Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702

Abstract

Aims

This aims to assess the efficacy of 2', 3, 3, 5'-Tetramethyl-4'-nitro-2'H-1, 3'-bipyrazole (TMNB), a novel compound, in colitis treatment.

Background

Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the gastrointestinal tract with limited effective treatments available. The exploration of new therapeutic agents is critical for advancing treatment options.

Objective

To assess the effect of TMNB in alleviating symptoms of experimental colitis in mice and to compare its effectiveness with that of sulfasalazine, a standard treatment.

Methods

Experimental colitis was induced in mice, which were subsequently treated with TMNB at dosages of 50, 100, and 150 mg/kg. The outcomes were evaluated based on colitis symptoms, Colon damage, Disease Activity Index (DAI) scores, and inflammation markers, including nitric oxide (NO) and myeloperoxidase (MPO) levels. Additional assessments included spleen cell proliferation, pro-inflammatory cytokine production (TNF-α, IL-6, IL-1β), and inflammatory genes expression (IL-1β, IL-6, TNF-α, COX2, and iNOS).

Results

TMNB treatment significantly alleviated colitis symptoms (100 and 150 mg/kg). These higher doses notably reduced colonic damage, inflammation, hyperemia, edema, and ulceration (p<0.01). The treatment also effectively decreased Disease Activity Index (DAI) scores, demonstrating a marked improvement in clinical signs of colitis (100 mg/kg, p<0.05; 150 mg/kg, p<0.01). Additionally, TMNB substantially lowered myeloperoxidase (MPO) levels, indicating reduced neutrophil activity and inflammation (100 mg/kg, p<0.05; 150 mg/kg, p<0.01), and nitric oxide (NO) levels, suggesting diminished oxidative stress (100 mg/kg, p<0.05; 150 mg/kg, p<0.01). The treatment also led to a significant reduction in spleen cell proliferation (100 mg/kg, p<0.05; 150 mg/kg, p<0.01) and pro-inflammatory cytokine levels, with TNF-α, IL-1β, and IL-6 all showing decreases comparable to those observed with sulfasalazine (p<0.01). Moreover, TMNB effectively downregulated IL-1β, IL-6, TNF-α, COX2, and iNOS (p<0.01), affirming its broad-spectrum anti-inflammatory and immunomodulatory effects.

Conclusion

TMNB exhibits potent anti-inflammatory and immunomodulatory activities, suggesting that TMNB could be a new therapeutic agent for managing inflammatory bowel disease. This study supports the need for further clinical trials to explore TMNB's efficacy and safety in human subjects.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmp/10.2174/0118761429333261241021034043
2024-11-26
2025-05-06
The full text of this item is not currently available.

References

  1. KaplanG.G. The global burden of IBD: From 2015 to 2025.Nat. Rev. Gastroenterol. Hepatol.2015121272072710.1038/nrgastro.2015.15026323879
    [Google Scholar]
  2. KediaS. AhujaV. Epidemiology of inflammatory bowel disease in India: The great shift east.Inflamm. Intest. Dis.20172210211510.1159/00046552230018961
    [Google Scholar]
  3. KangwanN PinthaK KhanareeC KongkarnkaS ChewonarinT SuttajitM. Anti-inflammatory effect of Perilla frutescens seed oil rich in omega-3 fatty acid on dextran sodium sulfate-induced colitis in mice.Res Pharm Sci.2021165464473202110.4103/1735‑5362.323913
    [Google Scholar]
  4. HanauerS.B. Inflammatory bowel disease: Epidemiology, pathogenesis, and therapeutic opportunities.Inflamm Bowel Dis.200612 SupplS3S910.1097/01.MIB.0000195385.19268.68
    [Google Scholar]
  5. TanidehN JamshidzadehA SepehrimaneshM HosseinzadehM Koohi-HosseinabadiO NajibiA Healing acceleration of acetic acid-induced colitis by marigold (Calendula officinalis) in male rats.Saudi J Gastroenterol.20162215056
    [Google Scholar]
  6. Kumar BhaumikP. GhoshK. ChattopadhyayS. Synthetic strategies, crystal structures and biological activities of metal complexes with the members of azole family: A review.Polyhedron202120011509310.1016/j.poly.2021.115093
    [Google Scholar]
  7. RuffellK. SmithF.R. GreenM.T. NicolleS.M. InmanM. LewisW. HayesC.J. MoodyC.J. Diazophosphonates: Effective surrogates for diazoalkanes in pyrazole synthesis.chemistry20212755137031370810.1002/chem.20210178834425034
    [Google Scholar]
  8. DadiboyenaS. NefziA. Synthesis of functionalized tetrasubstituted pyrazolyl heterocycles – A review.Eur. J. Med. Chem.201146115258527510.1016/j.ejmech.2011.09.01621978837
    [Google Scholar]
  9. Sayed MAEl Synthesis, biological evaluation and molecular modeling study of pyrazole and pyrazoline derivatives as selective COX-2 inhibitors and anti-inflammatory agents. Part 2. Bioorg Med Chem.201220103306331610.1016/j.bmc.2012.03.044
    [Google Scholar]
  10. Ameziane El HassaniI. RouziK. AssilaH. KarrouchiK. AnsarM. Recent advances in the synthesis of pyrazole derivatives: A review.Reactions (Basel)20234347850410.3390/reactions4030029
    [Google Scholar]
  11. AkhramezS. OumessaoudA. HibotA. TalbiS. HamriS. KetatniE.M. OuchettoH. HafidA. AyadH. El AbbadiN. ZananeC. LatracheH. KhouiliM. PujolM.D. Synthesis of pyrazolo-enaminones, bipyrazoles and pyrazolopyrimidines and evaluation of antioxidant and antimicrobial properties.Arab. J. Chem.202215110352710.1016/j.arabjc.2021.103527
    [Google Scholar]
  12. SalamehB.A. Abu-SafiehK.A. Synthesis and cytotoxic activity of some new bipyrazole derivatives.Heterocycles202010028329210.3987/COM‑20‑14222
    [Google Scholar]
  13. AlqudahA. QnaisE.Y. WedyanM.A. AltaberS. AbudaloR. GammohO. New treatment for type 2 diabetes mellitus using a novel bipyrazole compound.Cells.202312267
    [Google Scholar]
  14. BseisoY. AlqudahA. QnaisE. WedyanM. Abu-SafiehK. GammohO. 2ʹ,3,3,5ʹ-Tetramethyl-4ʹ-nitro-2ʹH-1,3ʹ-bipyrazole exerts antinociceptive effect using various nociception models.Pharmacia.20237050951710.3897/pharmacia.70.e104828
    [Google Scholar]
  15. Ranjbar BushehriM. BabaeiN. Esmaeili Gouvarchin GhalehH. KhamisipourG. FarnooshG. Anti-inflammatory activity of peiminine in acetic acid-induced ulcerative colitis model.Inflammopharmacology202432165766510.1007/s10787‑023‑01360‑437855980
    [Google Scholar]
  16. MashhouriS FroushaniSMA TehraniAA Non-Adherent bone marrow-derived mesenchymal stem cells ameliorate clinical manifestations and inflammation in an experimental model of ulcerative colitis in rats.Iran J Med Sci.2020455341351
    [Google Scholar]
  17. GheibiS. HashemiS.R. KarimipourM. MotlaghB.M. GhalehH.E.G. Synergistic effects of hydro extract of jujube fruit in combination with Mesalazine (orally) and Asacol (intra-colonic) administration in ameliorating animal model of ulcerative colitis.J. Coloproctol. (Rio J.)201838427528210.1016/j.jcol.2018.05.008
    [Google Scholar]
  18. ChassaingB. AitkenJ.D. MalleshappaM. Vijay-KumarM. Dextran sulfate sodium (DSS)-induced colitis in mice.Curr. Protoc. Immunol.2014104125.1, 1410.1002/0471142735.im1525s10424510619
    [Google Scholar]
  19. Valentim-SilvaJ.R. de BarrosN.B. MacedoS.R.A. FerreiraA.S. SilvaR.S. DillL.S.M. ZanchiF.B. do NascimentoJ.R. do NascimentoF.R.F. LourenzoniM.R. SoaresA.M. CalderonL.A. NicoleteR. Antileishmanial activity, cytotoxicity and cellular response of amphotericin B in combination with crotamine derived from Crotalus durissus terrificus venom using in vitro and in silico approaches.Toxicon20222179610610.1016/j.toxicon.2022.08.00935977615
    [Google Scholar]
  20. MaK. NunemakerC.S. WuR. ChakrabartiS.K. Taylor-FishwickD.A. NadlerJ.L. 12-Lipoxygenase products reduce insulin secretion and β-cell viability in human islets.J. Clin. Endocrinol. Metab.201095288789310.1210/jc.2009‑110220089617
    [Google Scholar]
  21. LiuC.J. LinJ.Y. Anti-inflammatory effects of phenolic extracts from strawberry and mulberry fruits on cytokine secretion profiles using mouse primary splenocytes and peritoneal macrophages.Int. Immunopharmacol.201316216517010.1016/j.intimp.2013.03.03223590821
    [Google Scholar]
  22. LivakK.J. SchmittgenT.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Δ Δ C(T)) Method.Methods200125440240810.1006/meth.2001.126211846609
    [Google Scholar]
  23. LichtensteinG.R. RutgeertsP. Importance of mucosal healing in ulcerative colitis.Inflamm. Bowel Dis.201016233834610.1002/ibd.2099719637362
    [Google Scholar]
  24. AsgharzadehF YaghoubiA NazariSE HashemzadehA HasanianSM AvanA The beneficial effect of combination therapy with sulfasalazine and valsartan in the treatment of ulcerative colitis.EXCLI J.202120236247
    [Google Scholar]
  25. LebaronTW AsgharzadehF KhazeiM KuraB TarnavaA SlezakJ Molecular hydrogen is comparable to sulfasalazine as a treatment for DSS-induced colitis in mice.EXCLI J.20212011061117
    [Google Scholar]
  26. ChamiB. MartinN.J.J. DennisJ.M. WittingP.K. Myeloperoxidase in the inflamed colon: A novel target for treating inflammatory bowel disease.Arch. Biochem. Biophys.2018645617110.1016/j.abb.2018.03.01229548776
    [Google Scholar]
  27. PablaB.S. SchwartzD.A. Assessing severity of disease in patients with ulcerative colitis.Gastroenterol Clin North Am.202049467168810.1016/j.gtc.2020.08.003
    [Google Scholar]
  28. BatistaJ.A. MagalhãesD.A. SousaS.G. FerreiraJ.S. PereiraC.M.C. LimaJ.V.N. de AlbuquerqueI.F. BezerraN.L.S.D. de BritoT.V. MonteiroC.E.S. FrancoA.X. Di LenardoD. OliveiraL.A. FeitosaJ.P.A. de PaulaR.C.M. BarrosF.C.N. FreitasA.L.P. de OliveiraJ.S. VasconcelosD.F.P. SoaresP.M.G. BarbosaA.L.R. Polysaccharides derived from Morinda citrifolia Linn reduce inflammatory markers during experimental colitis.J. Ethnopharmacol.202024811230310.1016/j.jep.2019.11230331614204
    [Google Scholar]
  29. ZhuX. WangG. WuS. LiC. Protective effect of D-carvone against dextran sulfate sodium induced ulcerative colitis in Balb/c Mice and LPS induced raw cells via the inhibition of COX-2 and TNF-α.J. Environ. Pathol. Toxicol. Oncol.202039323524510.1615/JEnvironPatholToxicolOncol.202003186032865915
    [Google Scholar]
  30. ShenY. ZouJ. ChenM. ZhangZ. LiuC. JiangS. QianD. DuanJ.A. Protective effects of Lizhong decoction on ulcerative colitis in mice by suppressing inflammation and ameliorating gut barrier.J. Ethnopharmacol.202025911291910.1016/j.jep.2020.11291932360800
    [Google Scholar]
  31. YaoS-K. LiY. JiaZ.J. YangaZ-H. JiaC-X. XiaoK-M. NiuY-Q. ChenJ. DuanS-J. A systematic review and meta-analysis of randomized controlled trials on treating ulcerative colitis by the integration method of heat-clearing, damp-excreting, spleen-strengthening, and stasis-removing of traditional chinese medicine with western medicine.World J. Tradit. Chin. Med.202061748210.4103/wjtcm.wjtcm_1_20
    [Google Scholar]
  32. Thim-uamA. MakjaroenJ. Issara-amphornJ. SaisornW. WannigamaD.L. ChancharoenthanaW. Enhanced bacteremia in dextran sulfate-induced colitis in splenectomy mice correlates with gut dysbiosis and LPS tolerance.Int J Mol Sci.2022233167610.3390/ijms23031676
    [Google Scholar]
  33. RCAI Effect of shenling baizhusan on protein and mRNA expression of NF-κB p65,IκBα,IκKβ in ulcerative colitis rats with syndrome of dampness stagnancy due to spleen deficiency.Chin. J. Exp. Tradit. Med. Formulae.20202410811310.13422/j.cnki.syfjx.20201936
    [Google Scholar]
  34. OliveiraR.G. DamazoA.S. AntonielliL.F. MiyajimaF. PavanE. DuckworthC.A. LimaJ.C.S. ArunachalamK. MartinsD.T.O. Dilodendron bipinnatum Radlk. extract alleviates ulcerative colitis induced by TNBS in rats by reducing inflammatory cell infiltration, TNF-α and IL-1β concentrations, IL-17 and COX-2 expressions, supporting mucus production and promotes an antioxidant effect.J. Ethnopharmacol.202126911373510.1016/j.jep.2020.11373533359865
    [Google Scholar]
  35. ElhefnawyE.A. ZakiH.F. El MaraghyN.N. AhmedK.A. Abd El-HaleimE.A. Genistein and/or sulfasalazine ameliorate acetic acid-induced ulcerative colitis in rats via modulating INF-γ/JAK1/STAT1/IRF-1, TLR-4/NF-κB/IL-6, and JAK2/STAT3/COX-2 crosstalk.Biochem. Pharmacol.202321411567310.1016/j.bcp.2023.11567337414101
    [Google Scholar]
  36. ShinMR SeoB New approach of medicinal herbs and sulfasalazine mixture on ulcerative colitis induced by dextran sodium sulfate.World J. Gastroenterol.2020263552725286
    [Google Scholar]
/content/journals/cmp/10.2174/0118761429333261241021034043
Loading
/content/journals/cmp/10.2174/0118761429333261241021034043
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test