Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702

Abstract

The main cause of cancer-related fatalities is cancer metastasis to other body parts, and increased glycolysis is crucial for cancer cells to maintain their elevated levels of growth and energy requirements, ultimately facilitating the invasion and spread of tumors. The Warburg effect plays a significant role in the advancement of cancer, and focusing on the suppression of aerobic glycolysis could offer a promising strategy for anti-cancer treatment. Various glycolysis processes are associated with tumor metastasis, primarily involving non-coding RNA (ncRNAs), signaling pathways, transcription factors, and more. Various categories of noncoding RNAs, including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), have shown promise in influencing glucose metabolism associated with the spread of tumors. Additionally, circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs) predominantly act as competitive endogenous RNAs (ceRNAs) by sequestering microRNAs, thereby modulating the expression of target genes and exerting significant influence on the metabolic processes of cancerous cells. Furthermore, the process of tumor metastasis through glycolysis also encompasses various signaling pathways (such as PI3K/AKT, HIF, Wnt/β-Catenin, and ERK, among others) and transcription factors. This article delineates the primary mechanisms through which non-coding RNAs, signaling pathways, and transcription factors contribute to glycolysis in tumor metastasis. It also investigates the potential use of these factors as prognostic markers and targets for cancer treatment. The manuscript also explores the innovative applications of specific traditional Chinese medicine and clinical Western medications in inhibiting tumor spread through glycolysis mechanisms, offering potential as new candidates for anti-cancer drugs.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmp/10.2174/0118761429308361240823061634
2024-09-02
2025-05-09
The full text of this item is not currently available.

References

  1. JoseC. BellanceN. RossignolR. Choosing between glycolysis and oxidative phosphorylation: A tumor’s dilemma?Biochim. Biophys. Acta Bioenerg.20111807655256110.1016/j.bbabio.2010.10.01220955683
    [Google Scholar]
  2. AaltonenL.A. AbascalF. AbeshouseA. AburataniH. AdamsD.J. AgrawalN. AhnK.S. AhnS-M. AikataH. AkbaniR. AkdemirK.C. Al-AhmadieH. Al-SedairyS.T. Al-ShahrourF. AlawiM. AlbertM. AldapeK. AlexandrovL.B. AllyA. AlsopK. AlvarezE.G. AmaryF. AminS.B. AminouB. AmmerpohlO. AndersonM.J. AngY. AntonelloD. AnurP. AparicioS. AppelbaumE.L. AraiY. AretzA. ArihiroK. AriizumiS. ArmeniaJ. ArnouldL. AsaS. AssenovY. AtwalG. AukemaS. AumanJ.T. AureM.R.R. AwadallaP. AymerichM. BaderG.D. Baez-OrtegaA. BaileyM.H. BaileyP.J. BalasundaramM. BaluS. BandopadhayayP. BanksR.E. BarbiS. BarbourA.P. BarenboimJ. Barnholtz-SloanJ. BarrH. BarreraE. BartlettJ. BartolomeJ. BassiC. BatheO.F. BaumhoerD. BaviP. BaylinS.B. BazantW. BeardsmoreD. BeckT.A. BehjatiS. BehrenA. NiuB. BellC. BeltranS. BenzC. BerchuckA. BergmannA.K. BergstromE.N. BermanB.P. BerneyD.M. BernhartS.H. BeroukhimR. BerriosM. BersaniS. BertlJ. BetancourtM. BhandariV. BhosleS.G. BiankinA.V. BiegM. BignerD. BinderH. BirneyE. BirrerM. BiswasN.K. BjerkehagenB. BodenheimerT. BoiceL. BonizzatoG. De BonoJ.S. BootA. BootwallaM.S. BorgA. BorkhardtA. BoroevichK.A. BorozanI. BorstC. BosenbergM. BosioM. BoultwoodJ. BourqueG. BoutrosP.C. BovaG.S. BowenD.T. BowlbyR. BowtellD.D.L. BoyaultS. BoyceR. BoydJ. BrazmaA. BrennanP. BrewerD.S. BrinkmanA.B. BristowR.G. BroaddusR.R. BrockJ.E. BrockM. BroeksA. BrooksA.N. BrooksD. BrorsB. BrunakS. BruxnerT.J.C. BruzosA.L. BuchananA. BuchhalterI. BuchholzC. BullmanS. BurkeH. BurkhardtB. BurnsK.H. BusanovichJ. BustamanteC.D. ButlerA.P. ButteA.J. ByrneN.J. Børresen-DaleA-L. Caesar-JohnsonS.J. CafferkeyA. CahillD. CalabreseC. CaldasC. CalvoF. CamachoN. CampbellP.J. CampoE. CantùC. CaoS. CareyT.E. Carlevaro-FitaJ. CarlsenR. CataldoI. CazzolaM. CebonJ. CerfolioR. ChadwickD.E. ChakravartyD. ChalmersD. ChanC.W.Y. ChanK. Chan-Seng-YueM. ChandanV.S. ChangD.K. ChanockS.J. ChantrillL.A. ChateignerA. ChatterjeeN. ChayamaK. ChenH-W. ChenJ. ChenK. ChenY. ChenZ. CherniackA.D. ChienJ. ChiewY-E. ChinS-F. ChoJ. ChoS. ChoiJ.K. ChoiW. ChomienneC. ChongZ. ChooS.P. ChouA. ChristA.N. ChristieE.L. ChuahE. CibulskisC. CibulskisK. CingarliniS. ClaphamP. ClaviezA. ClearyS. CloonanN. CmeroM. CollinsC.C. ConnorA.A. CookeS.L. CooperC.S. CopeL. CorboV. CordesM.G. CordnerS.M. Cortés-CirianoI. CovingtonK. CowinP.A. CraftB. CraftD. CreightonC.J. CunY. CurleyE. CutcutacheI. CzajkaK. CzerniakB. DaggR.A. DanilovaL. DaviM.V. DavidsonN.R. DaviesH. DavisI.J. Davis-DusenberyB.N. DawsonK.J. De La VegaF.M. De Paoli-IseppiR. DefreitasT. TosA.P.D. DelaneauO. DemchokJ.A. DemeulemeesterJ. DemidovG.M. DemircioğluD. DennisN.M. DenrocheR.E. DentroS.C. DesaiN. DeshpandeV. DeshwarA.G. DesmedtC. Deu-PonsJ. DhallaN. DhaniN.C. DhingraP. DhirR. DiBiaseA. DiamantiK. DingL. DingS. DinhH.Q. DirixL. DoddapaneniH.V. DonmezN. DowM.T. DrapkinR. DrechselO. DrewsR.M. SergeS. DudderidgeT. Dueso-BarrosoA. DunfordA.J. DunnM. DursiL.J. DuthieF.R. Dutton-RegesterK. EaglesJ. EastonD.F. EdmondsS. EdwardsP.A. EdwardsS.E. EelesR.A. EhingerA. EilsJ. EilsR. El-NaggarA. EldridgeM. EllrottK. ErkekS. EscaramisG. EspirituS.M.G. EstivillX. EtemadmoghadamD. EyfjordJ.E. FaltasB.M. FanD. FanY. FaquinW.C. FarcasC. FassanM. FatimaA. FaveroF. FayzullaevN. FelauI. FeredayS. FergusonM.L. FerrettiV. FeuerbachL. FieldM.A. FinkJ.L. FinocchiaroG. FisherC. FittallM.W. FitzgeraldA. FitzgeraldR.C. FlanaganA.M. FleshnerN.E. FlicekP. FoekensJ.A. FongK.M. FonsecaN.A. FosterC.S. FoxN.S. FraserM. FrazerS. Frenkel-MorgensternM. FriedmanW. FrigolaJ. FronickC.C. FujimotoA. FujitaM. FukayamaM. FultonL.A. FultonR.S. FurutaM. FutrealP.A. FüllgrabeA. GabrielS.B. GallingerS. Gambacorti-PasseriniC. GaoJ. GaoS. GarrawayL. GarredØ. GarrisonE. GarsedD.W. GehlenborgN. GelpiJ.L.L. GeorgeJ. GerhardD.S. GerhauserC. GershenwaldJ.E. GersteinM. GerstungM. GetzG. GhoriM. GhosseinR. GiamaN.H. GibbsR.A. GibsonB. GillA.J. GillP. GiriD.D. GlodzikD. GnanapragasamV.J. GoeblerM.E. GoldmanM.J. GomezC. GonzalezS. Gonzalez-PerezA. GordeninD.A. GossageJ. GotohK. GovindanR. GrabauD. GrahamJ.S. GrantR.C. GreenA.R. GreenE. GregerL. GrehanN. GrimaldiS. GrimmondS.M. GrossmanR.L. GrundhoffA. GundemG. GuoQ. GuptaM. GuptaS. GutI.G. GutM. GökeJ. HaG. HaakeA. HaanD. HaasS. HaaseK. HaberJ.E. HabermannN. HachF. HaiderS. HamaN. HamdyF.C. HamiltonA. HamiltonM.P. HanL. HannaG.B. HansmannM. HaradhvalaN.J. HarismendyO. HarliwongI. HarmanciA.O. HarringtonE. HasegawaT. HausslerD. HawkinsS. HayamiS. HayashiS. HayesD.N. HayesS.J. HaywardN.K. HazellS. HeY. HeathA.P. HeathS.C. HedleyD. HegdeA.M. HeimanD.I. HeinoldM.C. HeinsZ. HeislerL.E. Hellstrom-LindbergE. HelmyM. HeoS.G. HepperlaA.J. Heredia-GenestarJ.M. HerrmannC. HerseyP. HessJ.M. HilmarsdottirH. HintonJ. HiranoS. HiraokaN. HoadleyK.A. HobolthA. HodzicE. HoellJ.I. HoffmannS. HofmannO. HolbrookA. HolikA.Z. HollingsworthM.A. HolmesO. HoltR.A. HongC. HongE.P. HongJ.H. HooijerG.K. HornshøjH. HosodaF. HouY. HovestadtV. HowatW. HoyleA.P. HrubanR.H. HuJ. HuT. HuaX. HuangK. HuangM. HuangM.N. HuangV. HuangY. HuberW. HudsonT.J. HummelM. HungJ.A. HuntsmanD. HuppT.R. HuseJ. HuskaM.R. HutterB. HutterC.M. HübschmannD. Iacobuzio-DonahueC.A. ImbuschC.D. ImielinskiM. ImotoS. IsaacsW.B. IsaevK. IshikawaS. IskarM. IslamS.M.A. IttmannM. IvkovicS. IzarzugazaJ.M.G. JacquemierJ. JakrotV. JamiesonN.B. JangG.H. JangS.J. JayaseelanJ.C. JayasingheR. JefferysS.R. JegalianK. JenningsJ.L. JeonS-H. JermanL. JiY. JiaoW. JohanssonP.A. JohnsA.L. JohnsJ. JohnsonR. JohnsonT.A. JollyC. JolyY. JonassonJ.G. JonesC.D. JonesD.R. JonesD.T.W. JonesN. JonesS.J.M. JonkersJ. JuY.S. JuhlH. JungJ. JuulM. JuulR.I. JuulS. JägerN. KabbeR. KahlesA. KahramanA. KaiserV.B. KakavandH. KalimuthuS. von KalleC. KangK.J. KarasziK. KarlanB. KarlićR. KarschD. KasaianK. KassahnK.S. KataiH. KatoM. KatohH. KawakamiY. KayJ.D. KazakoffS.H. KazanovM.D. KeaysM. KebebewE. KeffordR.F. KellisM. KenchJ.G. KennedyC.J. KerssemakersJ.N.A. KhooD. KhooV. KhuntikeoN. KhuranaE. KilpinenH. KimH.K. KimH-L. KimH-Y. KimH. KimJ. KimJ. KimJ.K. KimY. KingT.A. KlapperW. KleinheinzK. KlimczakL.J. KnappskogS. KnebaM. KnoppersB.M. KohY. KomorowskiJ. KomuraD. KomuraM. KongG. KoolM. KorbelJ.O. KorchinaV. KorshunovA. KoscherM. KosterR. Kote-JaraiZ. KouresA. KovacevicM. KremeyerB. KretzmerH. KreuzM. KrishnamurthyS. KubeD. KumarK. KumarP. KumarS. KumarY. KundraR. KüblerK. KüppersR. LagergrenJ. LaiP.H. LairdP.W. LakhaniS.R. LalansinghC.M. LalondeE. LamazeF.C. LambertA. LanderE. LandgrafP. LandoniL. LangerødA. LanzósA. LarsimontD. LarssonE. LathropM. LauL.M.S. LawerenzC. LawlorR.T. LawrenceM.S. LazarA.J. LazicA.M. LeX. LeeD. LeeD. LeeE.A. LeeH.J. LeeJ.J-K. LeeJ-Y. LeeJ. LeeM.T.M. Lee-SixH. LehmannK-V. LehrachH. LenzeD. LeonardC.R. LeongamornlertD.A. LeshchinerI. LetourneauL. LetunicI. LevineD.A. LewisL. LeyT. LiC. LiC.H. LiH.I. LiJ. LiL. LiS. LiS. LiX. LiX. LiX. LiY. LiangH. LiangS-B. LichterP. LinP. LinZ. LinehanW.M. LingjærdeO.C. LiuD. LiuE.M. LiuF-F.F. LiuF. LiuJ. LiuX. LivingstoneJ. LivitzD. LivniN. LochovskyL. LoefflerM. LongG.V. Lopez-GuillermoA. LouS. LouisD.N. LovatL.B. LuY. LuY-J. LuY. LuchiniC. LunguI. LuoX. LuxtonH.J. LynchA.G. LypeL. LópezC. López-OtínC. MaE.Z. MaY. MacGroganG. MacRaeS. MacintyreG. MadsenT. MaejimaK. MafficiniA. MaglinteD.T. MaitraA. MajumderP.P. MalcovatiL. MalikicS. MalleoG. MannG.J. Mantovani-LöfflerL. MarchalK. MarchegianiG. MardisE.R. MargolinA.A. MarinM.G. MarkowetzF. MarkowskiJ. MarksJ. Marques-BonetT. MarraM.A. MarsdenL. MartensJ.W.M. MartinS. Martin-SuberoJ.I. MartincorenaI. Martinez-FundichelyA. MaruvkaY.E. MashlR.J. MassieC.E. MatthewT.J. MatthewsL. MayerE. MayesS. MayoM. MbabaaliF. McCuneK. McDermottU. McGillivrayP.D. McLellanM.D. McPhersonJ.D. McPhersonJ.R. McPhersonT.A. MeierS.R. MengA. MengS. MenziesA. MerrettN.D. MersonS. MeyersonM. MeyersonW. MieczkowskiP.A. MihaiescuG.L. MijalkovicS. MikkelsenT. MilellaM. MileshkinL. MillerC.A. MillerD.K. MillerJ.K. MillsG.B. MilovanovicA. MinnerS. MiottoM. ArnauG.M. MirabelloL. MitchellC. MitchellT.J. MiyanoS. MiyoshiN. MizunoS. Molnár-GáborF. MooreM.J. MooreR.A. MorganellaS. MorrisQ.D. MorrisonC. MoseL.E. MoserC.D. MuiñosF. MularoniL. MungallA.J. MungallK. MusgroveE.A. MustonenV. MutchD. MuyasF. MuznyD.M. MuñozA. MyersJ. MyklebostO. MöllerP. NagaeG. NagrialA.M. Nahal-BoseH.K. NakagamaH. NakagawaH. NakamuraH. NakamuraT. NakanoK. NandiT. NangaliaJ. NasticM. NavarroA. NavarroF.C.P. NealD.E. NettekovenG. NewellF. NewhouseS.J. NewtonY. NgA.W.T. NgA. NicholsonJ. NicolD. NieY. NielsenG.P. NielsenM.M. Nik-ZainalS. NobleM.S. NonesK. NorthcottP.A. NottaF. O’ConnorB.D. O’DonnellP. O’DonovanM. O’MearaS. O’NeillB.P. O’NeillJ.R. OcanaD. OchoaA. OesperL. OgdenC. OhdanH. OhiK. Ohno-MachadoL. OienK.A. OjesinaA.I. OjimaH. OkusakaT. OmbergL. OngC.K. OssowskiS. OttG. OuelletteB.F.F. P’ngC. PaczkowskaM. PaiellaS. PairojkulC. PajicM. Pan-HammarströmQ. PapaemmanuilE. PapatheodorouI. ParamasivamN. ParkJ.W. ParkJ-W. ParkK. ParkK. ParkP.J. ParkerJ.S. ParsonsS.L. PassH. PasternackD. PastoreA. PatchA-M. PauportéI. PeaA. PearsonJ.V. PedamalluC.S. PedersenJ.S. PederzoliP. PeiferM. PennellN.A. PerouC.M. PerryM.D. PetersenG.M. PetoM. PetrelliN. PetryszakR. PfisterS.M. PhillipsM. PichO. PickettH.A. PihlT.D. PillayN. PinderS. PineseM. PinhoA.V. PitkänenE. PivotX. Piñeiro-YáñezE. PlankoL. PlassC. PolakP. PonsT. PopescuI. PotapovaO. PrasadA. PrestonS.R. PrinzM. PritchardA.L. ProkopecS.D. ProvenzanoE. PuenteX.S. PuigS. PuiggròsM. Pulido-TamayoS. PupoG.M. PurdieC.A. QuinnM.C. RabionetR. RaderJ.S. RadlwimmerB. RadovicP. RaederB. RaineK.M. RamakrishnaM. RamakrishnanK. RamalingamS. RaphaelB.J. RathmellW.K. RauschT. ReifenbergerG. ReimandJ. Reis-FilhoJ. ReuterV. Reyes-SalazarI. ReynaM.A. ReynoldsS.M. RheinbayE. RiazalhosseiniY. RichardsonA.L. RichterJ. RingelM. RingnérM. RinoY. RippeK. RoachJ. RobertsL.R. RobertsN.D. RobertsS.A. RobertsonA.G. RobertsonA.J. RodriguezJ.B. Rodriguez-MartinB. Rodríguez-GonzálezF.G. RoehrlM.H.A. RohdeM. RokutanH. RomieuG. RoomanI. RoquesT. RosebrockD. RosenbergM. RosenstielP.C. RosenwaldA. RoweE.W. RoyoR. RozenS.G. RubanovaY. RubinM.A. Rubio-PerezC. RudnevaV.A. RusevB.C. RuzzenenteA. RätschG. SabarinathanR. SabelnykovaV.Y. SadeghiS. SahinalpS.C. SainiN. Saito-AdachiM. SaksenaG. SalcedoA. SalgadoR. SalichosL. SallariR. SallerC. SalviaR. SamM. SamraJ.S. Sanchez-VegaF. SanderC. SandersG. SarinR. SarrafiI. Sasaki-OkuA. SauerT. SauterG. SawR.P.M. ScardoniM. ScarlettC.J. ScarpaA. SceloG. SchadendorfD. ScheinJ.E. SchilhabelM.B. SchlesnerM. SchlommT. SchmidtH.K. SchrammS-J. SchreiberS. SchultzN. SchumacherS.E. SchwarzR.F. ScolyerR.A. ScottD. ScullyR. SeethalaR. SegreA.V. SelanderI. SempleC.A. SenbabaogluY. SenguptaS. SereniE. SerraS. SgroiD.C. ShackletonM. ShahN.C. ShahabiS. ShangC.A. ShangP. ShapiraO. SheltonT. ShenC. ShenH. ShepherdR. ShiR. ShiY. ShiahY-J. ShibataT. ShihJ. ShimizuE. ShimizuK. ShinS.J. ShiraishiY. ShmayaT. ShmulevichI. ShorserS.I. ShortC. ShresthaR. ShringarpureS.S. ShriverC. ShuaiS. SidiropoulosN. SiebertR. SieuwertsA.M. SieverlingL. SignorettiS. SikoraK.O. SimboloM. SimonR. SimonsJ.V. SimpsonJ.T. SimpsonP.T. SingerS. Sinnott-ArmstrongN. SipahimalaniP. SkellyT.J. SmidM. SmithJ. Smith-McCuneK. SocciN.D. SofiaH.J. SolowayM.G. SongL. SoodA.K. SothiS. SotiriouC. SouletteC.M. SpanP.N. SpellmanP.T. SperandioN. SpillaneA.J. SpiroO. SpringJ. StaafJ. StadlerP.F. StaibP. StarkS.G. StebbingsL. StefánssonÓ.A. StegleO. SteinL.D. StenhouseA. StewartC. StilgenbauerS. StobbeM.D. StrattonM.R. StretchJ.R. StruckA.J. StuartJ.M. StunnenbergH.G. SuH. SuX. SunR.X. SungaleeS. SusakH. SuzukiA. SweepF. SzczepanowskiM. SültmannH. YugawaT. TamA. TamboreroD. TanB.K.T. TanD. TanP. TanakaH. TaniguchiH. TanskanenT.J. TarabichiM. TarnuzzerR. TarpeyP. TaschukM.L. TatsunoK. TavaréS. TaylorD.F. Taylor-WeinerA. TeagueJ.W. TehB.T. TembeV. TemesJ. ThaiK. ThayerS.P. ThiessenN. ThomasG. ThomasS. ThompsonA. ThompsonA.M. ThompsonJ.F.F. ThompsonR.H. ThorneH. ThorneL.B. ThorogoodA. TiaoG. TijanicN. TimmsL.E. TiraboscoR. TojoM. TommasiS. ToonC.W. ToprakU.H. TorrentsD. TortoraG. TostJ. TotokiY. TownendD. TraficanteN. TreilleuxI. TrottaJ-R. TrümperL.H.P. TsaoM. TsunodaT. TubioJ.M.C. TuckerO. TurkingtonR. TurnerD.J. TuttA. UenoM. UenoN.T. UmbrichtC. UmerH.M. UnderwoodT.J. UrbanL. UrushidateT. UshikuT. Uusküla-ReimandL. ValenciaA. Van Den BergD.J. Van LaereS. Van LooP. Van MeirE.G. Van den EyndenG.G. Van der KwastT. VasudevN. VazquezM. VedururuR. VeluvoluU. VembuS. VerbekeL.P.C. VermeulenP. VerrillC. ViariA. VicenteD. VicentiniC. VijayRaghavanK. ViksnaJ. VilainR.E. VillasanteI. Vincent-SalomonA. VisakorpiT. VoetD. VyasP. Vázquez-GarcíaI. WaddellN.M. WaddellN. WadeliusC. WadiL. WagenerR. WalaJ.A. WangJ. WangJ. WangL. WangQ. WangW. WangY. WangZ. WaringP.M. WarnatzH-J. WarrellJ. WarrenA.Y. WaszakS.M. WedgeD.C. WeichenhanD. WeinbergerP. WeinsteinJ.N. WeischenfeldtJ. WeisenbergerD.J. WelchI. WendlM.C. WernerJ. WhalleyJ.P. WheelerD.A. WhitakerH.C. WigleD. WilkersonM.D. WilliamsA. WilmottJ.S. WilsonG.W. WilsonJ.M. WilsonR.K. WinterhoffB. WintersingerJ.A. WiznerowiczM. WolfS. WongB.H. WongT. WongW. WooY. WoodS. WoutersB.G. WrightA.J. WrightD.W. WrightM.H. WuC-L. WuD-Y. WuG. WuJ. WuK. WuY. WuZ. XiL. XiaT. XiangQ. XiaoX. XingR. XiongH. XuQ. XuY. XueH. YachidaS. YakneenS. YamaguchiR. YamaguchiT.N. YamamotoM. YamamotoS. YamaueH. YangF. YangH. YangJ.Y. YangL. YangL. YangS. YangT-P. YangY. YaoX. YaspoM-L. YatesL. YauC. YeC. YeK. YellapantulaV.D. YoonC.J. YoonS-S. YousifF. YuJ. YuK. YuW. YuY. YuanK. YuanY. YuenD. YungC.K. ZaikovaO. ZamoraJ. ZapatkaM. ZenklusenJ.C. ZenzT. ZepsN. ZhangC-Z. ZhangF. ZhangH. ZhangH. ZhangH. ZhangJ. ZhangJ. ZhangJ. ZhangX. ZhangX. ZhangY. ZhangZ. ZhaoZ. ZhengL. ZhengX. ZhouW. ZhouY. ZhuB. ZhuH. ZhuJ. ZhuS. ZouL. ZouX. deFazioA. van AsN. van DeurzenC.H.M. van de VijverM.J. van’t VeerL. von MeringC. Pan-cancer analysis of whole genomes.Nature20205787793829310.1038/s41586‑020‑1969‑632025007
    [Google Scholar]
  3. SharpeJ.L. MorganJ. NisbetN. CampbellK. CasaliA. Modelling cancer metastasis in Drosophila melanogaster. Cells202312567710.3390/cells1205067736899813
    [Google Scholar]
  4. DillekåsH. RogersM.S. StraumeO. Are 90% of deaths from cancer caused by metastases?Cancer Med.20198125574557610.1002/cam4.247431397113
    [Google Scholar]
  5. HuZ. CurtisC. Looking backward in time to define the chronology of metastasis.Nat. Commun.2020111321310.1038/s41467‑020‑16995‑y32587245
    [Google Scholar]
  6. PatelS.A. RodriguesP. WesolowskiL. VanharantaS. Genomic control of metastasis.Br. J. Cancer2021124131210.1038/s41416‑020‑01127‑633144692
    [Google Scholar]
  7. LinS. LiY. WangD. HuangC. MarinoD. BolltO. WuC. TaylorM.D. LiW. DeNicolaG.M. HaoJ. SinghP.K. YangS. Fascin promotes lung cancer growth and metastasis by enhancing glycolysis and PFKFB3 expression.Cancer Lett.202151823024210.1016/j.canlet.2021.07.02534303764
    [Google Scholar]
  8. QuJ. YangJ. ChenM. WeiR. TianJ. CircFLNA acts as a sponge of miR-646 to facilitate the proliferation, metastasis, glycolysis, and apoptosis inhibition of gastric cancer by targeting PFKFB2.Cancer Manag. Res.2020128093810310.2147/CMAR.S26467432982406
    [Google Scholar]
  9. RoeJ.S. HwangC.I. SomervilleT.D.D. MilazzoJ.P. LeeE.J. Da SilvaB. MaiorinoL. TiriacH. YoungC.M. MiyabayashiK. FilippiniD. CreightonB. BurkhartR.A. BuscagliaJ.M. KimE.J. GremJ.L. LazenbyA.J. GrunkemeyerJ.A. HollingsworthM.A. GrandgenettP.M. EgebladM. ParkY. TuvesonD.A. VakocC.R. Enhancer reprogramming promotes pancreatic cancer metastasis.Cell20171705875888.e2010.1016/j.cell.2017.07.00728757253
    [Google Scholar]
  10. QinC. YangG. YangJ. RenB. WangH. ChenG. ZhaoF. YouL. WangW. ZhaoY. Metabolism of pancreatic cancer: Paving the way to better anticancer strategies.Mol. Cancer20201915010.1186/s12943‑020‑01169‑732122374
    [Google Scholar]
  11. SchildT. LowV. BlenisJ. GomesA.P. Unique metabolic adaptations dictate distal organ-specific metastatic colonization.Cancer Cell201833334735410.1016/j.ccell.2018.02.00129533780
    [Google Scholar]
  12. LuJ. The Warburg metabolism fuels tumor metastasis.Cancer Metastasis Rev.2019381-215716410.1007/s10555‑019‑09794‑530997670
    [Google Scholar]
  13. LibertiM.V. LocasaleJ.W. The Warburg effect: how does it benefit cancer cells?Trends Biochem. Sci.201641321121810.1016/j.tibs.2015.12.00126778478
    [Google Scholar]
  14. YangJ. ZhangX. CaoJ. XuP. ChenZ. WangS. LiB. ZhangL. XieL. FangL. XuZ. Circular RNA UBE2Q2 promotes malignant progression of gastric cancer by regulating signal transducer and activator of transcription 3-mediated autophagy and glycolysis.Cell Death Dis.2021121091010.1038/s41419‑021‑04216‑334611143
    [Google Scholar]
  15. WuG. ZhangA. YangY. WuD. Circ-RNF111 aggravates the malignancy of gastric cancer through miR-876-3p-dependent regulation of KLF12.World J. Surg. Oncol.202119125910.1186/s12957‑021‑02373‑534461926
    [Google Scholar]
  16. LiuJ. LiJ. SuY. MaZ. YuS. HeY. Circ_0009910 serves as miR-361-3p Sponge to promote the proliferation, metastasis, and glycolysis of gastric cancer via regulating SNRPA.Biochem. Genet.20226051809182410.1007/s10528‑021‑10168‑235098410
    [Google Scholar]
  17. ChenL. ChiK. XiangH. YangY. Circ_0032821 facilitates gastric cancer cell proliferation, migration, invasion and glycolysis by regulating MiR-1236-3p/HMGB1 axis.Cancer Manag. Res.2020129965997610.2147/CMAR.S27016433116853
    [Google Scholar]
  18. ZhouY. ZhangQ. LiaoB. QiuX. HuS. XuQ. circ_0006089 promotes gastric cancer growth, metastasis, glycolysis, and angiogenesis by regulating miR-361-3p/TGFB1.Cancer Sci.202211362044205510.1111/cas.1535135347818
    [Google Scholar]
  19. ZhengY. LiP. MaJ. YangC. DaiS. ZhaoC. Cancer-derived exosomal circ_0038138 enhances glycolysis, growth, and metastasis of gastric adenocarcinoma via the miR-198/EZH2 axis.Transl. Oncol.20222510147910.1016/j.tranon.2022.10147935987088
    [Google Scholar]
  20. YuH. LuoH. LiuX. Knockdown of circ_0102273 inhibits the proliferation, metastasis and glycolysis of breast cancer through miR-1236-3p/PFKFB3 axis.Anticancer Drugs202233432333410.1097/CAD.000000000000126435266884
    [Google Scholar]
  21. HuangL. ZhangG. HanL. BaiX. XiZ. WangF. HanG. Circ_0059457 promotes proliferation, metastasis, sphere formation and glycolysis in breast cancer cells by sponging miR-140-3p to regulate UBE2C.Biochem. Genet.202462112514310.1007/s10528‑023‑10407‑837284894
    [Google Scholar]
  22. ZhuangJ. SongW. LiM. KangD. ChengK. Circular RNA (circ)_0053277 contributes to colorectal cancer cell growth, angiogenesis, metastasis and glycolysis.Mol. Biotechnol.202310.1007/s12033‑023‑00936‑337917325
    [Google Scholar]
  23. WangZ. ChenY. WangW. WangH. LiuR. circMYC promotes cell proliferation, metastasis, and glycolysis in cervical cancer by up-regulating MET and sponging miR-577.Am. J. Transl. Res.20211366043605434306343
    [Google Scholar]
  24. TaiG. ZhangM. LiuF. Circ_0000735 enhances the proliferation, metastasis and glycolysis of non-small cell lung cancer by regulating the miR-635/FAM83F axis.Exp. Lung Res.202147311310.1080/01902148.2021.188118833560141
    [Google Scholar]
  25. LiY. QinJ. HeZ. CuiG. ZhangK. WuB. Knockdown of circPUM1 impedes cell growth, metastasis and glycolysis of papillary thyroid cancer via enhancing MAPK1 expression by serving as the sponge of miR-21-5p.Genes Genomics202143214115010.1007/s13258‑020‑01023‑633481227
    [Google Scholar]
  26. WanJ. LiuY. LongF. TianJ. ZhangC. circPVT1 promotes osteosarcoma glycolysis and metastasis by sponging miR-423-5p to activate Wnt5a/Ror2 signaling.Cancer Sci.202111251707172210.1111/cas.1478733369809
    [Google Scholar]
  27. SunJ. FengM. ZouH. MaoY. YuW. Circ_0000284 facilitates the growth, metastasis and glycolysis of intrahepatic cholangiocarcinoma through miR-152-3p-mediated PDK1 expression.Histol. Histopathol.202338101129114336331285
    [Google Scholar]
  28. LiS. ZhangY. HeZ. XuQ. LiC. XuB. Knockdown of circMYOF inhibits cell growth, metastasis, and glycolysis through miR-145-5p/OTX1 regulatory axis in laryngeal squamous cell carcinoma.Funct. Integr. Genomics202222411310.1007/s10142‑022‑00862‑835474406
    [Google Scholar]
  29. AbuduwailiK. ZhuX. ShenY. LuS. LiuC. circ_0008797 attenuates non‐small cell lung cancer proliferation, metastasis, and aerobic glycolysis by sponging miR ‐301a‐3p/ SOCS2.Environ. Toxicol.20223771697171010.1002/tox.2351835305058
    [Google Scholar]
  30. LiJ. HuZ.Q. YuS.Y. MaoL. ZhouZ.J. WangP.C. GongY. SuS. ZhouJ. FanJ. ZhouS.L. HuangX.W. CircRPN2 inhibits aerobic glycolysis and metastasis in hepatocellular carcinoma.Cancer Res.20228261055106910.1158/0008‑5472.CAN‑21‑125935045986
    [Google Scholar]
  31. HanL. ChengJ. LiA. hsa_circ_0072387 suppresses proliferation, metastasis, and glycolysis of oral squamous cell carcinoma cells by downregulating miR-503-5p.Cancer Biother. Radiopharm.2021361849410.1089/cbr.2019.337132302508
    [Google Scholar]
  32. GuoJ. SuY. ZhangM. Circ_0000140 restrains the proliferation, metastasis and glycolysis metabolism of oral squamous cell carcinoma through upregulating CDC73 via sponging miR-182-5p.Cancer Cell Int.202020140710.1186/s12935‑020‑01501‑732863766
    [Google Scholar]
  33. WuM. SunT. XingL. Circ_0004913 inhibits cell growth, metastasis, and glycolysis by absorbing miR-184 to regulate HAMP in hepatocellular carcinoma.Cancer Biother. Radiopharm.2023381070871910.1089/cbr.2020.377933021399
    [Google Scholar]
  34. CaiK. ChenS. ZhuC. LiL. YuC. HeZ. SunC. FOXD1 facilitates pancreatic cancer cell proliferation, invasion, and metastasis by regulating GLUT1-mediated aerobic glycolysis.Cell Death Dis.202213976510.1038/s41419‑022‑05213‑w36057597
    [Google Scholar]
  35. YuT. LiG. WangC. GongG. WangL. LiC. ChenY. WangX. MIR210HG regulates glycolysis, cell proliferation, and metastasis of pancreatic cancer cells through miR-125b-5p/HK2/PKM2 axis.RNA Biol.202118122513253010.1080/15476286.2021.193075534110962
    [Google Scholar]
  36. LiM. CaiO. YuY. TanS. Paeonol inhibits the malignancy of Apatinib-resistant gastric cancer cells via LINC00665/ miR-665/MAPK1 axis.Phytomedicine20229615390310.1016/j.phymed.2021.15390335026514
    [Google Scholar]
  37. ZhaoS. GuanB. MiY. ShiD. WeiP. GuY. CaiS. XuY. LiX. YanD. HuangM. LiD. LncRNA MIR17HG promotes colorectal cancer liver metastasis by mediating a glycolysis-associated positive feedback circuit.Oncogene202140284709472410.1038/s41388‑021‑01859‑634145399
    [Google Scholar]
  38. LiS. ZhuK. LiuL. GuJ. NiuH. GuoJ. lncARSR sponges miR-34a-5p to promote colorectal cancer invasion and metastasis via hexokinase-1-mediated glycolysis.Cancer Sci.2020111103938395210.1111/cas.1461732798250
    [Google Scholar]
  39. ShiL. LiB. ZhangY. ChenY. TanJ. ChenY. LiJ. XiangM. XingH.R. WangJ. Exosomal lncRNA Mir100hg derived from cancer stem cells enhance glycolysis and promote metastasis of lung adenocarcinoma through mircroRNA-15a-5p/31-5p.Cell Commun. Signal.202321124810.1186/s12964‑023‑01281‑337735657
    [Google Scholar]
  40. WangL. XieY. WangJ. ZhangY. LiuS. ZhanY. ZhaoY. LiJ. LiP. WangC. Characterization of a novel LUCAT1/miR-4316/VEGF-A axis in metastasis and glycolysis of lung adenocarcinoma.Front. Cell Dev. Biol.20221083357910.3389/fcell.2022.83357935646922
    [Google Scholar]
  41. HanJ. ChenX. WangJ. LiuB. Glycolysis-related lncRNA TMEM105 upregulates LDHA to facilitate breast cancer liver metastasis via sponging miR-1208.Cell Death Dis.20231428010.1038/s41419‑023‑05628‑z36737428
    [Google Scholar]
  42. LiuX. ZhuQ. GuoY. XiaoZ. HuL. XuQ. LncRNA LINC00689 promotes the growth, metastasis and glycolysis of glioma cells by targeting miR-338-3p/PKM2 axis.Biomed. Pharmacother.201911710906910.1016/j.biopha.2019.10906931181442
    [Google Scholar]
  43. LinY.H. WuM.H. HuangY.H. YehC.T. ChengM.L. ChiH.C. TsaiC.Y. ChungI.H. ChenC.Y. LinK.H. Taurine up-regulated gene 1 functions as a master regulator to coordinate glycolysis and metastasis in hepatocellular carcinoma.Hepatology201867118820310.1002/hep.2946228802060
    [Google Scholar]
  44. LiuC. XuK. LiuJ. HeC. LiuP. FuQ. ZhangH. QinT. LncRNA RP11-620J15.3 promotes HCC cell proliferation and metastasis by targeting miR-326/GPI to enhance glycolysis.Biol. Direct20231811510.1186/s13062‑023‑00370‑037020316
    [Google Scholar]
  45. JiW. BaiJ. KeY. Exosomal ZFPM2-AS1 contributes to tumorigenesis, metastasis, stemness, macrophage polarization, and infiltration in hepatocellular carcinoma through PKM mediated glycolysis.Environ. Toxicol.20233861332134610.1002/tox.2376736880413
    [Google Scholar]
  46. WangY. ZhangX. WangZ. HuQ. WuJ. LiY. RenX. WuT. TaoX. ChenX. LiX. XiaJ. ChengB. LncRNA-p23154 promotes the invasion-metastasis potential of oral squamous cell carcinoma by regulating Glut1-mediated glycolysis.Cancer Lett.201843417218310.1016/j.canlet.2018.07.01630026052
    [Google Scholar]
  47. WangQ. LiuM.J. BuJ. DengJ.L. JiangB.Y. JiangL.D. HeX.J. miR-485-3p regulated by MALAT1 inhibits osteosarcoma glycolysis and metastasis by directly suppressing c-MET and AKT3/mTOR signalling.Life Sci.202126811892510.1016/j.lfs.2020.11892533358903
    [Google Scholar]
  48. LiangY. WangH. ChenB. MaoQ. XiaW. ZhangT. SongX. ZhangZ. XuL. DongG. JiangF. circDCUN1D4 suppresses tumor metastasis and glycolysis in lung adenocarcinoma by stabilizing TXNIP expression.Mol. Ther. Nucleic Acids20212335536810.1016/j.omtn.2020.11.01233425493
    [Google Scholar]
  49. XieR. LiuL. LuX. HeC. YaoH. LiG. N6-methyladenosine modification of OIP5-AS1 promotes glycolysis, tumorigenesis, and metastasis of gastric cancer by inhibiting Trim21-mediated hnRNPA1 ubiquitination and degradation.Gastric Cancer2024271497110.1007/s10120‑023‑01437‑737897508
    [Google Scholar]
  50. HuoN. CongR. SunZ. LiW. ZhuX. XueC. ChenZ. MaL. ChuZ. HanY. KangX. JiaS. DuN. KangL. XuX. STAT3/LINC00671 axis regulates papillary thyroid tumor growth and metastasis via LDHA-mediated glycolysis.Cell Death Dis.202112979910.1038/s41419‑021‑04081‑034404767
    [Google Scholar]
  51. LiT. TongH. ZhuJ. QinZ. YinS. SunY. LiuX. HeW. Identification of a three-glycolysis-related lncRNA signature correlated with prognosis and metastasis in clear cell renal cell carcinoma.Front. Med. (Lausanne)2022877750710.3389/fmed.2021.77750735083240
    [Google Scholar]
  52. ZhangD. HeZ. ShenY. WangJ. LiuT. JiangJ. MiR-489-3p reduced pancreatic cancer proliferation and metastasis by targeting PKM2 and LDHA involving glycolysis.Front. Oncol.20211165153510.3389/fonc.2021.65153534868902
    [Google Scholar]
  53. XuQ. DouC. LiuX. YangL. NiC. WangJ. GuoY. YangW. TongX. HuangD. Oviductus ranae protein hydrolysate (ORPH) inhibits the growth, metastasis and glycolysis of HCC by targeting miR-491-5p/PKM2 axis.Biomed. Pharmacother.20181071692170410.1016/j.biopha.2018.07.07130257387
    [Google Scholar]
  54. LiangJ. YangY. BaiL. LiF. LiE. DRP1 upregulation promotes pancreatic cancer growth and metastasis through increased aerobic glycolysis.J. Gastroenterol. Hepatol.202035588589510.1111/jgh.1491231674061
    [Google Scholar]
  55. ZhuY. LiF. WanY. LiangH. LiS. PengB. ShaoL. XuY. JiangD. Cancer-secreted exosomal MiR-620 inhibits ESCC aerobic glycolysis via FOXM1/HER2 pathway and promotes metastasis.Front. Oncol.20221275610910.3389/fonc.2022.75610935651785
    [Google Scholar]
  56. YaoX. LiW. LiL. LiM. ZhaoY. FangD. ZengX. LuoZ. YTHDF1 upregulation mediates hypoxia-dependent breast cancer growth and metastasis through regulating PKM2 to affect glycolysis.Cell Death Dis.202213325810.1038/s41419‑022‑04711‑135319018
    [Google Scholar]
  57. SlackF.J. ChinnaiyanA.M. The Role of Non-coding RNAs in Oncology.Cell201917951033105510.1016/j.cell.2019.10.01731730848
    [Google Scholar]
  58. LiL. ZhangX. LinY. RenX. XieT. LinJ. WuS. YeQ. Let-7b-5p inhibits breast cancer cell growth and metastasis via repression of hexokinase 2-mediated aerobic glycolysis.Cell Death Discov.20239111410.1038/s41420‑023‑01412‑237019900
    [Google Scholar]
  59. CaoJ. CaoR. LiuY. DaiT. CPNE1 mediates glycolysis and metastasis of breast cancer through activation of PI3K/AKT/HIF-1α signaling.Pathol. Res. Pract.202324815463410.1016/j.prp.2023.15463437454492
    [Google Scholar]
  60. ShiJ. YeJ. FeiH. JiangS.H. WuZ.Y. ChenY.P. ZhangL.W. YangX.M. YWHAZ promotes ovarian cancer metastasis by modulating glycolysis.Oncol. Rep.20194121101111230535456
    [Google Scholar]
  61. LiuY. ChiW. TaoL. WangG. DeepakR.N.V.K. ShengL. ChenT. FengY. CaoX. ChengL. ZhaoX. LiuX. DengH. FanH. JiangP. ChenL. Ablation of proton/glucose exporter SLC45A2 enhances melanosomal glycolysis to inhibit melanin biosynthesis and promote melanoma metastasis.J. Invest. Dermatol.20221421027442755.e910.1016/j.jid.2022.04.00835469906
    [Google Scholar]
  62. LuoJ. SunP. ZhangX. LinG. XinQ. NiuY. ChenY. XuN. ZhangY. XieW. Canagliflozin modulates hypoxia-induced metastasis, angiogenesis and glycolysis by decreasing HIF-1α protein synthesis via AKT/mTOR pathway.Int. J. Mol. Sci.202122241333610.3390/ijms22241333634948132
    [Google Scholar]
  63. WangK. ChaiL. QiuZ. ZhangY. GaoH. ZhangX. Overexpression of TRIM26 suppresses the proliferation, metastasis, and glycolysis in papillary thyroid carcinoma cells.J. Cell. Physiol.201923410190191902710.1002/jcp.2854130927273
    [Google Scholar]
  64. MaoL. DauchyR.T. BlaskD.E. DauchyE.M. SlakeyL.M. BrimerS. YuanL. XiangS. HauchA. SmithK. FraschT. BelancioV.P. WrenM.A. HillS.M. Melatonin suppression of aerobic glycolysis (Warburg effect), survival signalling and metastasis in human leiomyosarcoma.J. Pineal Res.201660216717710.1111/jpi.1229826607298
    [Google Scholar]
  65. XuL. LiJ. TursunM. HaiY. TursunH. MamtiminB. HasimA. Receptor for activated C kinase 1 promotes cervical cancer lymph node metastasis via the glycolysis-dependent AKT/mTOR signaling.Int. J. Oncol.20226118310.3892/ijo.2022.537335616137
    [Google Scholar]
  66. ZhengX. PanY. YangG. LiuY. ZouJ. ZhaoH. YinG. WuY. LiX. WeiZ. YuS. ZhaoY. WangA. ChenW. LuY. Kaempferol impairs aerobic glycolysis against melanoma metastasis via inhibiting the mitochondrial binding of HK2 and VDAC1.Eur. J. Pharmacol.202293117522610.1016/j.ejphar.2022.17522636007607
    [Google Scholar]
  67. ChenX. LiZ. YongH. WangW. WangD. ChuS. LiM. HouP. ZhengJ. BaiJ. Trim21-mediated HIF-1α degradation attenuates aerobic glycolysis to inhibit renal cancer tumorigenesis and metastasis.Cancer Lett.202150811512610.1016/j.canlet.2021.03.02333794309
    [Google Scholar]
  68. YaoC. WengJ. FengL. ZhangW. XuY. ZhangP. TanakaY. SuL. SIPA1 enhances aerobic glycolysis through HIF-2α pathway to promote breast cancer metastasis.Front. Cell Dev. Biol.2022977916910.3389/fcell.2021.77916935096814
    [Google Scholar]
  69. LiuY.J. LiX.L. MaC.Q. ChenD.X. WangG.Y. ZhuT.Y. Mechanism of Yanghe Decoction against subcutaneous tumor in pulmonary metastasis from breast cancer through HIF-1α signaling pathway regulating glycolysis: Based on network pharmacology and animal experiment.Zhongguo Zhongyao Zazhi20234892352235937282864
    [Google Scholar]
  70. ChenM. CenK. SongY. ZhangX. LiouY.C. LiuP. HuangJ. RuanJ. HeJ. YeW. WangT. HuangX. YangJ. JiaY. LiangX. ShenP. WangQ. LiangT. NUSAP1-LDHA-Glycolysis-Lactate feedforward loop promotes Warburg effect and metastasis in pancreatic ductal adenocarcinoma.Cancer Lett.202356721628510.1016/j.canlet.2023.21628537354982
    [Google Scholar]
  71. TsaiY.C. ChenS.L. PengS.L. TsaiY.L. ChangZ.M. ChangV.H.S. Ch’angH.J. Upregulating sirtuin 6 ameliorates glycolysis, EMT and distant metastasis of pancreatic adenocarcinoma with krüppel-like factor 10 deficiency.Exp. Mol. Med.202153101623163510.1038/s12276‑021‑00687‑834702956
    [Google Scholar]
  72. HeS. JiaQ. ZhouL. WangZ. LiM. SIRT5 is involved in the proliferation and metastasis of breast cancer by promoting aerobic glycolysis.Pathol. Res. Pract.202223515394310.1016/j.prp.2022.15394335576836
    [Google Scholar]
  73. SongK. LiB. ChenY.Y. WangH. LiuK.C. TanW. ZouJ. LRPPRC regulates metastasis and glycolysis by modulating autophagy and the ROS/HIF1-α pathway in retinoblastoma.Mol. Ther. Oncolytics20212258259110.1016/j.omto.2021.06.00934589577
    [Google Scholar]
  74. LiuX. TanX. XiaM. WuC. SongJ. WuJ. LaurenceA. XieQ. ZhangM. LiangH. ZhangB. ChenX. Loss of 11βHSD1 enhances glycolysis, facilitates intrahepatic metastasis, and indicates poor prognosis in hepatocellular carcinoma.Oncotarget2016722038205310.18632/oncotarget.666126700460
    [Google Scholar]
  75. WangX. HuZ. WangZ. CuiY. CuiX. Angiopoietin-like protein 2 is an important facilitator of tumor proliferation, metastasis, angiogenesis and glycolysis in osteosarcoma.Am. J. Transl. Res.201911106341635531737187
    [Google Scholar]
  76. LiY. TianM. LiuW. WangD. ZhouZ. PeiQ. HuangY. TanF. GüngörC. Follistatin-Like 3 enhances invasion and metastasis via β-catenin-mediated emt and aerobic glycolysis in colorectal cancer.Front. Cell Dev. Biol.2021966015910.3389/fcell.2021.66015934395416
    [Google Scholar]
  77. ZhengY. LiuP. WangN. WangS. YangB. LiM. ChenJ. SituH. XieM. LinY. WangZ. Betulinic acid suppresses breast cancer metastasis by targeting GRP78-mediated glycolysis and ER stress apoptotic pathway.Oxid. Med. Cell. Longev.2019201911510.1155/2019/878169031531187
    [Google Scholar]
  78. YuanZ. RenR. XuZ. G protein subunit gamma 5 promotes the proliferation, metastasis and glycolysis of breast cancer cells through the Wnt/β-catenin pathway.Anticancer Drugs202233101004101110.1097/CAD.000000000000139436255067
    [Google Scholar]
  79. FanQ. YangL. ZhangX. MaY. LiY. DongL. ZongZ. HuaX. SuD. LiH. LiuJ. Autophagy promotes metastasis and glycolysis by upregulating MCT1 expression and Wnt/β-catenin signaling pathway activation in hepatocellular carcinoma cells.J. Exp. Clin. Cancer Res.2018371910.1186/s13046‑018‑0673‑y29351758
    [Google Scholar]
  80. HuT. LiuH. LiangZ. WangF. ZhouC. ZhengX. ZhangY. SongY. HuJ. HeX. XiaoJ. KingR.J. WuX. LanP. Tumor-intrinsic CD47 signal regulates glycolysis and promotes colorectal cancer cell growth and metastasis.Theranostics20201094056407210.7150/thno.4086032226539
    [Google Scholar]
  81. NokinM.J. BellierJ. DurieuxF. PeulenO. RademakerG. GabrielM. MonseurC. CharloteauxB. VerbekeL. van LaereS. RoncaratiP. HerfsM. LambertC. ScheijenJ. SchalkwijkC. ColigeA. CaersJ. DelvenneP. TurtoiA. CastronovoV. BellahcèneA. Methylglyoxal, a glycolysis metabolite, triggers metastasis through MEK/ERK/SMAD1 pathway activation in breast cancer.Breast Cancer Res.20192111110.1186/s13058‑018‑1095‑730674353
    [Google Scholar]
  82. HanJ. XieC. LiuB. WangY. PangR. BiW. ShengR. HeG. KongL. YuJ. DingZ. ChenL. JiaJ. ZhangJ. NieC. Tetraspanin 1 regulates papillary thyroid tumor growth and metastasis through c-Myc -mediated glycolysis.Cancer Sci.2023114124535454710.1111/cas.1597037750019
    [Google Scholar]
  83. Marín-HernándezÁ. Rodríguez-EnríquezS. Moreno-SánchezR. Oxidized ATM protein kinase is a new signal transduction player that regulates glycolysis in CAFs as well as tumor growth and metastasis.EBioMedicine201941242510.1016/j.ebiom.2019.02.05830846394
    [Google Scholar]
  84. SunK. TangS. HouY. XiL. ChenY. YinJ. PengM. ZhaoM. CuiX. LiuM. Oxidized ATM-mediated glycolysis enhancement in breast cancer-associated fibroblasts contributes to tumor invasion through lactate as metabolic coupling.EBioMedicine20194137038310.1016/j.ebiom.2019.02.02530799198
    [Google Scholar]
  85. WuX. QianS. ZhangJ. FengJ. LuoK. SunL. ZhaoL. RanY. SunL. WangJ. XuF. Lipopolysaccharide promotes metastasis via acceleration of glycolysis by the nuclear factor-κB/snail/hexokinase3 signaling axis in colorectal cancer.Cancer Metab.2021912310.1186/s40170‑021‑00260‑x33980323
    [Google Scholar]
  86. MaruYamaT. MiyazakiH. KomoriT. OsanaS. ShibataH. OwadaY. KobayashiS. Curcumin analog GO-Y030 inhibits tumor metastasis and glycolysis.J. Biochem.2023174651151810.1093/jb/mvad06637656908
    [Google Scholar]
  87. ManleyS.J. LiuW. WelchD.R. The KISS1 metastasis suppressor appears to reverse the Warburg effect by shifting from glycolysis to mitochondrial beta-oxidation.J. Mol. Med. (Berl.)201795995196310.1007/s00109‑017‑1552‑228597070
    [Google Scholar]
  88. ZhouB. HuangY. FengQ. ZhuH. XuZ. ChenL. PengX. YangW. XuD. QiuY. TRIM16 promotes aerobic glycolysis and pancreatic cancer metastasis by modulating the NIK-SIX1 axis in a ligase-independent manner.Am. J. Cancer Res.202212115205522536504902
    [Google Scholar]
  89. ZhuP. LiuG. WangX. LuJ. ZhouY. ChenS. GaoY. WangC. YuJ. SunY. ZhouP. Transcription factor c-Jun modulates GLUT1 in glycolysis and breast cancer metastasis.BMC Cancer2022221128310.1186/s12885‑022‑10393‑x36476606
    [Google Scholar]
  90. MaJ. HeZ. ZhangH. zhangW. GaoS. NiX. SEC61G promotes breast cancer development and metastasis via modulating glycolysis and is transcriptionally regulated by E2F1.Cell Death Dis.202112655010.1038/s41419‑021‑03797‑334039955
    [Google Scholar]
  91. LiH. GaoP. ChenH. ZhaoJ. ZhangX. LiG. WangL. QinL. HOXC13 promotes cell proliferation, metastasis and glycolysis in breast cancer by regulating DNMT3A.Exp. Ther. Med.202326343910.3892/etm.2023.1213837614427
    [Google Scholar]
  92. FanQ. HeW. ShangY. Forkhead box protein K1‑regulated neurexophilin 4 promotes proliferation, metastasis and glycolysis in colorectal cancer.Exp. Ther. Med.202326343410.3892/etm.2023.1213337602314
    [Google Scholar]
  93. WuC. ZhengC. ChenS. HeZ. HuaH. SunC. YuC. FOXQ1 promotes pancreatic cancer cell proliferation, tumor stemness, invasion and metastasis through regulation of LDHA-mediated aerobic glycolysis.Cell Death Dis.2023141069910.1038/s41419‑023‑06207‑y37875474
    [Google Scholar]
  94. DouC. MoH. ChenT. LiuJ. ZengY. LiS. GuoC. ZhangC. ZMYND8 promotes the growth and metastasis of hepatocellular carcinoma by promoting HK2-mediated glycolysis.Pathol. Res. Pract.202121915334510.1016/j.prp.2021.15334533517164
    [Google Scholar]
  95. XingJ. JiaZ. XuY. ChenM. YangZ. ChenY. HanY. KLF9 (Kruppel Like Factor 9) induced PFKFB3 (6-Phosphofructo-2-Kinase/Fructose-2, 6-Biphosphatase 3) downregulation inhibits the proliferation, metastasis and aerobic glycolysis of cutaneous squamous cell carcinoma cells.Bioengineered20211217563757610.1080/21655979.2021.198064434612136
    [Google Scholar]
  96. QiuZ. WangC. HuangP. YuanY. ShiY. LinZ. HuangZ. ZuoD. QiuJ. HeW. ShenJ. NiuY. YuanY. LiB. RFX6 facilitates aerobic glycolysis-mediated growth and metastasis of hepatocellular carcinoma through targeting PGAM1.Clin. Transl. Med.20231312e151110.1002/ctm2.151138093528
    [Google Scholar]
  97. NokinM.J. DurieuxF. PeixotoP. ChiavarinaB. PeulenO. BlommeA. TurtoiA. CostanzaB. SmargiassoN. BaiwirD. ScheijenJ.L. SchalkwijkC.G. LeendersJ. De TullioP. BianchiE. ThiryM. UchidaK. SpiegelD.A. CochraneJ.R. HuttonC.A. De PauwE. DelvenneP. BelpommeD. CastronovoV. BellahcèneA. Methylglyoxal, a glycolysis side-product, induces Hsp90 glycation and YAP-mediated tumor growth and metastasis.eLife20165e1937510.7554/eLife.1937527759563
    [Google Scholar]
  98. XuD. YuJ. YangY. DuY. LuH. ZhangS. FengQ. YuY. HaoL. ShaoJ. ChenL. RBX1 regulates PKM alternative splicing to facilitate anaplastic thyroid carcinoma metastasis and aerobic glycolysis by destroying the SMAR1/HDAC6 complex.Cell Biosci.20231313610.1186/s13578‑023‑00987‑836810109
    [Google Scholar]
  99. YangJ. RenB. YangG. WangH. ChenG. YouL. ZhangT. ZhaoY. The enhancement of glycolysis regulates pancreatic cancer metastasis.Cell. Mol. Life Sci.202077230532110.1007/s00018‑019‑03278‑z31432232
    [Google Scholar]
  100. LiuF. WeiX. ChenZ. ChenY. HuP. JinY. PFKFB2 is a favorable prognostic biomarker for colorectal cancer by suppressing metastasis and tumor glycolysis.J. Cancer Res. Clin. Oncol.202314912107371075210.1007/s00432‑023‑04946‑137311985
    [Google Scholar]
  101. CaoW. ZengZ. LeiS. 5′-tRF-19-Q1Q89PJZ suppresses the proliferation and metastasis of pancreatic cancer cells via regulating hexokinase 1-mediated glycolysis.Biomolecules20231310151310.3390/biom1310151337892195
    [Google Scholar]
  102. ChenY. CaiL. GuoX. LiZ. LiaoX. ZhangX. HuangL. HeJ. HMGB1-activated fibroblasts promote breast cancer cells metastasis via RAGE/aerobic glycolysis.Neoplasma2021681717810.4149/neo_2020_200610N62033030958
    [Google Scholar]
  103. KouF. WuL. ZhengY. YiY. JiZ. HuangZ. GuoS. YangL. HMGB1/SET/HAT1 complex-mediated SASH1 repression drives glycolysis and metastasis in lung adenocarcinoma.Oncogene202342463407342110.1038/s41388‑023‑02850‑z37794134
    [Google Scholar]
  104. CapparelliC. GuidoC. Whitaker-MenezesD. BonuccelliG. BallietR. PestellT.G. GoldbergA.F. PestellR.G. HowellA. SneddonS. BirbeR. TsirigosA. Martinez-OutschoornU. SotgiaF. LisantiM.P. Autophagy and senescence in cancer-associated fibroblasts metabolically supports tumor growth and metastasis, via glycolysis and ketone production.Cell Cycle201211122285230210.4161/cc.2071822684298
    [Google Scholar]
  105. LiX. TangL. DengJ. QiX. ZhangJ. QiH. LiM. LiuY. ZhaoW. GuY. QiL. LiX. Identifying metabolic reprogramming phenotypes with glycolysis-lipid metabolism discoordination and intercellular communication for lung adenocarcinoma metastasis.Commun. Biol.20225119810.1038/s42003‑022‑03135‑z35301413
    [Google Scholar]
  106. ZhuX. XueC. KangX. JiaX. WangL. YounisM.H. LiuD. HuoN. HanY. ChenZ. FuJ. ZhouC. YaoX. DuY. CaiW. KangL. LyuZ. DNMT3B-mediated FAM111B methylation promotes papillary thyroid tumor glycolysis, growth and metastasis.Int. J. Biol. Sci.202218114372438710.7150/ijbs.7239735864964
    [Google Scholar]
  107. XieM. XinC. RASD2 promotes the development and metastasis of uveal melanoma via enhancing glycolysis.Biochem. Biophys. Res. Commun.2022610929810.1016/j.bbrc.2022.04.06035461072
    [Google Scholar]
  108. HuangM. XiongH. LuoD. XuB. LiuH. CSN5 upregulates glycolysis to promote hepatocellular carcinoma metastasis via stabilizing the HK2 protein.Exp. Cell Res.2020388211187610.1016/j.yexcr.2020.11187631991125
    [Google Scholar]
  109. WuK. HanN. MaoY. LiY. Increased levels of PD1 and glycolysis in CD4+ T cells are positively associated with lymph node metastasis in OSCC.BMC Oral Health202323135610.1186/s12903‑023‑03043‑637270478
    [Google Scholar]
  110. PaulS. GhoshS. KumarS. Tumor glycolysis, an essential sweet tooth of tumor cells.Semin. Cancer Biol.202286Pt 31216123010.1016/j.semcancer.2022.09.00736330953
    [Google Scholar]
  111. PastushenkoI. BlanpainC. EMT transition states during tumor progression and metastasis.Trends Cell Biol.201929321222610.1016/j.tcb.2018.12.00130594349
    [Google Scholar]
  112. BrabletzS. SchuhwerkH. BrabletzT. StemmlerM.P. Dynamic EMT: A multi‐tool for tumor progression.EMBO J.20214018e10864710.15252/embj.202110864734459003
    [Google Scholar]
  113. HanahanD. WeinbergR.A. Hallmarks of cancer: The next generation.Cell2011144564667410.1016/j.cell.2011.02.01321376230
    [Google Scholar]
  114. LiX. SunJ. XuQ. DuanW. YangL. WuX. LuG. ZhangL. ZhengY. Oxymatrine inhibits colorectal cancer metastasis via attenuating PKM2-mediated aerobic glycolysis.Cancer Manag. Res.2020129503951310.2147/CMAR.S26768633061637
    [Google Scholar]
  115. QinW. LiC. ZhengW. GuoQ. ZhangY. KangM. ZhangB. YangB. LiB. YangH. WuY. Inhibition of autophagy promotes metastasis and glycolysis by inducing ROS in gastric cancer cells.Oncotarget2015637398393985410.18632/oncotarget.567426497999
    [Google Scholar]
  116. LiH.M. YangJ.G. LiuZ.J. WangW.M. YuZ.L. RenJ.G. ChenG. ZhangW. JiaJ. Blockage of glycolysis by targeting PFKFB3 suppresses tumor growth and metastasis in head and neck squamous cell carcinoma.J. Exp. Clin. Cancer Res.2017361710.1186/s13046‑016‑0481‑128061878
    [Google Scholar]
  117. KabiA.K. SravaniS. GujjarappaR. GargA. VodnalaN. TyagiU. KaldhiD. VelayuthamR. GuptaS. MalakarC.C. SwainB.P. An introduction on evolution of azole derivatives in medicinal chemistry.Nanostructured Biomaterials: Basic Structures and Applications.Springer Singapore2022799910.1007/978‑981‑16‑8399‑2_4
    [Google Scholar]
  118. GujjarappaR. KabiA.K. SravaniS. GargA. VodnalaN. TyagiU. KaldhiD. GuptaS. MalakarC.C. SwainB.P. Overview on biological activities of thiazole derivatives.Nanostructured Biomaterials: Basic Structures and Applications.Springer Singapore202210113410.1007/978‑981‑16‑8399‑2_5
    [Google Scholar]
  119. GujjarappaR. KabiA.K. SravaniS. GargA. VodnalaN. TyagiU. KaldhiD. VelayuthamR. SinghV. GuptaS. SwainB.P. Overview on biological activities of imidazole derivatives.Nanostructured Biomaterials: Basic Structures and Applications.Springer Singapore202213522710.1007/978‑981‑16‑8399‑2_6
    [Google Scholar]
  120. KabiA.K. SravaniS. GujjarappaR. GargA. VodnalaN. TyagiU. KaldhiD. SinghV. GuptaS. MalakarC.C. SwainB.P. Overview on biological activities of pyrazole derivatives.Nanostructured Biomaterials: Basic Structures and Applications.Springer Singapore202222930610.1007/978‑981‑16‑8399‑2_7
    [Google Scholar]
  121. KabiA.K. SravaniS. GujjarappaR. GargA. VodnalaN. TyagiU. KaldhiD. VelayuthamR. SinghV. GuptaS. SwainB.P. An overview on biological evaluation of tetrazole derivatives.Nanostructured Biomaterials: Basic Structures and Applications.Springer Singapore202230734910.1007/978‑981‑16‑8399‑2_8
    [Google Scholar]
  122. KabiA.K. SravaniS. GujjarappaR. GargA. VodnalaN. TyagiU. KaldhiD. SinghV. GuptaS. MalakarC.C. SwainB.P. An overview on biological activity of benzimidazole derivatives.Nanostructured Biomaterials: Basic Structures and Applications.Springer Singapore202235137810.1007/978‑981‑16‑8399‑2_9
    [Google Scholar]
  123. GujjarappaR. SravaniS. KabiA.K. GargA. VodnalaN. TyagiU. KaldhiD. SinghV. GuptaS. MalakarC.C. SwainB.P. An overview on biological activities of oxazole, isoxazoles and 1,2,4-oxadiazoles derivatives.Nanostructured Biomaterials: Basic Structures and Applications.Springer Singapore202237940010.1007/978‑981‑16‑8399‑2_10
    [Google Scholar]
  124. KabiA.K. SravaniS. GujjarappaR. GargA. VodnalaN. TyagiU. KaldhiD. SinghV. GuptaS. MalakarC.C. SwainB.P. An overview on biological activities of 1,2,3-triazole derivatives.Nanostructured Biomaterials: Basic Structures and Applications.Springer Singapore202240142310.1007/978‑981‑16‑8399‑2_11
    [Google Scholar]
  125. KabiA.K. GujjarappaR. GargA. RoyA. SahooA. GuptaS. MalakarC.C. Overview on medicinal impacts of 1,2,4-triazole derivatives.Tailored Functional MaterialsSpringer Nature Singapore2022617910.1007/978‑981‑19‑2572‑6_5.
    [Google Scholar]
  126. KabiA.K. GujjarappaR. GargA. SahooA. RoyA. GuptaS. MalakarC.C. Overview on diverse biological activities of benzisoxazole derivatives.Tailored Functional MaterialsSpringer Nature Singapore2022819810.1007/978‑981‑19‑2572‑6_6
    [Google Scholar]
  127. KabiA.K. GujjarappaR. GargA. RoyA. SahooA. GuptaS. MalakarC.C. Highlights on biological activities of 1,3,4-thiadiazole and indazole derivatives.Tailored Functional MaterialsSpringer Nature Singapore20229910910.1007/978‑981‑19‑2572‑6_7
    [Google Scholar]
  128. MishraS. PatelS. HalpaniC.G. Recent updates in curcumin pyrazole and isoxazole derivatives: Synthesis and biological application.Chem. Biodivers.2019162e180036610.1002/cbdv.20180036630460748
    [Google Scholar]
  129. QiuX. DuY. LouB. ZuoY. ShaoW. HuoY. HuangJ. YuY. ZhouB. DuJ. FuH. BuX. Synthesis and identification of new 4-arylidene curcumin analogues as potential anticancer agents targeting nuclear factor-κB signaling pathway.J. Med. Chem.201053238260827310.1021/jm100454521070043
    [Google Scholar]
  130. LabbozzettaM. BaruchelloR. MarchettiP. GueliM.C. PomaP. NotarbartoloM. SimoniD. D’AlessandroN. Lack of nucleophilic addition in the isoxazole and pyrazole diketone modified analogs of curcumin; Implications for their antitumor and chemosensitizing activities.Chem. Biol. Interact.20091811293610.1016/j.cbi.2009.06.00519539615
    [Google Scholar]
  131. XuT. GuoP. HeY. PiC. WangY. FengX. HouY. JiangQ. ZhaoL. WeiY. Application of curcumin and its derivatives in tumor multidrug resistance.Phytother. Res.202034102438245810.1002/ptr.669432255545
    [Google Scholar]
  132. ZhangY. LiQ. HuangZ. LiB. NiceE.C. HuangC. WeiL. ZouB. Targeting Glucose Metabolism Enzymes in Cancer Treatment: Current and Emerging Strategies.Cancers (Basel)20221419456810.3390/cancers1419456836230492
    [Google Scholar]
  133. ParkJ.H. PyunW.Y. ParkH.W. Cancer Metabolism: Phenotype, Signaling and Therapeutic targets.Cells2020910230810.3390/cells910230833081387
    [Google Scholar]
  134. JiaD. LuM. JungK.H. ParkJ.H. YuL. OnuchicJ.N. KaipparettuB.A. LevineH. Elucidating cancer metabolic plasticity by coupling gene regulation with metabolic pathways.Proc. Natl. Acad. Sci. USA201911693909391810.1073/pnas.181639111630733294
    [Google Scholar]
  135. NobleR.A. ThomasH. ZhaoY. HerendiL. HowarthR. DragoniI. KeunH.C. VellanoC.P. MarszalekJ.R. WedgeS.R. Simultaneous targeting of glycolysis and oxidative phosphorylation as a therapeutic strategy to treat diffuse large B-cell lymphoma.Br. J. Cancer2022127593794710.1038/s41416‑022‑01848‑w35618788
    [Google Scholar]
  136. SamecM. MazurakovaA. LucanskyV. KoklesovaL. PecovaR. PecM. GolubnitschajaO. Al-IshaqR.K. CaprndaM. GasparL. ProseckyR. GazdikovaK. AdamekM. BüsselbergD. KruzliakP. KubatkaP. Flavonoids attenuate cancer metabolism by modulating Lipid metabolism, amino acids, ketone bodies and redox state mediated by Nrf2.Eur. J. Pharmacol.202394917565510.1016/j.ejphar.2023.17565536921709
    [Google Scholar]
  137. TamasC. TamasF. KovecsiA. CehanA. BalasaA. Metabolic contrasts: Fatty acid oxidation and ketone bodies in healthy brains vs. glioblastoma multiforme.Int. J. Mol. Sci.20242510548210.3390/ijms2510548238791520
    [Google Scholar]
  138. GiulianiG. LongoV.D. Ketone bodies in cell physiology and cancer.Am. J. Physiol. Cell Physiol.20243263C948C96310.1152/ajpcell.00441.202338189128
    [Google Scholar]
  139. FengS. WangH. LiuJ. AaJ. ZhouF. WangG. Multi-dimensional roles of ketone bodies in cancer biology: Opportunities for cancer therapy.Pharmacol. Res.201915010450010.1016/j.phrs.2019.10450031629092
    [Google Scholar]
  140. TamasC. TamasF. KovecsiA. SerbanG. BoeriuC. BalasaA. The role of ketone bodies in treatment individualization of glioblastoma patients.Brain Sci.2023139130710.3390/brainsci1309130737759908
    [Google Scholar]
  141. QianL. LiY. CaoY. MengG. PengJ. LiH. WangY. XuT. ZhangL. SunB. LiB. YuD. Pan-Cancer analysis of glycolytic and ketone bodies metabolic genes: implications for response to ketogenic dietary therapy.Front. Oncol.20211168906810.3389/fonc.2021.68906834692477
    [Google Scholar]
  142. Martinez-OutschoornU.E. LinZ. Whitaker-MenezesD. HowellA. LisantiM.P. SotgiaF. Ketone bodies and two-compartment tumor metabolism: Stromal ketone production fuels mitochondrial biogenesis in epithelial cancer cells.Cell Cycle201211213956396310.4161/cc.2213623082721
    [Google Scholar]
  143. SeyfriedT.N. SandersonT.M. El-AbbadiM.M. McGowanR. MukherjeeP. Role of glucose and ketone bodies in the metabolic control of experimental brain cancer.Br. J. Cancer20038971375138210.1038/sj.bjc.660126914520474
    [Google Scholar]
  144. ShuklaS.K. GebregiworgisT. PurohitV. ChaikaN.V. GundaV. RadhakrishnanP. MehlaK. PipinosI.I. PowersR. YuF. SinghP.K. Metabolic reprogramming induced by ketone bodies diminishes pancreatic cancer cachexia.Cancer Metab.2014211810.1186/2049‑3002‑2‑1825228990
    [Google Scholar]
  145. ZhuY. XuN. WuS. LuanY. KeH. WuL. LiY. LuY. XingX. TianN. LiuQ. TongL. HuL. JiY. ChenZ. ZhangP. TongX. MEK1-dependent MondoA phosphorylation regulates glucose uptake in response to ketone bodies in colorectal cancer cells.Cancer Sci.2023114396197510.1111/cas.1566736398713
    [Google Scholar]
  146. MillerA.I. DiazD. LinB. KrzesajP.K. UstoyevS. ShimA. FineE.J. Sarafraz-YazdiE. PincusM.R. FeinmanR.D. Ketone bodies induce unique inhibition of tumor cell proliferation and enhance the efficacy of anti-cancer agents.Biomedicines2023119251510.3390/biomedicines1109251537760956
    [Google Scholar]
/content/journals/cmp/10.2174/0118761429308361240823061634
Loading
/content/journals/cmp/10.2174/0118761429308361240823061634
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test