Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702

Abstract

Background

Recent research has validated the efficacy of sodium-glucose cotransporter-2 inhibitors (SGLT2i) in reducing glucose levels and exerting a nephroprotective role.

Objective

This study aimed to examine the impact of dapagliflozin in preventing sepsis-induced acute kidney injury (AKI) and related consequences. The study used both normal and diabetic rat models to investigate whether the effectiveness of dapagliflozin is influenced by glycemia levels.

Methods

Normal and diabetic Wistar albino rats were treated with dapagliflozin for two weeks and then received a single dose of lipopolysaccharide (LPS). After sepsis induction, skin and deep body temperatures were recorded every two hours. Blood and kidneys were collected for analysis using histological examination and biochemical assays.

Results

Dapagliflozin attenuated the consequences of sepsis through mitigation of LPS-induced hypothermia and AKI in the normal and diabetic septic groups. Dapagliflozin regulated the serum levels of AKI markers, including creatinine and blood urea nitrogen, as well as ion levels. Dapagliflozin attenuated LPS-induced AKI through modulation of renal inflammation and oxidative stress, which showed well-abundant glomeruli. These results indicated the protective effect of dapagliflozin against LPS-induced hypothermia and AKI, which was likely unrelated to its glucose-lowering properties, as evidenced in the non-diabetic septic group.

Conclusion

The outcomes suggest that dapagliflozin has a potential impact in preventing sepsis-induced hypothermia and AKI modulation of inflammation and oxidative stress, irrespective of glycemic levels.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmp/10.2174/0118761429329635241016054513
2024-01-01
2025-05-01
The full text of this item is not currently available.

References

  1. GauerR. ForbesD. BoyerN. Sepsis: Diagnosis and Management.Am. Fam. Physician2020101740941832227831
    [Google Scholar]
  2. WiewelM.A. HarmonM.B. van VughtL.A. SciclunaB.P. HoogendijkA.J. HornJ. ZwindermanA.H. CremerO.L. BontenM.J. SchultzM.J. van der PollT. JuffermansN.P. WiersingaW.J. Risk factors, host response and outcome of hypothermic sepsis.Crit. Care201620132810.1186/s13054‑016‑1510‑327737683
    [Google Scholar]
  3. PageM.J. KellD.B. PretoriusE. The role of lipopolysaccharide-induced cell signalling in chronic inflammation.Chronic Stress (Thousand Oaks)20226639010.1177/2470547022107639035155966
    [Google Scholar]
  4. SingerM. DeutschmanC.S. SeymourC.W. Shankar-HariM. AnnaneD. BauerM. BellomoR. BernardG.R. ChicheJ.D. CoopersmithC.M. HotchkissR.S. LevyM.M. MarshallJ.C. MartinG.S. OpalS.M. RubenfeldG.D. van der PollT. VincentJ.L. AngusD.C. The third international consensus definitions for sepsis and septic shock (Sepsis-3).JAMA2016315880181010.1001/jama.2016.028726903338
    [Google Scholar]
  5. ZarbockA. NadimM.K. PickkersP. GomezH. BellS. JoannidisM. KashaniK. KoynerJ.L. PannuN. MeerschM. ReisT. RimmeléT. BagshawS.M. BellomoR. CantaluppiV. DeepA. De RosaS. Perez-FernandezX. Husain-SyedF. Kane-GillS.L. KellyY. MehtaR.L. MurrayP.T. OstermannM. ProwleJ. RicciZ. SeeE.J. SchneiderA. SorannoD.E. TolwaniA. VillaG. RoncoC. ForniL.G. Sepsis-associated acute kidney injury: Consensus report of the 28th acute disease quality initiative workgroup.Nat. Rev. Nephrol.202319640141710.1038/s41581‑023‑00683‑336823168
    [Google Scholar]
  6. KuwabaraS. GogginsE. OkusaM.D. The pathophysiology of sepsis-associated AKI.Clin. J. Am. Soc. Nephrol.20221771050106910.2215/CJN.0085012235764395
    [Google Scholar]
  7. SchrierR.W. WangW. Acute renal failure and sepsis.N. Engl. J. Med.2004351215916910.1056/NEJMra03240115247356
    [Google Scholar]
  8. CostantiniE. CarlinM. PortaM. BrizziM.F. Type 2 diabetes mellitus and sepsis: State of the art, certainties and missing evidence.Acta Diabetol.20215891139115110.1007/s00592‑021‑01728‑433973089
    [Google Scholar]
  9. SchuetzP. CastroP. ShapiroN.I. Diabetes and sepsis: Preclinical findings and clinical relevance.Diabetes Care201134377177810.2337/dc10‑118521357364
    [Google Scholar]
  10. LiuJ. XieH. YeZ. LiF. WangL. Rates, predictors, and mortality of sepsis-associated acute kidney injury: A systematic review and meta-analysis.BMC Nephrol.202021131810.1186/s12882‑020‑01974‑832736541
    [Google Scholar]
  11. HeF.F. WangY.M. ChenY.Y. HuangW. LiZ.Q. ZhangC. Sepsis-induced AKI: From pathogenesis to therapeutic approaches.Front. Pharmacol.20221398157810.3389/fphar.2022.98157836188562
    [Google Scholar]
  12. FaniF. RegolistiG. DelsanteM. CantaluppiV. CastellanoG. GesualdoL. VillaG. FiaccadoriE. Recent advances in the pathogenetic mechanisms of sepsis-associated acute kidney injury.J. Nephrol.201831335135910.1007/s40620‑017‑0452‑429273917
    [Google Scholar]
  13. HsiaD.S. GroveO. CefaluW.T. An update on sodium-glucose co-transporter-2 inhibitors for the treatment of diabetes mellitus.Curr. Opin. Endocrinol. Diabetes Obes.2017241737910.1097/MED.000000000000031127898586
    [Google Scholar]
  14. ChinK.L. Ofori-AsensoR. HopperI. von LuederT.G. ReidC.M. ZoungasS. WangB.H. LiewD. Potential mechanisms underlying the cardiovascular benefits of sodium glucose cotransporter 2 inhibitors: A systematic review of data from preclinical studies.Cardiovasc. Res.2019115226627610.1093/cvr/cvy29530475996
    [Google Scholar]
  15. GhezziC. YuA.S. HirayamaB.A. KepeV. LiuJ. ScafoglioC. PowellD.R. HuangS.C. SatyamurthyN. BarrioJ.R. WrightE.M. Dapagliflozin binds specifically to sodium-glucose cotransporter 2 in the proximal renal tubule.J. Am. Soc. Nephrol.201728380281010.1681/ASN.201605051027620988
    [Google Scholar]
  16. SolomonS.D. McMurrayJ.J.V. ClaggettB. de BoerR.A. DeMetsD. HernandezA.F. InzucchiS.E. KosiborodM.N. LamC.S.P. MartinezF. ShahS.J. DesaiA.S. JhundP.S. BelohlavekJ. ChiangC.E. BorleffsC.J.W. Comin-ColetJ. DobreanuD. DrozdzJ. FangJ.C. Alcocer-GambaM.A. Al HabeebW. HanY. Cabrera HonorioJ.W. JanssensS.P. KatovaT. KitakazeM. MerkelyB. O’MearaE. SaraivaJ.F.K. TereshchenkoS.N. ThiererJ. VaduganathanM. VardenyO. VermaS. PhamV.N. WilderängU. ZaozerskaN. BachusE. LindholmD. PeterssonM. LangkildeA.M. Dapagliflozin in heart failure with mildly reduced or preserved ejection fraction.N. Engl. J. Med.2022387121089109810.1056/NEJMoa220628636027570
    [Google Scholar]
  17. HeerspinkH.J.L. StefánssonB.V. Correa-RotterR. ChertowG.M. GreeneT. HouF.F. MannJ.F.E. McMurrayJ.J.V. LindbergM. RossingP. SjöströmC.D. TotoR.D. LangkildeA.M. WheelerD.C. Dapagliflozin in patients with chronic kidney disease.N. Engl. J. Med.2020383151436144610.1056/NEJMoa202481632970396
    [Google Scholar]
  18. BirnbaumY. BajajM. YangH.C. YeY. Combined SGLT2 and DPP4 inhibition reduces the activation of the Nlrp3/ASC inflammasome and attenuates the development of diabetic nephropathy in mice with type 2 diabetes.Cardiovasc. Drugs Ther.201832213514510.1007/s10557‑018‑6778‑x29508169
    [Google Scholar]
  19. BenettiE. MastrocolaR. VitarelliG. CutrinJ.C. NigroD. ChiazzaF. MayouxE. CollinoM. FantozziR. Empagliflozin protects against diet-induced nlrp-3 inflammasome activation and lipid accumulation.J. Pharmacol. Exp. Ther.20163591455310.1124/jpet.116.23506927440421
    [Google Scholar]
  20. XuL. NagataN. ChenG. NagashimadaM. ZhugeF. NiY. SakaiY. KanekoS. OtaT. Empagliflozin reverses obesity and insulin resistance through fat browning and alternative macrophage activation in mice fed a high-fat diet.BMJ Open Diabetes Res. Care201971e00078310.1136/bmjdrc‑2019‑00078331749970
    [Google Scholar]
  21. YangH. MeiZ. ChenW. PanY. LiuL. ZhaoR. NiW. WangY. FeiC. Therapeutic efficacy of dapagliflozin on diabetic kidney disease in rats.Int. Immunopharmacol.2022113Pt A10927210.1016/j.intimp.2022.10927236252493
    [Google Scholar]
  22. RadM.G. SharifiM. MeamarR. SoltaniN. The role of pancreas to improve hyperglycemia in STZ-induced diabetic rats by thiamine disulfide.Nutr. Diabetes20221213210.1038/s41387‑022‑00211‑535725834
    [Google Scholar]
  23. AlanaziW.A. AlharbiT. El-NagarD.M. AlbogamiA.M. AlswayyedM. Dapagliflozin mitigates hypotension in lipopolysaccharide-induced acute inflammation independent of glycemia level.Pharmaceutics2023156168310.3390/pharmaceutics1506168337376131
    [Google Scholar]
  24. LiuK.F. NiuC.S. TsaiJ.C. YangC.L. PengW.H. NiuH.S. Comparison of area under the curve in various models of diabetic rats receiving chronic medication.Arch. Med. Sci.20201841078108710.5114/aoms.2019.9147135832712
    [Google Scholar]
  25. DeyP. KunduA. LeeH.E. KarB. VishalV. DashS. KimI.S. BhaktaT. KimH.S. Molineria recurvata ameliorates streptozotocin-induced diabetic nephropathy through antioxidant and anti-inflammatory pathways.Molecules20222715498510.3390/molecules2715498535956936
    [Google Scholar]
  26. AlanaziW.A. AlhamamiH.N. AlharbiM. AlhazzaniK. AlanaziA.S. AlsaneaS. AliN. AlasmariA.F. AlanaziA.Z. AlotaibiM.R. AlswayyedM. Angiotensin II type 1 receptor blockade attenuates gefitinib-induced cardiac hypertrophy via adjusting angiotensin II-mediated oxidative stress and JNK/P38 MAPK pathway in a rat model.Saudi Pharm. J.20223081159116910.1016/j.jsps.2022.06.02036164571
    [Google Scholar]
  27. RumbusZ. MaticsR. HegyiP. ZsiborasC. SzaboI. IllesA. PetervariE. BalaskoM. MartaK. MikoA. ParniczkyA. TenkJ. RostasI. SolymarM. GaramiA. Fever is associated with reduced, hypothermia with increased mortality in septic patients: A meta-analysis of clinical trials.PLoS One2017121e017015210.1371/journal.pone.017015228081244
    [Google Scholar]
  28. CorriganJ.J. FonsecaM.T. FlatowE.A. LewisK. SteinerA.A. Hypometabolism and hypothermia in the rat model of endotoxic shock: Independence of circulatory hypoxia.J. Physiol.2014592173901391610.1113/jphysiol.2014.27727724951620
    [Google Scholar]
  29. KaplanskiJ. NassarA. Sharon-GranitY. JabareenA. KobalS.L. AzabA.N. Lithium attenuates lipopolysaccharide-induced hypothermia in rats.Eur. Rev. Med. Pharmacol. Sci.201418121829183724992627
    [Google Scholar]
  30. AmorimM.R. MoreiraD.A. SantosB.M. FerrariG.D. NogueiraJ.E. de DeusJ.L. AlbericiL.C. BrancoL.G.S. Increased lipopolysaccharide‐induced hypothermia in neurogenic hypertension is caused by reduced hypothalamic PGE 2 production and increased heat loss.J. Physiol.2020598204663468010.1113/JP28032132749717
    [Google Scholar]
  31. MajumdarA. Sepsis-induced acute kidney injury.Indian J. Crit. Care Med.2010141142110.4103/0972‑5229.6303120606904
    [Google Scholar]
  32. WanL. BagshawS.M. LangenbergC. SaotomeT. MayC. BellomoR. Pathophysiology of septic acute kidney injury: What do we really know?Crit. Care Med.2008364Suppl.S198S20310.1097/CCM.0b013e318168ccd518382194
    [Google Scholar]
  33. MillarC.G.M. ThiemermannC. Intrarenal haemodynamics and renal dysfunction in endotoxaemia: effects of nitric oxide synthase inhibition.Br. J. Pharmacol.199712181824183010.1038/sj.bjp.07013359283724
    [Google Scholar]
  34. ChvojkaJ. SykoraR. KrouzeckyA. RadejJ. VarnerovaV. KarvunidisT. HesO. NovakI. RadermacherP. MatejovicM. Renal haemodynamic, microcirculatory, metabolic and histopathological responses to peritonitis-induced septic shock in pigs.Crit. Care2009126R16410.1186/cc716419108740
    [Google Scholar]
  35. IdzerdaN.M.A. StefanssonB.V. PenaM.J. SjostromD.C. WheelerD.C. HeerspinkH.J.L. Prediction of the effect of dapagliflozin on kidney and heart failure outcomes based on short-term changes in multiple risk markers.Nephrol. Dial. Transplant.20203591570157610.1093/ndt/gfz06431005993
    [Google Scholar]
  36. McMurrayJ.J.V. WheelerD.C. StefánssonB.V. JongsN. PostmusD. Correa-RotterR. ChertowG.M. GreeneT. HeldC. HouF.F. MannJ.F.E. RossingP. SjöströmC.D. TotoR.D. LangkildeA.M. HeerspinkH.J.L. Effect of dapagliflozin on clinical outcomes in patients with chronic kidney disease, with and without cardiovascular disease.Circulation2021143543844810.1161/CIRCULATIONAHA.120.05167533186054
    [Google Scholar]
  37. KabelA.M. SalamaS.A. Effect of taxifolin/dapagliflozin combination on colistin-induced nephrotoxicity in rats.Hum. Exp. Toxicol.202140101767178010.1177/0960327121101090633882723
    [Google Scholar]
  38. AbdollahiE. KeyhanfarF. DelbandiA.A. FalakR. HajimiresmaielS.J. ShafieiM. Dapagliflozin exerts anti-inflammatory effects via inhibition of LPS-induced TLR-4 overexpression and NF-κB activation in human endothelial cells and differentiated macrophages.Eur. J. Pharmacol.202291817471510.1016/j.ejphar.2021.17471535026193
    [Google Scholar]
  39. MiyachiY. TsuchiyaK. ShibaK. MoriK. KomiyaC. OgasawaraN. OgawaY. A reduced M1-like/M2-like ratio of macrophages in healthy adipose tissue expansion during SGLT2 inhibition.Sci. Rep.2018811611310.1038/s41598‑018‑34305‑x30382157
    [Google Scholar]
  40. ZengJ. HuangH. ZhangY. LvX. ChengJ. ZouS.J. HanY. WangS. GongL. PengZ. Dapagliflozin alleviates renal fibrosis in a mouse model of adenine-induced renal injury by inhibiting TGF-β1/MAPK mediated mitochondrial damage.Front. Pharmacol.202314109548710.3389/fphar.2023.109548736959860
    [Google Scholar]
  41. ChaoE.C. HenryR.R. SGLT2 inhibition — a novel strategy for diabetes treatment.Nat. Rev. Drug Discov.20109755155910.1038/nrd318020508640
    [Google Scholar]
  42. KasichayanulaS. LiuX. LaCretaF. GriffenS.C. BoultonD.W. Clinical pharmacokinetics and pharmacodynamics of dapagliflozin, a selective inhibitor of sodium-glucose co-transporter type 2.Clin. Pharmacokinet.2014531172710.1007/s40262‑013‑0104‑324105299
    [Google Scholar]
/content/journals/cmp/10.2174/0118761429329635241016054513
Loading
/content/journals/cmp/10.2174/0118761429329635241016054513
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Acute kidney injury; Dapagliflozin; Diabetes; Inflammation; LPS; Oxidative stress; Sepsis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test