Skip to content
2000
image of Chrysin: A Potential Antiandrogen Ligand to Mutated Androgen Receptors in Prostate Cancer

Abstract

Background:

Androgen receptor mutations, particularly T877A and W741L, promote prostate cancer (PCa). The main therapies against PCa use androgen receptor (AR) antagonists, including Bicalutamide; but these drugs lose their effectiveness over time. Chrysin is a flavonoid with several biological activities, including antitumoral properties; however, its potential as an antiandrogen must be explored.

Objective:

The present study aimed to characterize and compare the molecular interactions of chrysin with wild-type and mutated ARs and their cytotoxic effect in an model of PCa.

Methods:

The affinities and molecular interactions of Bicalutamide and chrysin for the wild-type and mutated forms of AR were assessed by molecular docking. The MTT assay was used to evaluate the cytotoxic effect of these ligands on the DU-145 (T877A) and PC3 (W741L) PCa cell lines and on non-tumoral RWPE-1 cells.

Results:

The molecular dockings predicted a higher affinity of chrysin for the mutated AR than the wild-type AR (WT-AR); meanwhile, Bicalutamide presented a higher affinity for WT-AR. The amino acid residues involved in molecular interactions within the binding site of these receptors changed according to the ligands and AR variants, affecting their affinity scores. Chrysin exerted a specific cytotoxic effect against the PCa tumoral cells but none against the non-tumoral cells. In contrast, Bicalutamide showed potent cytotoxicity against all cell lines. Thus, the cytotoxic effect of chrysin against the DU-145 and PC3 cell line may be related to its strong and specific molecular interaction with the mutated ARs.

Conclusion:

This study evidences the potential antiandrogen effect of chrysin on mutated AR and specific cytotoxicity against PCa cells, suggesting that this flavonoid should be further studied to confirm its potential for therapy of advanced PCa.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmp/10.2174/0118761429350210250102131611
2025-01-09
2025-01-22
Loading full text...

Full text loading...

/deliver/fulltext/cmp/10.2174/0118761429350210250102131611/e18761429350210.html?itemId=/content/journals/cmp/10.2174/0118761429350210250102131611&mimeType=html&fmt=ahah

References

  1. Ferlay J. Ervik M. Lam F. Colombet M. Mery L. Piñeros M. Znaor A. Soerjomataram I. Bray F. Data visualization tools for exploring the global cancer burden in 2022. Available from: https://gco.iarc.fr/today
  2. Salinas C.A. Tsodikov A. Ishak-Howard M. Cooney K.A. Prostate cancer in young men: An important clinical entity. Nat. Rev. Urol. 2014 11 6 317 323 10.1038/nrurol.2014.91 24818853
    [Google Scholar]
  3. Bleyer A. Spreafico F. Barr R. Prostate cancer in young men: An emerging young adult and older adolescent challenge. Cancer 2020 126 1 46 57 10.1002/cncr.32498 31553489
    [Google Scholar]
  4. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: GLOBOCAN Estimates of incidence and mortality worldwide for 36 cancers in 185 Countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  5. Leitzmann M. Rohrmann S. Risk factors for the onset of prostatic cancer: Age, location, and behavioral correlates. Clin. Epidemiol. 2012 4 1 1 11 10.2147/CLEP.S16747 22291478
    [Google Scholar]
  6. Dalton J.T. Gao W. Androgen receptor. Nuclear Receptors. Proteins and Cell Regulation. Bunce C. Campbell M. Dordrecht Springer 2010 143 182
    [Google Scholar]
  7. Wu Y. Zhao W. Zhao J. Pan J. Wu Q. Zhang Y. Bauman W.A. Cardozo C.P. Identification of androgen response elements in the insulin-like growth factor I upstream promoter. Endocrinology 2007 148 6 2984 2993 10.1210/en.2006‑1653 17363459
    [Google Scholar]
  8. Traish A.M. Morgentaler A. Epidermal growth factor receptor expression escapes androgen regulation in prostate cancer: A potential molecular switch for tumour growth. Br. J. Cancer 2009 101 12 1949 1956 10.1038/sj.bjc.6605376 19888222
    [Google Scholar]
  9. Olshavsky N.A. Groh E.M. Comstock C.E.S. Morey L.M. Wang Y. Revelo M.P. Burd C. Meller J. Knudsen K.E. Cyclin D3 action in androgen receptor regulation and prostate cancer. Oncogene 2008 27 22 3111 3121 10.1038/sj.onc.1210981 18084330
    [Google Scholar]
  10. Cleutjens K.B.J.M. van der Korput H.A.G.M. van Eekelen C.C.E.M. van Rooij H.C.J. Faber P.W. Trapman J. An androgen response element in a far upstream enhancer region is essential for high, androgen-regulated activity of the prostate-specific antigen promoter. Mol. Endocrinol. 1997 11 2 148 161 10.1210/mend.11.2.9883 9013762
    [Google Scholar]
  11. Gao C.L. Rawal S.K. Sun L. Ali A. Connelly R.R. Bañez L.L. Sesterhenn I.A. McLeod D.G. Moul J.W. Srivastava S. Diagnostic potential of prostate-specific antigen expressing epithelial cells in blood of prostate cancer patients. Clin. Cancer Res. 2003 9 7 2545 2550 12855629
    [Google Scholar]
  12. Feldman B.J. Feldman D. The development of androgen-independent prostate cancer. Nat. Rev. Cancer 2001 1 1 34 45 10.1038/35094009 11900250
    [Google Scholar]
  13. Liu H. An X. Li S. Wang Y. Li J. Liu H. Interaction mechanism exploration of R-bicalutamide/S-1 with WT/W741L AR using molecular dynamics simulations. Mol. Biosyst. 2015 11 12 3347 3354 10.1039/C5MB00499C 26442831
    [Google Scholar]
  14. Narayanan R. Therapeutic targeting of the androgen receptor (AR) and AR variants in prostate cancer. Asian J. Urol. 2020 7 3 271 283 10.1016/j.ajur.2020.03.002 32742927
    [Google Scholar]
  15. Sharifi N. Gulley J.L. Dahut W.L. Androgen deprivation therapy for prostate cancer. JAMA 2005 294 2 238 244 10.1001/jama.294.2.238 16014598
    [Google Scholar]
  16. Pagliarulo V. Androgen deprivation therapy for prostate cancer. Adv. Exp. Med. Biol. 2018 1096 1 30 10.1007/978‑3‑319‑99286‑0_1 30324345
    [Google Scholar]
  17. Chodak G.W. Luteinizing hormone-releasing hormone (LHRH) agonists for treatment of advanced prostatic carcinoma. Urology 1989 33 5 Suppl. 42 44 10.1016/0090‑4295(89)90105‑2 2523610
    [Google Scholar]
  18. Hinkel A. Berges R.R. Pannek J. Schulze H. Senge T. Cyproterone acetate in the treatment of advanced prostatic cancer: Retrospective analysis of liver toxicity in the long-term follow-up of 89 patients. Eur. Urol. 1996 30 4 464 470 10.1159/000474216 8977068
    [Google Scholar]
  19. Chen Y. Clegg N.J. Scher H.I. Anti-androgens and androgen-depleting therapies in prostate cancer: New agents for an established target. Lancet Oncol. 2009 10 10 981 991 10.1016/S1470‑2045(09)70229‑3 19796750
    [Google Scholar]
  20. Wong Y.N.S. Ferraldeschi R. Attard G. de Bono J. Evolution of androgen receptor targeted therapy for advanced prostate cancer. Nat. Rev. Clin. Oncol. 2014 11 6 365 376 10.1038/nrclinonc.2014.72 24840076
    [Google Scholar]
  21. Ito Y. Sadar M.D. Enzalutamide and blocking androgen receptor in advanced prostate cancer: Lessons learnt from the history of drug development of antiandrogens. Res. Rep. Urol. 2018 10 10 23 32 10.2147/RRU.S157116 29497605
    [Google Scholar]
  22. McCrea E. Sissung T.M. Price D.K. Chau C.H. Figg W.D. Androgen receptor variation affects prostate cancer progression and drug resistance. Pharmacol. Res. 2016 114 152 162 10.1016/j.phrs.2016.10.001 27725309
    [Google Scholar]
  23. Taplin M.E. Bubley G.J. Ko Y.J. Small E.J. Upton M. Rajeshkumar B. Balk S.P. Selection for androgen receptor mutations in prostate cancers treated with androgen antagonist. Cancer Res. 1999 59 11 2511 2515 10363963
    [Google Scholar]
  24. Haapala K. Kuukasjärvi T. Hyytinen E. Rantala I. Helin H. Koivisto P. Androgen receptor amplification is associated with increased cell proliferation in prostate cancer. Hum. Pathol. 2007 38 3 474 478 10.1016/j.humpath.2006.09.008 17217995
    [Google Scholar]
  25. Ferraldeschi R. Welti J. Luo J. Attard G. de Bono J.S. Targeting the androgen receptor pathway in castration-resistant prostate cancer: Progresses and prospects. Oncogene 2015 34 14 1745 1757 10.1038/onc.2014.115 24837363
    [Google Scholar]
  26. Mansinho A. Macedo D. Fernandes I. Costa L. Castration-resistant prostate cancer: Mechanisms, targets and treatment. Adv. Exp. Med. Biol. 2018 1126 117 133 10.1007/978‑3‑319‑99286‑0_7 30324351
    [Google Scholar]
  27. Gao W. Bohl C.E. Dalton J.T. Chemistry and structural biology of androgen receptor. Chem. Rev. 2005 105 9 3352 3370 10.1021/cr020456u 16159155
    [Google Scholar]
  28. Gottlieb B. Beitel L.K. Nadarajah A. Paliouras M. Trifiro M. The androgen receptor gene mutations database: 2012 update. Hum. Mutat. 2012 33 5 887 894 10.1002/humu.22046 22334387
    [Google Scholar]
  29. Eisermann K. Wang D. Jing Y. Pascal L.E. Wang Z. Androgen receptor gene mutation, rearrangement, polymorphism. Transl. Androl. Urol. 2013 2 3 137 147 10.3978/j.issn.2223‑4683.2013.09.15 25045626
    [Google Scholar]
  30. Tan M.H.E. Li J. Xu H.E. Melcher K. Yong E. Androgen receptor: Structure, role in prostate cancer and drug discovery. Acta Pharmacol. Sin. 2015 36 1 3 23 10.1038/aps.2014.18 24909511
    [Google Scholar]
  31. Veldscholte J. Ris-Stalpers C. Kuiper G.G.J.M. Jenster G. Berrevoets C. Claassen E. van Rooij H.C.J. Trapman J. Brinkmann A.O. Mulder E. A mutation in the ligand binding domain of the androgen receptor of human INCaP cells affects steroid binding characteristics and response to anti-androgens. Biochem. Biophys. Res. Commun. 1990 173 2 534 540 10.1016/S0006‑291X(05)80067‑1 2260966
    [Google Scholar]
  32. Bohl C.E. Gao W. Miller D.D. Bell C.E. Dalton J.T. Structural basis for antagonism and resistance of bicalutamide in prostate cancer. Proc. Natl. Acad. Sci. USA 2005 102 17 6201 6206 10.1073/pnas.0500381102 15833816
    [Google Scholar]
  33. Zhou J. Liu B. Geng G. Wu J.H. Study of the impact of the T877A mutation on ligand‐induced helix‐12 positioning of the androgen receptor resulted in design and synthesis of novel antiandrogens. Proteins 2010 78 3 623 637 10.1002/prot.22592 19787772
    [Google Scholar]
  34. Hara T. Miyazaki J. Araki H. Yamaoka M. Kanzaki N. Kusaka M. Miyamoto M. Novel mutations of androgen receptor: A possible mechanism of bicalutamide withdrawal syndrome. Cancer Res. 2003 63 1 149 153 12517791
    [Google Scholar]
  35. Bohl C.E. Miller D.D. Chen J. Bell C.E. Dalton J.T. Structural basis for accommodation of nonsteroidal ligands in the androgen receptor. J. Biol. Chem. 2005 280 45 37747 37754 10.1074/jbc.M507464200 16129672
    [Google Scholar]
  36. Sun C. Shi Y. Xu L.L. Nageswararao C. Davis L.D. Segawa T. Dobi A. McLeod D.G. Srivastava S. Androgen receptor mutation (T877A) promotes prostate cancer cell growth and cell survival. Oncogene 2006 25 28 3905 3913 10.1038/sj.onc.1209424 16636679
    [Google Scholar]
  37. Ashburn T.T. Thor K.B. Drug repositioning: Identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov. 2004 3 8 673 683 10.1038/nrd1468 15286734
    [Google Scholar]
  38. Plewczynski D. Łaźniewski M. Augustyniak R. Ginalski K. Can we trust docking results? Evaluation of seven commonly used programs on PDBbind database. J. Comput. Chem. 2011 32 4 742 755 10.1002/jcc.21643 20812323
    [Google Scholar]
  39. Burley S.K. Bhikadiya C. Bi C. Bittrich S. Chen L. Crichlow G.V. Christie C.H. Dalenberg K. Di Costanzo L. Duarte J.M. Dutta S. Feng Z. Ganesan S. Goodsell D.S. Ghosh S. Green R.K. Guranović V. Guzenko D. Hudson B.P. Lawson C.L. Liang Y. Lowe R. Namkoong H. Peisach E. Persikova I. Randle C. Rose A. Rose Y. Sali A. Segura J. Sekharan M. Shao C. Tao Y.P. Voigt M. Westbrook J.D. Young J.Y. Zardecki C. Zhuravleva M. RCSB Protein Data Bank: Powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res. 2021 49 D1 D437 D451 10.1093/nar/gkaa1038 33211854
    [Google Scholar]
  40. Hsu C.L. Liu J.S. Wu P.L. Guan H.H. Chen Y.L. Lin A.C. Ting H.J. Pang S.T. Yeh S.D. Ma W.L. Chen C.J. Wu W.G. Chang C. Identification of a new androgen receptor (AR) co‐regulator BUD31 and related peptides to suppress wild‐type and mutated AR‐mediated prostate cancer growth via peptide screening and X‐ray structure analysis. Mol. Oncol. 2014 8 8 1575 1587 10.1016/j.molonc.2014.06.009 25091737
    [Google Scholar]
  41. The UniProt Consortium UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 2021 49 D1 D1 10.1093/nar/gkaa1100
    [Google Scholar]
  42. Irwin J.J. Shoichet B.K. ZINC--a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model. 2005 45 1 177 182 10.1021/ci049714+ 15667143
    [Google Scholar]
  43. Parajuli P. Joshee N. Rimando A. Mittal S. Yadav A. In vitro antitumor mechanisms of various Scutellaria extracts and constituent flavonoids. Planta Med. 2009 75 1 41 48 10.1055/s‑0028‑1088364 19031366
    [Google Scholar]
  44. Veeramuthu D. Raja W.R.T. Al-Dhabi N.A. Savarimuthu I. Flavonoids: Anticancer properties. Flavonoids - From Biosynthesis to Human Health. Justino G.C. InTech 2017 10.5772/68095
    [Google Scholar]
  45. Mehdi S.H. Nafees S. Zafaryab M. Khan M.A. Alam Rizvi M.M. Chrysin: A promising anticancer agent its current trends and future perspectives. Eur. J. Exp. Biol. 2018 8 3 16 10.21767/2248‑9215.100057
    [Google Scholar]
  46. Kopustinskiene D.M. Jakstas V. Savickas A. Bernatoniene J. Flavonoids as anticancer agents. Nutrients 2020 12 2 457 10.3390/nu12020457 32059369
    [Google Scholar]
  47. Tzanova M. Atanasov V. Yaneva Z. Ivanova D. Dinev T. Selectivity of current extraction techniques for flavonoids from plant materials. Processes 2020 8 10 1222 10.3390/pr8101222
    [Google Scholar]
  48. Talebi M. Talebi M. Farkhondeh T. Simal-Gandara J. Kopustinskiene D.M. Bernatoniene J. Samarghandian S. Emerging cellular and molecular mechanisms underlying anticancer indications of chrysin. Cancer Cell Int. 2021 21 214 214 10.1186/s12935‑021‑01906‑y
    [Google Scholar]
  49. Jakalian A. Jack D.B. Bayly C.I. Fast, efficient generation of high‐quality atomic charges. AM1‐BCC model: II. Parameterization and validation. J. Comput. Chem. 2002 23 16 1623 1641 10.1002/jcc.10128 12395429
    [Google Scholar]
  50. Gasteiger J. Marsili M. Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges. Tetrahedron 1980 36 22 3219 3228 10.1016/0040‑4020(80)80168‑2
    [Google Scholar]
  51. Morris G.M. Goodsell D.S. Halliday R.S. Huey R. Hart W.E. Belew R.K. Olson A.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 1998 19 14 1639 1662 10.1002/(SICI)1096‑987X(19981115)19:14<1639::AID‑JCC10>3.0.CO;2‑B
    [Google Scholar]
  52. Pettersen E.F. Goddard T.D. Huang C.C. Couch G.S. Greenblatt D.M. Meng E.C. Ferrin T.E. UCSF chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 2004 25 13 1605 1612 10.1002/jcc.20084 15264254
    [Google Scholar]
  53. Trott O. Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010 31 2 455 461 10.1002/jcc.21334 19499576
    [Google Scholar]
  54. Schrödinger L. DeLano W. Incentive PyMOL software package. 2020 Availalbe from: http://www.pymol.org/pymol
  55. Alimirah F. Chen J. Basrawala Z. Xin H. Choubey D. DU‐145 and PC‐3 human prostate cancer cell lines express androgen receptor: Implications for the androgen receptor functions and regulation. FEBS Lett. 2006 580 9 2294 2300 10.1016/j.febslet.2006.03.041 16580667
    [Google Scholar]
  56. Martinez H.D. Jasavala R.J. Hinkson I. Fitzgerald L.D. Trimmer J.S. Kung H.J. Wright M.E. RNA editing of androgen receptor gene transcripts in prostate cancer cells. J. Biol. Chem. 2008 283 44 29938 29949 10.1074/jbc.M800534200 18708348
    [Google Scholar]
  57. Bello D. Webber M.M. Kleinman H.K. Wartinger D.D. Rhim J.S. Androgen responsive adult human prostatic epithelial cell lines immortalized by human papillomavirus 18. Carcinogenesis 1997 18 6 1215 1223 10.1093/carcin/18.6.1215 9214605
    [Google Scholar]
  58. Li J. Xiang S. Zhang Q. Wu J. Tang Q. Zhou J. Yang L. Chen Z. Hann S.S. Combination of curcumin and bicalutamide enhanced the growth inhibition of androgen-independent prostate cancer cells through SAPK/JNK and MEK/ERK1/2-mediated targeting NF-κB/p65 and MUC1-C. J. Exp. Clin. Cancer Res. 2015 34 1 46 10.1186/s13046‑015‑0168‑z 25971429
    [Google Scholar]
  59. Bahadori M. Baharara J. Amini E. Anticancer properties of chrysin on colon cancer cells, in vitro and in vivo with modulation of Caspase-3, -9, Bax and Sall4. Iran. J. Biotechnol. 2016 14 3 177 184 10.15171/ijb.1374 28959334
    [Google Scholar]
  60. Neubig R.R. Spedding M. Kenakin T. Christopoulos A. International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification International union of pharmacology committee on receptor nomenclature and drug classification. XXXVIII. Update on terms and symbols in quantitative pharmacology. Pharmacol. Rev. 2003 55 4 597 606 10.1124/pr.55.4.4 14657418
    [Google Scholar]
  61. Motulsky H. Christopoulos A. Fitting models to biological data using linear and non-linear regression: A practical guide to curve fitting. New York Oxford University Press 2004 10.1093/oso/9780195171792.001.0001
    [Google Scholar]
  62. RStudio Team A better way to deploy R & Python. 2020 Available from: http://www.rstudio.com/
  63. Shukla G.C. Plaga A.R. Shankar E. Gupta S. Androgen receptor‐related diseases: What do we know? Andrology 2016 4 3 366 381 10.1111/andr.12167 26991422
    [Google Scholar]
  64. Azhagiya Singam E.R. Tachachartvanich P. La Merrill M.A. Smith M.T. Durkin K.A. Structural dynamics of agonist and antagonist binding to the androgen receptor. J. Phys. Chem. B 2019 123 36 7657 7666 10.1021/acs.jpcb.9b05654 31431014
    [Google Scholar]
  65. Selvaraj D. Siraram H. Muthian R. Structure-based drug design in identification of novel androgen receptor antagonist. Software and Techniques for Biomolecular Modeling. Bertucci L. Austin Publishing Group 2016 183 196
    [Google Scholar]
  66. Selvaraj D. Muthu S. Kotha S. Siddamsetty R.S. Andavar S. Jayaraman S. Syringaresinol as a novel androgen receptor antagonist against wild and mutant androgen receptors for the treatment of castration-resistant prostate cancer: Molecular docking, in-vitro and molecular dynamics study. J. Biomol. Struct. Dyn. 2021 39 2 621 634 10.1080/07391102.2020.1715261 31928160
    [Google Scholar]
  67. Marchetti P.M. Barth J.H. Clinical biochemistry of dihydrotestosterone. Ann. Clin. Biochem. 2013 50 2 95 107 10.1258/acb.2012.012159 23431485
    [Google Scholar]
  68. Davey R.A. Grossmann M. Androgen receptor structure, function and biology: From bench to bedside. Clin. Biochem. Rev. 2016 37 1 3 15 27057074
    [Google Scholar]
  69. Banerjee P.P. Banerjee S. Brown T.R. Zirkin B.R. Androgen action in prostate function and disease. Am. J. Clin. Exp. Urol. 2018 6 2 62 77 29666834
    [Google Scholar]
  70. Wang X. Li X. Shi W. Wei S. Giesy J.P. Yu H. Wang Y. Docking and CoMSIA studies on steroids and non-steroidal chemicals as androgen receptor ligands. Ecotoxicol. Environ. Saf. 2013 89 1 143 149 10.1016/j.ecoenv.2012.11.020 23260236
    [Google Scholar]
  71. Samarghandian S. Afshari J.T. Davoodi S. Chrysin reduces proliferation and induces apoptosis in the human prostate cancer cell line pc-3. Clinics 2011 66 6 1073 1079 10.1590/S1807‑59322011000600026 21808878
    [Google Scholar]
  72. Kanwal R. Datt M. Liu X. Gupta S. Dietary flavones as dual inhibitors of DNA Methyltransferases and Histone Methyltransferases. PLoS One 2016 11 9 e0162956 10.1371/journal.pone.0162956 27658199
    [Google Scholar]
  73. Ryu S. Lim W. Bazer F.W. Song G. Chrysin induces death of prostate cancer cells by inducing ROS and ER stress. J. Cell. Physiol. 2017 232 12 3786 3797 10.1002/jcp.25861 28213961
    [Google Scholar]
  74. Chakraborty S. Rahman T. The difficulties in cancer treatment. Ecancermedicalscience 2012 6 6 ed16 10.3332/ecancer.2012.ed16 24883085
    [Google Scholar]
  75. Cárdenas M. Marder M. Blank V.C. Roguin L.P. Antitumor activity of some natural flavonoids and synthetic derivatives on various human and murine cancer cell lines. Bioorg. Med. Chem. 2006 14 9 2966 2971 10.1016/j.bmc.2005.12.021 16412650
    [Google Scholar]
/content/journals/cmp/10.2174/0118761429350210250102131611
Loading
/content/journals/cmp/10.2174/0118761429350210250102131611
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: Chrysin ; T877A ; Molecular docking ; Prostate cancer ; W741L ; Androgen receptor ; Bicalutamide
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test