaK. MitsuishiM. SatoM. FujiiK. InoueH. HagiwaraA. EndoS. UtoA. RyuzakiM. NakajimaM. TanakaT. TamakiM. MurakiA. KawaiT. ItohH. Treatment of Sarcopenia and glucose intolerance through mitochondrial activation by 5-aminolevulinic acid.Sci. Rep.201771401310.1038/s41598‑017‑03917‑028638045
    [Google Scholar]
  274. LiaoC.D. TsauoJ.Y. LinL.F. HuangS.W. KuJ.W. ChouL.C. LiouT.H. Effects of elastic resistance exercise on body composition and physical capacity in older women with sarcopenic obesity.Medicine (Baltimore)20179623e711510.1097/MD.000000000000711528591061
    [Google Scholar]
  275. KemmlerW. WeissenfelsA. TeschlerM. WillertS. BebenekM. ShojaaM. KohlM. FreibergerE. SieberC. von StengelS. Whole-body electromyostimulation and protein supplementation favorably affect sarcopenic obesity in community-dwelling older men at risk: the randomized controlled FranSO study.Clin. Interv. Aging2017121503151310.2147/CIA.S13798728989278
    [Google Scholar]
  276. Gagliano-JucáT. StorerT.W. PencinaK.M. TravisonT.G. LiZ. HuangG. HettwerS. DahindenP. BhasinS. BasariaS. Testosterone does not affect agrin cleavage in mobility-limited older men despite improvement in physical function.Andrology201861293610.1111/andr.1242428950424
    [Google Scholar]
  277. KimJ.A. KimS.M. HaS.E. VetrivelP. SaralammaV.V.G. KimE.H. KimG.S. Sinensetin regulates age-related Sarcopenia in cultured primary thigh and calf muscle cells.BMC Complement. Altern. Med.201919128710.1186/s12906‑019‑2714‑231660942
    [Google Scholar]
  278. AzeemuddinM.M. RaoC.M. RafiqM. BabuU.V. RangeshP. Pharmacological investigation of ‘HIM-CHX’: A herbal combination in the experimental muscle wasting condition.Exp. Gerontol.201912511066310.1016/j.exger.2019.11066331319130
    [Google Scholar]
  279. KimC. HwangJ.K. The 5, 7-dimethoxyflavone suppresses Sarcopenia by regulating protein turnover and mitochondria biogenesis-related pathways.Nutrients2020124107910.3390/nu1204107932295051
    [Google Scholar]
  280. RussD.W. DimovaK. MorrisE. PachecoM. GarveyS.M. ScordilisS.P. Dietary fish oil supplement induces age-specific contractile and proteomic responses in muscles of male rats.Lipids Health Dis.202019116510.1186/s12944‑020‑01333‑432646455
    [Google Scholar]
  281. KangM.J. MoonJ.W. LeeJ.O. KimJ.H. JungE.J. KimS.J. OhJ.Y. WuS.W. LeeP.R. ParkS.H. KimH.S. Metformin induces muscle atrophy by transcriptional regulation of myostatin via HDAC6 and FoxO3a.J. Cachexia Sarcopenia Muscle202213160562010.1002/jcsm.1283334725961
    [Google Scholar]
  282. KimJ.H. LeeH. KimJ.M. LeeB.J. KimI.J. PakK. JeonY.K. KimK. Effect of oligonol, a lychee-derived polyphenol, on skeletal muscle in ovariectomized rats by regulating body composition, protein turnover, and mitochondrial quality signaling.Food Sci. Nutr.20221041184119410.1002/fsn3.275035432979
    [Google Scholar]
  283. Sarcopenia and Its Associated Factors Among Hip Fractures Patients.Patent NCT05141981Available from: https://ClinicalTrials.gov/show/NCT05141981
  284. Sarcopenia and Diabetes Mellitus.Patent NCT04407819Available from: https://ClinicalTrials.gov/show/NCT04407819
  285. Impact of Sarcopenia Using an Easy Psoas Area Measurement.Patent NCT05323604Available from: https://ClinicalTrials.gov/show/NCT05323604
  286. Interest of a Tongue Strength Measurement in the Screening for Sarcopenia in Hospitalized Elderly Patients.Patent NCT03417609Available from: https://ClinicalTrials.gov/show/NCT03417609
  287. High-definition Surface Electromyography Markers for the Diagnosis of Sarcopenia.Patent NCT04987814Available from: https://ClinicalTrials.gov/show/NCT04987814
  288. Muscle Assessment Through Ultrasound in the Evaluation of Acute Sarcopenia.Patent NCT03740061Available from: https://ClinicalTrials.gov/show/NCT03740061
  289. Interest of a Tongue Strength Measurement in the Screening for Sarcopenia in Hospitalized Elderly Patients.Patent NCT04842773Available from: https://ClinicalTrials.gov/show/NCT04842773
  290. Association of uremic Sarcopenia and mitochondrial copy number and its clinical correlates.Patent NCT03929458Available from: https://ClinicalTrials.gov/show/NCT03929458
  291. The presence of Sarcopenia in patients with knee osteoarthritis.Patent NCT04828200Available from: https://ClinicalTrials.gov/show/NCT04828200
  292. Sarcopenia And Balance In Postmenopausal Osteoporosis.Patent NCT03832088Available from: https://ClinicalTrials.gov/show/NCT03832088
  293. Sarcopenia and Outcomes of Neuroplasty in Lumbar Spinal Stenosis.Patent NCT04374669Available from: https://ClinicalTrials.gov/show/NCT04374669
  294. Sarcopenia in Acute Care Patients: Protocol for Sarcopenia 9+.Patent NCT03917667Available from: https://ClinicalTrials.gov/show/NCT03917667
  295. Sarcopenia measured by ultrasound in hospitalized older adults.Patent NCT05113758Available from: https://ClinicalTrials.gov/show/NCT05113758
  296. Diagnostic Evaluation of Sarcopenia in Elderly Patients.Patent NCT04451005Available from: https://ClinicalTrials.gov/show/NCT04451005
  297. Prevalence of Sarcopenia in Geriatric Patients.Patent NCT04124575Available from: https://ClinicalTrials.gov/show/NCT04124575
  298. Prevalence of Sarcopenia and Its Geriatric Features.Patent NCT02664376Available from: https://ClinicalTrials.gov/show/NCT02664376
    [Google Scholar]
  299. Evaluation of a Screening Strategy for Sarcopenia: a Monocentric Prospective Cohort Study (STRAS).Patent NCT04827758Available from: https://ClinicalTrials.gov/show/NCT04827758
  300. Efficacy on Walking Ability of Electroacupuncture Therapy in Elderly Patients With Sarcopenia.Patent NCT05431010Available from: https://ClinicalTrials.gov/show/NCT05431010
  301. Using Bedside Ultrasound to Screen for Sarcopenia in Older Adults.Patent NCT04370912Available from: https://ClinicalTrials.gov/show/NCT04370912
  302. Sarcopenia and Nutritional Status in a Rehabilitation Setting.Patent NCT04791540Available from: https://ClinicalTrials.gov/show/NCT04791540
  303. Sarcopenia Physical Activity and Metabolomic.Patent NCT05199207Available from: https://ClinicalTrials.gov/show/NCT05199207
  304. VR-based rehabilitation in the treatment and prevention of Sarcopenia of older residents.Patent NCT03809104Available from: https://ClinicalTrials.gov/show/NCT03809104
  305. Validation of a Screening Test for Sarcopenia in Older People.Patent NCT03196622Available from: https://ClinicalTrials.gov/show/NCT03196622
  306. Sarcopenia and Physical Activity Intervention: a Randomized-controlled Trial.Patent NCT05071040Available from: https://ClinicalTrials.gov/show/NCT05071040
  307. Sarcopenia and Combined-modality Exercise.Patent NCT04806152Available from: https://ClinicalTrials.gov/show/NCT04806152
  308. Effects of a Resistance Training Program in Older Women With Sarcopenia.Patent NCT02628145Available from: https://ClinicalTrials.gov/show/NCT02628145
  309. Muscle Capillarization and Sarcopenia.Patent NCT03984994Available from: https://ClinicalTrials.gov/show/NCT03984994
  310. Sarcopenia, Active Aging and Oral Microbiota. Effects of HIIT in Older Adults.Patent NCT05220670Available from: https://ClinicalTrials.gov/show/NCT05220670
  311. Effectiveness of Interactive Exergame in Older Adults With Sarcopenia.Patent NCT04770558Available from: https://ClinicalTrials.gov/show/NCT04770558
  312. Effect of Home-Based Exercise Program in Older Adults With Sarcopenia.Patent NCT04598464Available from: https://ClinicalTrials.gov/show/NCT04598464
  313. Metabonomic of Patients With Hepatitis B Cirrhosis Complicated With Sarcopenia.Patent NCT05041348Available from: https://ClinicalTrials.gov/show/NCT05041348
  314. Time Course Adaptations Using Deuterated Creatine (D3Cr) Method.Patent NCT03573583Available from: https://ClinicalTrials.gov/show/NCT03573583
  315. A Pilot Study of the Impact of Vitamin D3 on Muscle Performance in Elderly Women.Patent NCT00986596Available from: https://ClinicalTrials.gov/show/NCT00986596
  316. Nutritional Biomarkers of Sarcopenia.Patent NCT05117112Available from: https://ClinicalTrials.gov/show/NCT05117112
  317. Protein Supplementation Intervention for Improving Muscle Mass and Physical Performance in Older People With Sarcopenia.Patent NCT04516421Available from: https://ClinicalTrials.gov/show/NCT04516421
  318. Fish Protein Supplementation and Sarcopenia Outcomes in the Community.Patent NCT05356559Available from: https://ClinicalTrials.gov/show/NCT05356559
  319. Nutritional Intervention for Sarcopenia.Patent NCT03891134Available from: https://ClinicalTrials.gov/show/NCT03891134
  320. Creatine-Guanidinoacetic Acid Supplementation for Sarcopenia (CREGAAS).Patent NCT04652921Available from: https://ClinicalTrials.gov/show/NCT04652921
  321. Effect of Aureobasidium Pullulans Produced β-glucan on Musculoskeletal Biomarkers in Adults With Relative Sarcopenia.Patent NCT05106686Available from: https://ClinicalTrials.gov/show/NCT05106686
  322. Effect of Ishige okamurae extract on musculoskeletal biomarkers in adults with relative Sarcopenia.Patent NCT04617951Available from: https://ClinicalTrials.gov/show/NCT04617951
  323. Improvement of Sarcopenia in Patients Following Two Different Diets.Patent NCT03405727Available from: https://ClinicalTrials.gov/show/NCT03405727
  324. Novel Nutrition Solutions for Sarcopenia.Patent NCT03429491Available from: https://ClinicalTrials.gov/show/NCT03429491
  325. Insect Protein and Muscle Protein Signaling.Patent NCT04633694Available from: https://ClinicalTrials.gov/show/NCT04633694
  326. Omega-3 Fatty Acids to Combat Sarcopenia.Patent NCT02103842Available from: https://ClinicalTrials.gov/show/NCT02103842
  327. The Effect of Calcium β-hydroxy-β-methylbutyrate (CaHMB) Supplementation in Sarcopenia in Liver Cirrhosis.Patent NCT03605147Available from: https://ClinicalTrials.gov/show/NCT03605147
  328. Effect Study of Marine Protein Hydrolysates to Prevent Loss of Muscle Mass and Physical Function in Frail Elderly.Patent NCT02890290Available from: https://ClinicalTrials.gov/show/NCT02890290
  329. Effect of branch chain amino acid therapy on Sarcopenia in children with chronic liver disease.Patent NCT05093218Available from: https://ClinicalTrials.gov/show/NCT05093218
  330. Hyperprotein Nutritional Intervention in Elderly Patients With Hip Fracture and SarcopeniaPatent NCT01404195Available from: https://ClinicalTrials.gov/show/NCT01404195
  331. Effect of Fermented Milk Containing Lactobacillus casei Strain Shirota in Sarcopenia Elderly.patent NCT04985877Available from: https://ClinicalTrials.gov/show/NCT04985877
  332. Estimation of Muscle Mass in Older Adults Using Deuterated Creatine.Patent NCT02062086Available from: https://ClinicalTrials.gov/show/NCT02062086
  333. Effect of Silkworms (Bombyx mori L.) Pupae Extracts on Musculoskeletal Biomarkers in Adults.Patent NCT04994054Available from: https://ClinicalTrials.gov/show/NCT04994054
  334. Citrulline Supplementation Combined With Exercise: Effect on Muscle Function in Elderly People (CITEX Study).Patent NCT02417428Available from: https://ClinicalTrials.gov/show/NCT02417428
  335. Melatonin Plus Aminoacids for Sarcopenic Elderly.Patent NCT03784495Available from: https://ClinicalTrials.gov/show/NCT03784495
  336. Effects of High-velocity Resistance Training and Creatine Supplementation in Healthy Aging Males.Patent NCT03530202Available from: https://ClinicalTrials.gov/show/NCT03530202
  337. Determining the Muscle Anabolic Properties of Phosphatidic Acid.Patent NCT03446924Available from: https://ClinicalTrials.gov/show/NCT03446924
  338. Beta-Hydroxy-Beta-Methylbutyrate (HMB) Supplementation After Liver Transplantation.Patent NCT03234920Available from: https://ClinicalTrials.gov/show/NCT03234920
  339. Effect of L-arginine on Microcirculation, Myogenesis and Angiogenesis Associated With Aging, Sarcopenia and Diabetes.Patent NCT04112875Available from: https://ClinicalTrials.gov/show/NCT04112875
  340. Effect of Ursolic Acid of Loquat Extract on Function of Muscle.Patent NCT02401113Available from: https://ClinicalTrials.gov/show/NCT02401113
  341. Nutritional Intervention for Age-related Muscular Function and Strength Losses-Study 2.Patent NCT02043171Available from: https://ClinicalTrials.gov/show/NCT02043171
  342. Impact of Fat Co-ingestion With Protein on the Post-prandial Anabolic Response in Elderly Men.Patent NCT01680146Available from: https://ClinicalTrials.gov/show/NCT01680146
  343. Fish Oil and Muscle Function.Patent NCT01308957Available from: https://ClinicalTrials.gov/show/NCT01308957
  344. Effects of PS-IPC Supplementation on Muscle Mass and Functional Outcomes in Older Adults.Patent NCT00926250Available from: https://ClinicalTrials.gov/show/NCT00926250
  345. Omega-3 Supplementation in Cervix Cancer Patients Undergoing Chemoradiotherapy.Patent NCT02779868Available from: https://ClinicalTrials.gov/show/NCT02779868
  346. Krill Oil and Muscle in Older Adults.Patent NCT04048096Available from: https://ClinicalTrials.gov/show/NCT04048096
  347. Integrated Physical Training With Protein Diet in Older Adults With Sarcopenia Symptoms.Patent NCT05224453Available from: https://ClinicalTrials.gov/show/NCT05224453
  348. Combined Exercise and Nutrition Intervention for Spinal Sarcopenia.Patent NCT04810312Available from: https://ClinicalTrials.gov/show/NCT04810312
  349. Feasibility Study of a Post-hospitalization Self-rehabilitation Program for Elderly Suffering of Sarcopenia.Patent NCT03834103Available from: https://ClinicalTrials.gov/show/NCT03834103
  350. Peanut Protein Supplementation to Augment Muscle Growth and Improve Markers of Muscle Quality and Health in Older Adults.Patent NCT04015479Available from: https://ClinicalTrials.gov/show/NCT04015479
  351. Effect of Nutrition Supplementation Combined With Resistance Exercise in Elderly With Sarcopenia.Patent NCT05035121Available from: https://ClinicalTrials.gov/show/NCT05035121
  352. Combined Effects of Resistance Training and Nutritional Supplements in the Treatment of Sarcopenia.Patent NCT00748696Available from: https://ClinicalTrials.gov/show/NCT00748696
  353. Vitamin D and Physical Activity for Prevention of Sarcopenia in Osteoporosis.Patent NCT01666522Available from: https://ClinicalTrials.gov/show/NCT01666522
  354. Clinical Trial of Astaxanthin Formulation With Exercise in Sarcopenia Elderly.Patent NCT03368872Available from: https://ClinicalTrials.gov/show/NCT03368872
  355. Resistance Exercise or Vibration With HMB for Sarcopenia.Patent NCT04028206Available from: https://ClinicalTrials.gov/show/NCT04028206
  356. Postacute Sarcopenia: Supplementation With β-hydroxyMethylbutyrate After Resistance Training.Patent NCT02679742Available from: https://ClinicalTrials.gov/show/NCT02679742
  357. Multidisciplinary Combined Exercise and Nutrition Intervention for Sarcopenia.Patent NCT04948736Available from: https://ClinicalTrials.gov/show/NCT04948736
  358. Effect of Carnitine Supplementation and Resistance Training on Skeletal Muscle Function.Patent NCT03907592Available from: https://ClinicalTrials.gov/show/NCT03907592
  359. Physical Activity Program for Counteracting Sarcopenia.Patent NCT04172285Available from: https://ClinicalTrials.gov/show/NCT04172285
  360. Dose Range Finding Study of Bimagrumab in Sarcopenia.Patent NCT02333331Available from: https://ClinicalTrials.gov/show/NCT02333331
  361. Insulin and Sarcopenia in the Elderly.Patent NCT00690534Available from: https://ClinicalTrials.gov/show/NCT00690534
  362. A 24-week Off-drug Extension Study in Sarcopenic Elderly Who Completed Treatment in the 6-month Core Study.Patent NCT02468674Available from: https://ClinicalTrials.gov/show/NCT02468674
  363. A Study to Assess the Efficacy, Safety, and Tolerability of Oral LPCN 1148 in Male Subjects With Cirrhosis of the Liver and Sarcopenia.Patent NCT04874350Available from: https://ClinicalTrials.gov/show/NCT04874350
  364. Effects of Insulin on Hypotension and Sarcopenia.Patent NCT03248271Available from: https://ClinicalTrials.gov/show/NCT03248271
  365. The Effects of Long Term Cyclic Testosterone Administration on Muscle Function and Bone in Older Men.Patent NCT01417364Available from: https://ClinicalTrials.gov/show/NCT01417364
  366. Testosterone in Older Men With Sarcopenia.Patent NCT00240981Available from: https://ClinicalTrials.gov/show/NCT00240981
  367. Anabolic and Inflammatory Responses to Short-Term Testosterone Administration in Older Men.Patent NCT00957801Available from: https://ClinicalTrials.gov/show/NCT00957801
  368. IGF-1, Sarcopenia and Mortality: a Cohort Study in Patient With Cognitive Impairment.Patent NCT02139410Available from: https://ClinicalTrials.gov/show/NCT02139410
  369. Effects of Aromatase Inhibition versus Testosterone in Older Men With Low Testosterone: Randomized-Controlled Trial.Patent NCT00104572Available from: https://ClinicalTrials.gov/show/NCT00104572
  370. Growth Hormone in Decompensated Liver Cirrhosis.Patent NCT05253287Available from: https://ClinicalTrials.gov/show/NCT05253287
  371. Effect of a Ghrelin Receptor Agonist on Muscle and Bone.Patent NCT04021706Available from: https://ClinicalTrials.gov/show/NCT04021706
  372. Understanding Acute Sarcopenia.Patent NCT03858192Available from: https://ClinicalTrials.gov/show/NCT03858192
  373. Clinical Trial to Assess the Preventive Effects of Cetylpyridinium Chloride on Sarcopenia.Patent NCT02575235Available from: https://ClinicalTrials.gov/show/NCT02575235
  374. A Study of the Safety and Efficacy of MK-0773 in Women With Sarcopenia (Loss of Muscle Mass)(MK-0773-005).Patent NCT00529659Available from: https://ClinicalTrials.gov/show/NCT00529659
  375. Study of the Safety and Efficacy of REGN1033 (SAR391786) in Patients With Sarcopenia.Patent NCT01963598Available from: https://ClinicalTrials.gov/show/NCT01963598
  376. Impact of Orally Administered BPM31510 on Mitochondrial Energetics in Older Adults With Sarcopenia.Patent NCT04999488Available from: https://ClinicalTrials.gov/show/NCT04999488
  377. Allopurinol in Functional Impairment (ALFIE) Trial: 'Improving Muscle Strength.Patent NCT01550107Available from: https://ClinicalTrials.gov/show/NCT01550107
  378. Evaluation of Efficacy, Tolerability, and Pharmacokinetics of MYMD1 for Chronic Inflammation and Sarcopenia/Frailty.Patent NCT05283486Available from: https://ClinicalTrials.gov/show/NCT05283486
  379. A Study of Muscle Strength Maintenance in Older Adults.Patent NCT01989793Available from: https://ClinicalTrials.gov/show/NCT01989793
  380. Nutritional and Contractile Regulation of Muscle Growth.Patent NCT00891696Available from: https://ClinicalTrials.gov/show/NCT00891696
  381. Characterizing the Incretin Effect of Amino Acids and Defining GLP-1 Role on Skeletal Muscle.Patent NCT02370745Available from: https://ClinicalTrials.gov/show/NCT02370745
  382. A Double-blind, Placebo Controlled, Randomized INTerventional Clinical Trial (SARA-INT).Patent NCT03452488Available from: https://ClinicalTrials.gov/show/NCT03452488
  383. Evaluation of a New Screening Method for Sarcopenia in Rheumatoid Arthritis.Patent NCT04933097Available from: https://ClinicalTrials.gov/show/NCT04933097
  384. Role of AST120 for Sarcopenia Prevention in Pre-dialysis Chronic Kidney Disease.Patent NCT03788252Available from: https://ClinicalTrials.gov/show/NCT03788252
  385. TWK10 improves muscle mass and functional performance in frail older adults.Patent NCT04893746Available from: https://ClinicalTrials.gov/show/NCT04893746
  386. The Effect of Bovine Colostrum Supplementation in Older Adults.Patent NCT01792297Available from: https://ClinicalTrials.gov/show/NCT01792297
  387. Effect of Immunocal® With Exercise Versus Casein With Exercise on Aging Processes in Elderly Persons.Patent NCT00935610Available from: https://ClinicalTrials.gov/show/NCT00935610
  388. The Effect of Thyroid Hormone Therapy on Muscle Mass and Function in Older Adults With Subclinical Hypothyroidism.Patent NCT04354896Available from: https://ClinicalTrials.gov/show/NCT04354896
  389. Does Potassium Bicarbonate Improve the Effect of Dietary Protein on Bone and Muscle?Patent NCT00730184Available from: https://ClinicalTrials.gov/show/NCT00730184
  390. Ibuprofen Supplementation After Resistance Training and Its Effects on Bone in Older Women.Patent NCT01886196Available from: https://ClinicalTrials.gov/show/NCT01886196
  391. Effect of Obesity-derived Cytokines on Protein Turnover and Carbohydrate Metabolism in Human Skeletal Muscle.Patent NCT02305069Available from: https://ClinicalTrials.gov/show/NCT02305069
  392. Effect of Potassium Bicarbonate Supplementation on Bone and Muscle in Older Adults.Patent NCT00357214Available from: https://ClinicalTrials.gov/show/NCT00357214
  393. Impacts of Mechanistic Target of Rapamycin (mTOR) Inhibition on Aged Human Muscle (Rapamune).Patent NCT05414292Available from: https://ClinicalTrials.gov/show/NCT05414292
  394. Impacts of Nicotinamide Riboside on Functional Capacity and Muscle Physiology in Older Veterans.Patent NCT04691986Available from: https://ClinicalTrials.gov/show/NCT04691986
  395. Systemic Hormones and Muscle Protein Synthesis.Patent NCT03054168Available from: https://ClinicalTrials.gov/show/NCT03054168
  396. Impact of Fat-free Mass in the Carboplatin Calculated Dose and Chemotherapeutic Toxicity in Patients With Advanced NSCLC.Patent NCT02734069Available from: https://ClinicalTrials.gov/show/NCT02734069
  397. Angiotensin Receptors and Age Related Mitochondrial Decline in HIV Patients.Patent NCT02606279Available from: https://ClinicalTrials.gov/show/NCT02606279
  398. Mediterranean Diet, Circuit Resistance Training, Empagliflozin in Elderly With Type 2 Diabetes: a Study Protocol.Patent NCT03560375Available from: https://ClinicalTrials.gov/show/NCT03560375
  399. Trial of Nicotinamide Riboside and Co-enzyme Q10 in Chronic Kidney Disease.Patent NCT03579693Available from: https://ClinicalTrials.gov/show/NCT03579693
  400. The Effect of Intradialytic Parenteral Nutrition on Nutritional Status and Quality of Life in Hemodialysis Patients.Patent NCT04094038Available from: https://ClinicalTrials.gov/show/NCT04094038
  401. The Physiologic Effects of Intranasal Oxytocin on Sarcopenic Obesity.Patent NCT03119610Available from: https://ClinicalTrials.gov/show/NCT03119610
  402. The Effect of Alfacalcidol on Muscle Strength in Elderly Indonesian Women : A Randomized Controlled Trial.Patent NCT02327091Available from: https://ClinicalTrials.gov/show/NCT02327091
/content/journals/cmp/10.2174/1874467216666230308142137
Loading
/content/journals/cmp/10.2174/1874467216666230308142137
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test