Skip to content
2000
image of Two GnRH-mitoxantrone Conjugates, Con-3 and Con-7, Target Endometrial Cancer Cells

Abstract

Introduction:

Endometrial cancer is one of the most common gynecological malignancies. Endometrial cancer cells express the gonadotropin-releasing hormone (GnRH) and its receptor (GnRH-R). Among the various therapeutic approaches for the treatment of endometrial cancer is the use of GnRH conjugates, such as the AN-152, created by linking the [D-Lys6] GnRH with the cytotoxic doxorubicin through an ester bond. An undesirable property of these conjugates is their vulnerability to plasma carboxylesterases, which cleave the ester bond to release doxorubicin before reaching the cancer cells.

Methods:

To overcome this problem, we recently developed the Con-3 and Con-7, which are GnRH analogs conjugated through a disulfide bond with the cytotoxic mitoxantrone. In this study, we determined the cytotoxic properties of the Con-3 and Con-7 on the Ishikawa endometrial cancer cells, assuming that their interaction with the GnRH-R of cells exposes the conjugated mitoxantrone to the cellular thioredoxin. The cellular thioredoxin reduces the disulfide bond of Con-3 & Con-7 to release mitoxantrone, which accumulates in the cancer cells and exerts its cytotoxic actions.

Results:

Indeed, treatment of Ishikawa cells with Con-3, Con-7, or the free unconjugated mitoxantrone increased their apoptosis and decreased their proliferation in a dose- and time-dependent manner, displaying half-maximal inhibitory concentrations (IC) of 0.64 - 1.15 µM. In specific, the ICvalues on days 2, 3, and 4 were 1.45, 0.64, and 0.83 μΜ, respectively, for Con-3, 0.91, 0.82 μΜ, and 1.00 μΜ, respectively for Con-7 and 1.15, 0.98, 0.78 μM, respectively for mitoxantrone.

Conclusion:

In contrast, the free, mitoxantrone-unconjugated peptides did not affect the proliferation of Ishikawa cells. The Con-3 and Con-7 could put the basis for the development of a new class of anticancer drugs for endometrial cancer, which will act as “prodrugs” that deliver the cytotoxic mitoxantrone in a GnRH-R-specific manner.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmp/10.2174/0118761429343090250121052955
2025-02-03
2025-05-02
The full text of this item is not currently available.

References

  1. Makker V. MacKay H. Ray-Coquard I. Levine D.A. Westin S.N. Aoki D. Oaknin A. Endometrial cancer. Nat. Rev. Dis. Primers 2021 7 1 88 10.1038/s41572‑021‑00324‑8 34887451
    [Google Scholar]
  2. Morice P. Leary A. Creutzberg C. Abu-Rustum N. Darai E. Endometrial cancer. Lancet 2016 387 10023 1094 1108 10.1016/S0140‑6736(15)00130‑0 26354523
    [Google Scholar]
  3. Gallagher C.J. Oliver R.T.D. Oram D.H. Fowler C.G. Blake P.R. Mantell B.S. Slevin M.L. Hope-Stone H.F. A new treatment for endometrial cancer with gonadotrophin releasing‐hormone analogue. BJOG 1991 98 10 1037 1041 10.1111/j.1471‑0528.1991.tb15343.x 1751436
    [Google Scholar]
  4. Emons G. Schally A.V. The use of luteinizing hormone releasing hormone agonists and antagonists in gynaecological cancers. Hum. Reprod. 1994 9 7 1364 1379 10.1093/oxfordjournals.humrep.a138714 7962452
    [Google Scholar]
  5. Emons G. Gründker C. The Role of Gonadotropin-Releasing Hormone The role of Gonadotropin-Releasing Hormone (GnRH) in endometrial cancer. Cells 2021 10 2 292 10.3390/cells10020292 33535622
    [Google Scholar]
  6. Emons G. Muller V. Ortmann O. Grossmann G. Trautner U. Stuckrad B. Schulz K. Schally A. Luteinizing hormone-releasing hormone agonist triptorelin antagonizes signal transduction and mitogenic activity of epidermal growth factor in human ovarian and endometrial cancer cell lines. Int. J. Oncol. 1996 9 6 1129 1137 10.3892/ijo.9.6.1129 21541621
    [Google Scholar]
  7. Emons G. Müller V. Ortmann O. Schulz K.D. Effects of LHRH-analogues on mitogenic signal transduction in cancer cells. J. Steroid Biochem. Mol. Biol. 1998 65 1-6 199 206 10.1016/S0960‑0760(97)00189‑1 9699874
    [Google Scholar]
  8. Kleinman D. Douvdevani A. Schally A.V. Levy J. Sharoni Y. Direct growth inhibition of human endometrial cancer cells by the gonadotropin-releasing hormone antagonist SB-75: Role of apoptosis. Am. J. Obstet. Gynecol. 1994 170 1 96 102 10.1016/S0002‑9378(13)70287‑4 8296852
    [Google Scholar]
  9. Imai A. Takagi A. Horibe S. Takagi H. Tamaya T. Fas and Fas ligand system may mediate antiproliferative activity of gonadotropin-releasing hormone receptor in endometrial cancer cells. Int. J. Oncol. 1998 13 1 97 100 10.3892/ijo.13.1.97 9625809
    [Google Scholar]
  10. Emons G. Schröder B. Ortmann O. Westphalen S. Schulz K.D. Schally A.V. High affinity binding and direct antiproliferative effects of luteinizing hormone-releasing hormone analogs in human endometrial cancer cell lines. J. Clin. Endocrinol. Metab. 1993 77 6 1458 1464 8263128
    [Google Scholar]
  11. Irmer G. Bürger C. Ortmann O. Schulz K.D. Emons G. Expression of luteinizing hormone releasing hormone and its mRNA in human endometrial cancer cell lines. J. Clin. Endocrinol. Metab. 1994 79 3 916 919 8077383
    [Google Scholar]
  12. Engel J.B. Hahne J.C. Häusler S.F. Meyer S. Segerer S.E. Diessner J. Dietl J. Honig A. Peptidomimetic GnRH antagonist AEZS-115 inhibits the growth of ovarian and endometrial cancer cells. Anticancer Res. 2012 32 5 2063 2068 22593489
    [Google Scholar]
  13. Pahwa G.S. Kullander S. Vollmer G. Oberheuser F. Knuppen R. Emons G. Specific low affinity binding sites for gonadotropin-releasing hormone in human endometrial carcinomata. Eur. J. Obstet. Gynecol. Reprod. Biol. 1991 41 2 135 142 10.1016/0028‑2243(91)90091‑X 1657655
    [Google Scholar]
  14. Srkalovic G. Wittliff J.L. Schally A.V. Detection and partial characterization of receptors for [D-Trp6]-luteinizing hormone-releasing hormone and epidermal growth factor in human endometrial carcinoma. Cancer Res. 1990 50 6 1841 1846 2155060
    [Google Scholar]
  15. Jankowska A.G. Andrusiewicz M. Fischer N. Warchol J.B. Expression of hCG and GnRHs and their receptors in endometrial carcinoma and hyperplasia. Int. J. Gynecol. Cancer 2010 20 1 92 101 10.1111/IGC.0b013e3181bbe933 20130508
    [Google Scholar]
  16. Desaulniers A.T. Cederberg R.A. Lents C.A. White B.R. Expression and role of gonadotropin-releasing hormone 2 and Its receptor in mammals. Front. Endocrinol. (Lausanne) 2017 8 269 10.3389/fendo.2017.00269 29312140
    [Google Scholar]
  17. Desaulniers A.T. White B.R. Role of gonadotropin-releasing hormone 2 and its receptor in human reproductive cancers. Front. Endocrinol. (Lausanne) 2024 14 1341162 10.3389/fendo.2023.1341162 38260130
    [Google Scholar]
  18. Sealfon S.C. Weinstein H. Millar R.P. Molecular mechanisms of ligand interaction with the gonadotropin-releasing hormone receptor. Endocr. Rev. 1997 18 2 180 205 10.1210/edrv.18.2.0295 9101136
    [Google Scholar]
  19. Emons G. Kaufmann M. Gorchev G. Tsekova V. Gründker C. Günthert A.R. Hanker L.C. Velikova M. Sindermann H. Engel J. Schally A.V. Dose escalation and pharmacokinetic study of AEZS-108 (AN-152), an LHRH agonist linked to doxorubicin, in women with LHRH receptor-positive tumors. Gynecol. Oncol. 2010 119 3 457 461 10.1016/j.ygyno.2010.08.003 20828803
    [Google Scholar]
  20. Garrido M.P. Hernandez A. Vega M. Araya E. Romero C. Conventional and new proposals of GnRH therapy for ovarian, breast, and prostatic cancers. Front. Endocrinol. (Lausanne) 2023 14 1143261 10.3389/fendo.2023.1143261 37056674
    [Google Scholar]
  21. Nagy A. Schally A.V. Armatis P. Szepeshazi K. Halmos G. Kovacs M. Zarandi M. Groot K. Miyazaki M. Jungwirth A. Horvath J. Cytotoxic analogs of luteinizing hormone-releasing hormone containing doxorubicin or 2-pyrrolinodoxorubicin, a derivative 500-1000 times more potent. Proc. Natl. Acad. Sci. USA 1996 93 14 7269 7273 10.1073/pnas.93.14.7269 8692981
    [Google Scholar]
  22. Schally A.V. Nagy A. Cancer chemotherapy based on targeting of cytotoxic peptide conjugates to their receptors on tumors. Eur. J. Endocrinol. 1999 141 1 1 14 10.1530/eje.0.1410001 10407215
    [Google Scholar]
  23. Gründker C. Völker P. Griesinger F. Ramaswamy A. Nagy A. Schally A.V. Emons G. Antitumor effects of the cytotoxic luteinizing hormone–releasing hormone analog AN-152 on human endometrial and ovarian cancers xenografted into nude mice. Am. J. Obstet. Gynecol. 2002 187 3 528 537 10.1067/mob.2002.124278 12237622
    [Google Scholar]
  24. Emons G. Gorchev G. Sehouli J. Wimberger P. Stähle A. Hanker L. Hilpert F. Sindermann H. Gründker C. Harter P. Efficacy and safety of AEZS-108 (INN: Zoptarelin Doxorubicin Acetate) an LHRH agonist linked to doxorubicin in women with platinum refractory or resistant ovarian cancer expressing LHRH receptors: A multicenter Phase II trial of the ago-study group (AGO GYN 5). Gynecol. Oncol. 2014 133 3 427 432 10.1016/j.ygyno.2014.03.576 24713545
    [Google Scholar]
  25. Ghaly H.S.A. Varamini P. New drug delivery strategies targeting the GnRH receptor in breast and other cancers. Endocr. Relat. Cancer 2021 28 11 R251 R269 10.1530/ERC‑20‑0442 34236041
    [Google Scholar]
  26. Nagy A. Plonowski A. Schally A.V. Stability of cytotoxic luteinizing hormone-releasing hormone conjugate (AN-152) containing doxorubicin 14- O -hemiglutarate in mouse and human serum in vitro: Implications for the design of preclinical studies. Proc. Natl. Acad. Sci. USA 2000 97 2 829 834 10.1073/pnas.97.2.829 10639165
    [Google Scholar]
  27. Biniari G. Markatos C. Nteli A. Tzoupis H. Simal C. Vlamis-Gardikas A. Karageorgos V. Pirmettis I. Petrou P. Venihaki M. Liapakis G. Tselios T. Rational design, synthesis and binding affinity studies of anthraquinone derivatives conjugated to Gonadotropin-Releasing Hormone (GnRH) analogues towards selective immunosuppression of hormone-dependent cancer. Int. J. Mol. Sci. 2023 24 20 15232 10.3390/ijms242015232 37894912
    [Google Scholar]
  28. Allegra J.C. Woodcock T. Woolf S. Henderson I.C. Bryan S. Reisman A. Dukart G. A randomized trial comparing mitoxantrone with doxorubicin in patients with stage IV breast cancer. Invest. New Drugs 1985 3 2 153 161 10.1007/BF00174163 3894278
    [Google Scholar]
  29. Wang S.L. Lee J.J. Liao A.T. Comparison of efficacy and toxicity of doxorubicin and mitoxantrone in combination chemotherapy for canine lymphoma. Can. Vet. J. 2016 57 3 271 276 26933263
    [Google Scholar]
  30. Arnér E.S.J. Holmgren A. The thioredoxin system in cancer. Semin. Cancer Biol. 2006 16 6 420 426 10.1016/j.semcancer.2006.10.009 17092741
    [Google Scholar]
  31. Sengupta R. Holmgren A. Thioredoxin and glutaredoxin-mediated redox regulation of ribonucleotide reductase. World J. Biol. Chem. 2014 5 1 68 74 10.4331/wjbc.v5.i1.68 24600515
    [Google Scholar]
  32. Lincoln D.T. Ali Emadi E.M. Tonissen K.F. Clarke F.M. The thioredoxin-thioredoxin reductase system: over-expression in human cancer. Anticancer Res. 2003 23 3B 2425 2433 12894524
    [Google Scholar]
  33. Boadle D.J. Tattersall M.H.N. Phase I.I. Phase II study of mitoxantrone in advanced or metastatic endometrial carcinoma. Aust. N. Z. J. Obstet. Gynaecol. 1987 27 4 341 342 10.1111/j.1479‑828X.1987.tb01023.x 3453676
    [Google Scholar]
  34. Cui M. Liu Y. Liu Y. Li T. Chen X. Da L. Oral nano-formulations for endocrine therapy of endometrioid adenocarcinomas. Biomed. Pharmacother. 2024 179 117328 10.1016/j.biopha.2024.117328 39243435
    [Google Scholar]
  35. Bajracharya R. Song J.G. Patil B.R. Lee S.H. Noh H.M. Kim D.H. Kim G.L. Seo S.H. Park J.W. Jeong S.H. Lee C.H. Han H.K. Functional ligands for improving anticancer drug therapy: Current status and applications to drug delivery systems. Drug Deliv. 2022 29 1 1959 1970 10.1080/10717544.2022.2089296 35762636
    [Google Scholar]
  36. Zhang J. Hu F. Aras O. Chai Y. An F. Small molecule‐drug conjugates: Opportunities for the development of targeted anticancer drugs. ChemMedChem 2024 19 11 e202300720 10.1002/cmdc.202300720 38396351
    [Google Scholar]
  37. Bucevičius J. Lukinavičius G. Gerasimaitė R. The use of Hoechst Dyes for DNA staining and beyond. Chemosensors 2018 6 2 18 10.3390/chemosensors6020018
    [Google Scholar]
  38. Bell D.H. Characterization of the fluorescence of the antitumor agent, mitoxantrone. Biochim. Biophys. Acta Gene Struct. Expr. 1988 949 1 132 137 10.1016/0167‑4781(88)90063‑2 3334848
    [Google Scholar]
  39. Costigan A. Hollville E. Martin S.J. Discriminating between apoptosis, necrosis, necroptosis, and ferroptosis by microscopy and flow cytometry. Curr. Protoc. 2023 3 12 e951 10.1002/cpz1.951 38112058
    [Google Scholar]
  40. Murugaraj J. Gnanasekar S. Sivanandhan G. Renganathan A. Rajesh M. MubarakAli D. Kapildev G. Manickavasagam M. Thajuddin N. Premkumar R. Premkumar K. Biogenic silver nanoparticles for cancer treatment: An experimental report. Colloids Surf. B Biointerfaces 2013 106C 86 92
    [Google Scholar]
  41. Majtnerova P. Capek J. Petira F. Handl J. Rousar T. Quantitative spectrofluorometric assay detecting nuclear condensation and fragmentation in intact cells. Sci. Rep. 2021 11 1 11921 10.1038/s41598‑021‑91380‑3 34099803
    [Google Scholar]
  42. Holmgren A. Lu J. Thioredoxin and thioredoxin reductase: Current research with special reference to human disease. Biochem. Biophys. Res. Commun. 2010 396 1 120 124 10.1016/j.bbrc.2010.03.083 20494123
    [Google Scholar]
  43. Saccoccia F. Angelucci F. Boumis G. Carotti D. Desiato G. Miele A. Bellelli A. Thioredoxin reductase and its inhibitors. Curr. Protein Pept. Sci. 2014 15 6 621 646 10.2174/1389203715666140530091910 24875642
    [Google Scholar]
  44. Suliman R.S. Alghamdi S.S. Ali R. Rahman I. Alqahtani T. Frah I.K. Aljatli D.A. Huwaizi S. Algheribe S. Alehaideb Z. Islam I. Distinct mechanisms of cytotoxicity in novel nitrogenous heterocycles: Future directions for a new anti-cancer agent. Molecules 2022 27 8 2409 10.3390/molecules27082409 35458609
    [Google Scholar]
  45. Xu C. Li X. Li T. Wang X. Yang Y. Xiao L. Shen H. Combination effects of paclitaxel with signaling inhibitors in endometrial cancer cells. Asian Pac. J. Cancer Prev. 2011 12 11 2951 2957 22393970
    [Google Scholar]
  46. Rantanen V. Grénman S. Kulmala J. Grénman R. Comparative evaluation of cisplatin and carboplatin sensitivity in endometrial adenocarcinoma cell lines. Br. J. Cancer 1994 69 3 482 486 10.1038/bjc.1994.87 8123477
    [Google Scholar]
  47. Markatos C. Biniari G. Chepurny O.G. Karageorgos V. Tsakalakis N. Komontachakis G. Vlata Z. Venihaki M. Holz G.G. Tselios T. Liapakis G. Cytotoxic activity of novel GnRH analogs conjugated with Mitoxantrone in ovarian cancer cells. Molecules 2024 29 17 4127 10.3390/molecules29174127 39274973
    [Google Scholar]
  48. Preethi S. Kumar H. Rawal V.B. Ajmeer R. Jain V. Overview of mitoxantrone-a potential candidate for treatment of breast cancer. Int. J. Appl. Pharm. 2022 14 2 10 22
    [Google Scholar]
  49. Evison B. J. Sleebs B. E. Watson K. G. Phillips D. R. Cutts S. M. Mitoxantrone, more than just another topoisomerase II poison. Med Res Rev. 2016 36 2 248 26286294
    [Google Scholar]
  50. Lillig C.H. Holmgren A. Thioredoxin and related molecules--from biology to health and disease. Antioxid. Redox Signal. 2007 9 1 25 47 10.1089/ars.2007.9.25 17115886
    [Google Scholar]
  51. Rubartelli A. Bajetto A. Allavena G. Wollman E. Sitia R. Secretion of thioredoxin by normal and neoplastic cells through a leaderless secretory pathway. J. Biol. Chem. 1992 267 34 24161 24164 10.1016/S0021‑9258(18)35742‑9 1332947
    [Google Scholar]
  52. Nakamura H. Masutani H. Yodoi J. Extracellular thioredoxin and thioredoxin-binding protein 2 in control of cancer. Semin. Cancer Biol. 2006 16 6 444 451 10.1016/j.semcancer.2006.09.001 17095246
    [Google Scholar]
  53. Tanudji M. Hevi S. Chuck S.L. The nonclassic secretion of thioredoxin is not sensitive to redox state. Am. J. Physiol. Cell Physiol. 2003 284 5 C1272 C1279 10.1152/ajpcell.00521.2002 12529245
    [Google Scholar]
  54. Tapeinou A. Giannopoulou E. Simal C. Hansen B.E. Kalofonos H. Apostolopoulos V. Vlamis-Gardikas A. Tselios T. Design, synthesis and evaluation of an anthraquinone derivative conjugated to myelin basic protein immunodominant (MBP85-99) epitope: Towards selective immunosuppression. Eur. J. Med. Chem. 2018 143 621 631 10.1016/j.ejmech.2017.11.063 29216561
    [Google Scholar]
  55. Enache M. Toader A. Enache M. Mitoxantrone-surfactant interactions: A physicochemical overview. Molecules 2016 21 10 1356 10.3390/molecules21101356 27754390
    [Google Scholar]
  56. Burns C.P. Haugstad B.N. Mossman C.J. North J.A. Ingraham L.M. Membrane lipid alteration: Effect on cellular uptake of mitoxantrone. Lipids 1988 23 5 393 397 10.1007/BF02535508 3412115
    [Google Scholar]
  57. Limbird L.E. Identification of receptors using direct radioligand binding techniques. Cell Surface Receptors: A Short Course on Theory and Methods. Boston, MA Springer US 1996 61 122 10.1007/978‑1‑4613‑1255‑0_3
    [Google Scholar]
  58. Hislop J.N. Madziva M.T. Everest H.M. Harding T. Uney J.B. Willars G.B. Millar R.P. Troskie B.E. Davidson J.S. McArdle C.A. Desensitization and internalization of human and xenopus gonadotropin-releasing hormone receptors expressed in alphaT4 pituitary cells using recombinant adenovirus. Endocrinology 2000 141 12 4564 4575 10.1210/endo.141.12.7813 11108269
    [Google Scholar]
  59. Millar R.P. Pawson A.J. Morgan K. Rissman E.F. Lu Z.L. Diversity of actions of GnRHs mediated by ligand-induced selective signaling. Front. Neuroendocrinol. 2008 29 1 17 35 10.1016/j.yfrne.2007.06.002 17976709
    [Google Scholar]
  60. Chen C.L. Cheung L.W.T. Lau M.T. Choi J.H. Auersperg N. Wang H.S. Wong A.S.T. Leung P.C.K. Differential role of gonadotropin-releasing hormone on human ovarian epithelial cancer cell invasion. Endocr. J. 2007 31 3 311 320 10.1007/s12020‑007‑0041‑8 17906381
    [Google Scholar]
  61. Vrecl M. Heding A. Hanyaloglu A. Taylor P.L. Eidne K.A. Internalization kinetics of the gonadotropin-releasing hormone (GnRH) receptor. Pflugers Arch. 2000 439 S1 Suppl. 1 r019 r020 10.1007/s004240000075 28176059
    [Google Scholar]
  62. Pawson A.J. Katz A. Sun Y.M. Lopes J. Illing N. Millar R.P. Davidson J.S. Contrasting internalization kinetics of human and chicken gonadotropin-releasing hormone receptors mediated by C-terminal tail. J. Endocrinol. 1998 156 3 R9 R12 10.1677/joe.0.156r009 9582516
    [Google Scholar]
  63. Sugiyama M. Imai A. Furui T. Tamaya T. Gonadotropin-releasing hormone retards doxorubicin-induced apoptosis and serine/threonine phosphatase inhibition in ovarian cancer cells. Oncol. Rep. 2005 13 5 813 817 10.3892/or.13.5.813 15809743
    [Google Scholar]
  64. Kim J.H. Park D.C. Kim J.W. Choi Y.K. Lew Y.O. Kim D.H. Jung J.K. Lim Y.A. Namkoong S.E. Antitumor effect of GnRH agonist in epithelial ovarian cancer. Gynecol. Oncol. 1999 74 2 170 180 10.1006/gyno.1999.5413 10419728
    [Google Scholar]
  65. Zhang N. Qiu J. Zheng T. Zhang X. Hua K. Zhang Y. Goserelin promotes the apoptosis of epithelial ovarian cancer cells by upregulating forkhead box O1 through the PI3K/AKT signaling pathway. Oncol. Rep. 2018 39 3 1034 1042 29286125
    [Google Scholar]
  66. Gründker C. Völker P. Emons G. Antiproliferative signaling of luteinizing hormone-releasing hormone in human endometrial and ovarian cancer cells through G protein α(I)-mediated activation of phosphotyrosine phosphatase. Endocrinology 2001 142 6 2369 2380 10.1210/endo.142.6.8190 11356684
    [Google Scholar]
  67. Castellón E. Clementi M. Hitschfeld C. Sánchez C. Benítez D. Sáenz L. Contreras H. Huidobro C. Effect of leuprolide and cetrorelix on cell growth, apoptosis, and GnRH receptor expression in primary cell cultures from human prostate carcinoma. Cancer Invest. 2006 24 3 261 268 10.1080/07357900600629591 16809153
    [Google Scholar]
  68. Montagnani Marelli M. Moretti R. Mai S. Procacci P. Limonta P. Gonadotropin-releasing hormone agonists reduce the migratory and the invasive behavior of androgen-independent prostate cancer cells by interfering with the activity of IGF-I. Int. J. Oncol. 2007 30 1 261 271 10.3892/ijo.30.1.261 17143537
    [Google Scholar]
  69. Ravenna L. Salvatori L. Morrone S. Lubrano C. Cardillo M.R. Sciarra F. Frati L. Di Silverio F. Petrangeli E. Effects of triptorelin, a gonadotropin-releasing hormone agonist, on the human prostatic cell lines PC3 and LNCaP. J. Androl. 2000 21 4 549 557 10.1002/j.1939‑4640.2000.tb02120.x 10901441
    [Google Scholar]
  70. Lu Z.L. Gallagher R. Sellar R. Coetsee M. Millar R.P. Mutations remote from the human gonadotropin-releasing hormone (GnRH) receptor-binding sites specifically increase binding affinity for GnRH II but not GnRH I: Evidence for ligand-selective, receptor-active conformations. J. Biol. Chem. 2005 280 33 29796 29803 10.1074/jbc.M413520200 15967801
    [Google Scholar]
  71. Millar R.P. Pawson A.J. Outside-in and inside-out signaling: The new concept that selectivity of ligand binding at the gonadotropin-releasing hormone receptor is modulated by the intracellular environment. Endocrinology 2004 145 8 3590 3593 10.1210/en.2004‑0461 15265825
    [Google Scholar]
  72. Kenakin T.P. How different tissues process drug response. A Pharmacology Primer. 4th ed Kenakin T.P. San Diego Academic Press 2014 21 43 10.1016/B978‑0‑12‑407663‑1.00002‑8
    [Google Scholar]
  73. Ma W. Wang X. Zhang D. Mu X. Research progress of disulfide bond based tumor microenvironment targeted drug delivery system. Int. J. Nanomedicine 2024 19 7547 7566 10.2147/IJN.S471734 39071505
    [Google Scholar]
  74. Santra S. Kaittanis C. Santiesteban O.J. Perez J.M. Cell-specific, activatable, and theranostic prodrug for dual-targeted cancer imaging and therapy. J. Am. Chem. Soc. 2011 133 41 16680 16688 10.1021/ja207463b 21910482
    [Google Scholar]
  75. Sheyi R. de la Torre B.G. Albericio F. Linkers: An assurance for controlled delivery of antibody-drug conjugate. Pharmaceutics 2022 14 2 396 10.3390/pharmaceutics14020396 35214128
    [Google Scholar]
  76. Minko T. Rodriguez-Rodriguez L. Pozharov V. Nanotechnology approaches for personalized treatment of multidrug resistant cancers. Adv. Drug Deliv. Rev. 2013 65 13-14 1880 1895 10.1016/j.addr.2013.09.017 24120655
    [Google Scholar]
  77. Saad M. Garbuzenko O.B. Ber E. Chandna P. Khandare J.J. Pozharov V.P. Minko T. Receptor targeted polymers, dendrimers, liposomes: Which nanocarrier is the most efficient for tumor-specific treatment and imaging? J. Control. Release 2008 130 2 107 114 10.1016/j.jconrel.2008.05.024 18582982
    [Google Scholar]
  78. Taratula O. Kuzmov A. Shah M. Garbuzenko O.B. Minko T. Nanostructured lipid carriers as multifunctional nanomedicine platform for pulmonary co-delivery of anticancer drugs and siRNA. J. Control. Release 2013 171 3 349 357 10.1016/j.jconrel.2013.04.018 23648833
    [Google Scholar]
  79. Khandare J.J. Chandna P. Wang Y. Pozharov V.P. Minko T. Novel polymeric prodrug with multivalent components for cancer therapy. J. Pharmacol. Exp. Ther. 2006 317 3 929 937 10.1124/jpet.105.098855 16469865
    [Google Scholar]
  80. Cochrane D.R. Spoelstra N.S. Howe E.N. Nordeen S.K. Richer J.K. MicroRNA-200c mitigates invasiveness and restores sensitivity to microtubule-targeting chemotherapeutic agents. Mol. Cancer Ther. 2009 8 5 1055 1066 10.1158/1535‑7163.MCT‑08‑1046 19435871
    [Google Scholar]
  81. Moxley K.M. McMeekin D.S. Endometrial carcinoma: A review of chemotherapy, drug resistance, and the search for new agents. Oncologist 2010 15 10 1026 1033 10.1634/theoncologist.2010‑0087 20930101
    [Google Scholar]
  82. Vollmer G. Endometrial cancer: Experimental models useful for studies on molecular aspects of endometrial cancer and carcinogenesis. Endocr. Relat. Cancer 2003 10 1 23 42 10.1677/erc.0.0100023 12653669
    [Google Scholar]
  83. Van Nyen T. Moiola C.P. Colas E. Annibali D. Amant F. Modeling endometrial cancer: Past, present, and future. Int. J. Mol. Sci. 2018 19 8 2348 10.3390/ijms19082348 30096949
    [Google Scholar]
/content/journals/cmp/10.2174/0118761429343090250121052955
Loading
/content/journals/cmp/10.2174/0118761429343090250121052955
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test