Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702

Abstract

Endometriosis is a chronic inflammatory disorder described by the presence of functional endometrial-like tissues at extra-uterine locations that are related to chronic pelvic pain and infertility. Multiple molecular mechanisms, including inflammation, reactive oxygen species (ROS) generation, fibrotic reactions, and angiogenesis, are involved in the pathogenesis of endometriosis; however, the exact cause of this disorder still remains a matter of discussion. Recently, it has been shown that the local renin-angiotensin system (RAS) has been expressed in different tissues, like the gynecological tract, and alterations in its expression are associated with multiple pathological conditions like endometriosis. Angiotensin II (Ang II), as a main peptide of the RAS through angiotensin type 1 receptor (AT1R), upregulates signal transduction pathways such as nuclear factor kappa B (NF-κB), mitogen activation protein kinase (MAPK), and transforming growth factor beta (TGF-β) to promote inflammation, oxidative stress, and fibrogenesis. Angiotensin receptor blockers (ARBs) control high blood pressure, which is increased by excessive AT1R activity. Recently, it has been recognized that ARBs have tissue protective effects because of their anti-inflammatory and antifibrotic effects. In this review, we focused on the role of local Ang II/AT1R axis activity in endometriosis pathogenesis and justified the use of ARB agents as a potential therapeutic strategy to improve endometriosis.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmp/10.2174/0118761429315431240712100124
2024-01-01
2025-05-23
The full text of this item is not currently available.

References

  1. ClementP.B. The pathology of endometriosis: A survey of the many faces of a common disease emphasizing diagnostic pitfalls and unusual and newly appreciated aspects.Adv. Anat. Pathol.200714424126010.1097/PAP.0b013e3180ca7d7b17592255
    [Google Scholar]
  2. ZondervanK.T. BeckerC.M. MissmerS.A. Endometriosis.N. Engl. J. Med.2020382131244125610.1056/NEJMra181076432212520
    [Google Scholar]
  3. Sarria-SantameraA. OrazumbekovaB. TerzicM. IssanovA. ChaowenC. Asúnsolo-del-BarcoA. Systematic review and meta-analysis of incidence and prevalence of endometriosis.Healthcare2020912910.3390/healthcare901002933396813
    [Google Scholar]
  4. As-SanieS. BlackR. GiudiceL.C. Gray ValbrunT. GuptaJ. JonesB. LauferM.R. MilspawA.T. MissmerS.A. NormanA. TaylorR.N. WallaceK. WilliamsZ. YongP.J. NebelR.A. Assessing research gaps and unmet needs in endometriosis.Am. J. Obstet. Gynecol.20192212869410.1016/j.ajog.2019.02.03330790565
    [Google Scholar]
  5. DiaoR. WeiW. ZhaoJ. TianF. CaiX. DuanY.G. CCL 19/ CCR 7 contributes to the pathogenesis of endometriosis via PI 3K/Akt pathway by regulating the proliferation and invasion of ESC s.Am. J. Reprod. Immunol.2017785e1274410.1111/aji.1274428856757
    [Google Scholar]
  6. PazhohanA. AmidiF. Akbari-AsbaghF. SeyedrezazadehE. FarzadiL. KhodarahminM. MehdinejadianiS. SobhaniA. The Wnt/β-catenin signaling in endometriosis, the expression of total and active forms of β-catenin, total and inactive forms of glycogen synthase kinase-3β, WNT7a and DICKKOPF-1.Eur. J. Obstet. Gynecol. Reprod. Biol.20182201510.1016/j.ejogrb.2017.10.02529107840
    [Google Scholar]
  7. WeiX. ShaoX. Nobiletin alleviates endometriosis via down-regulating NF-κB activity in endometriosis mouse model.Biosci. Rep.2018383BSR2018047010.1042/BSR2018047029871974
    [Google Scholar]
  8. SoniU.K. ChadchanS.B. KumarV. UbbaV. KhanM.T.A. VinodB.S.V. KonwarR. BoraH.K. RathS.K. SharmaS. JhaR.K. A high level of TGF-B1 promotes endometriosis development via cell migration, adhesiveness, colonization, and invasiveness.Biol. Reprod.2019100491793810.1093/biolre/ioy24230423016
    [Google Scholar]
  9. HerrD. BekesI. WulffC. Local renin-angiotensin system in the reproductive system.Front. Endocrinol.2013415010.3389/fendo.2013.0015024151488
    [Google Scholar]
  10. LiX.F. AhmedA. Expression of angiotensin II and its receptor subtypes in endometrial hyperplasia: A possible role in dysfunctional menstruation.Lab. Invest.19967521371458765314
    [Google Scholar]
  11. KurdiM. MelloW.C.D. BoozG.W. Working outside the system: An update on the unconventional behavior of the renin–angiotensin system components.Int. J. Biochem. Cell Biol.20053771357136710.1016/j.biocel.2005.01.01215833268
    [Google Scholar]
  12. VinsonG.P. TejaR. HoM.M. HinsonJ.P. PuddefootJ.R. The role of the tissue renin-angiotensin system in the response of the rat adrenal to exogenous angiotensin II.J. Endocrinol.1998158215315910.1677/joe.0.15801539771458
    [Google Scholar]
  13. ParkY.A. ChoiC.H. DoI.G. SongS.Y. LeeJ.K. ChoY.J. ChoiJ.J. JeonH.K. RyuJ.Y. LeeY.Y. KimT.J. BaeD.S. LeeJ.W. KimB.G. Dual targeting of angiotensin receptors (AGTR1 and AGTR2) in epithelial ovarian carcinoma.Gynecol. Oncol.2014135110811710.1016/j.ygyno.2014.06.03125014541
    [Google Scholar]
  14. WatanabeY. ShibataK. KikkawaF. KajiyamaH. InoK. HattoriA. TsujimotoM. MizutaniS. Adipocyte-derived leucine aminopeptidase suppresses angiogenesis in human endometrial carcinoma via renin-angiotensin system.Clin. Cancer Res.20039176497650314695154
    [Google Scholar]
  15. MacKenzieA. Endothelium-derived vasoactive agents, AT1 receptors and inflammation.Pharmacol. Ther.2011131218720310.1016/j.pharmthera.2010.11.00121115037
    [Google Scholar]
  16. HsiehY.Y. ChangC.C. ChenS.Y. ChenC.P. LinW.H. TsaiF.J. XRCC1 399 * Arg-related genotype and allele, but not XRCC1 His107Arg, XRCC1 Trp194Arg, KCNQ2, AT1R, and hOGG1 polymorphisms, are associated with higher susceptibility of endometriosis.Gynecol. Endocrinol.201228430530910.3109/09513590.2011.63162422084859
    [Google Scholar]
  17. López-NovoaJ.M. NietoM.A. Inflammation and EMT: An alliance towards organ fibrosis and cancer progression.EMBO Mol. Med.200916-730331410.1002/emmm.20090004320049734
    [Google Scholar]
  18. TaniguchiF. UegakiT. NakamuraK. MonK.Y. HaradaT. OhbayashiT. HaradaT. Inhibition of IAP (inhibitor of apoptosis) proteins represses inflammatory status via nuclear factor‐kappa B pathway in murine endometriosis lesions.Am. J. Reprod. Immunol.2018791e1278010.1111/aji.1278029105884
    [Google Scholar]
  19. ZhangZ. YuanY. HeL. YaoX. ChenJ. Involvement of angiotensin II receptor type 1/NF‑κB signaling in the development of endometriosis.Exp. Ther. Med.20202043269327710.3892/etm.2020.907132855697
    [Google Scholar]
  20. OrejudoM. Rodrigues-DiezR.R. Rodrigues-DiezR. Garcia-RedondoA. Santos-SánchezL. Rández-GarbayoJ. Cannata-OrtizP. RamosA.M. OrtizA. SelgasR. MezzanoS. LavozC. Ruiz-OrtegaM. Interleukin 17A participates in renal inflammation associated to experimental and human hypertension.Front. Pharmacol.201910101510.3389/fphar.2019.0101531572188
    [Google Scholar]
  21. EkambaramP. LeeJ.Y.L. HubelN.E. HuD. YerneniS. CampbellP.G. PollockN. KleiL.R. ConcelV.J. DelektaP.C. ChinnaiyanA.M. TomlinsS.A. RhodesD.R. PriedigkeitN. LeeA.V. OesterreichS. McAllister-LucasL.M. LucasP.C. The CARMA3–Bcl10–MALT1 signalosome drives nfκb activation and promotes aggressiveness in angiotensin II receptor–positive breast cancer.Cancer Res.20187851225124010.1158/0008‑5472.CAN‑17‑108929259013
    [Google Scholar]
  22. KooptiwutS. WanchaiK. SemprasertN. SrisawatC. YenchitsomanusP. Estrogen attenuates AGTR1 expression to reduce pancreatic β-cell death from high glucose.Sci. Rep.2017711663910.1038/s41598‑017‑15237‑429192236
    [Google Scholar]
  23. GaoH. YallampalliU. YallampalliC. Protein restriction to pregnant rats increases the plasma levels of angiotensin II and expression of angiotensin II receptors in uterine arteries.Biol. Reprod.20128636810.1095/biolreprod.111.09584422088913
    [Google Scholar]
  24. KaminskaB. MAPK signalling pathways as molecular targets for anti-inflammatory therapy—from molecular mechanisms to therapeutic benefits.Biochim. Biophys. Acta. Proteins Proteomics200517541-225326210.1016/j.bbapap.2005.08.01716198162
    [Google Scholar]
  25. KyriakisJ.M. AvruchJ.J.P.r. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation.Physiol. Rev.200181280786910.1152/physrev.2001.81.2.807
    [Google Scholar]
  26. KajiharaH. New insights into the pathophysiology of endometriosis: from chronic inflammation to danger signal.Gynecol. Endocrinol.2011272737910.3109/09513590.2010.507292
    [Google Scholar]
  27. SantulliP. MAP kinases and the inflammatory signaling cascade as targets for the treatment of endometriosis.Expert Opin. Ther. Targets201519111465148310.1517/14728222.2015.1090974
    [Google Scholar]
  28. ZhangA. DingG. HuangS. WuY. PanX. GuanX. ChenR. YangT. c-Jun NH 2 -terminal kinase mediation of angiotensin II-induced proliferation of human mesangial cells.Am. J. Physiol. Renal Physiol.20052886F1118F112410.1152/ajprenal.00220.200415701817
    [Google Scholar]
  29. EguchiS. DempseyP.J. FrankG.D. MotleyE.D. InagamiT. Activation of MAPKs by angiotensin II in vascular smooth muscle cells. Metalloprotease-dependent EGF receptor activation is required for activation of ERK and p38 MAPK but not for JNK.J. Biol. Chem.2001276117957796210.1074/jbc.M00857020011116149
    [Google Scholar]
  30. FengL.H. SunH.C. ZhuX.D. ZhangS.Z. LiX.L. LiK.S. LiuX.F. LeiM. LiY. TangZ.Y. Irbesartan inhibits metastasis by interrupting the adherence of tumor cell to endothelial cell induced by angiotensin II in hepatocellular carcinoma.Ann. Transl. Med.20219320710.21037/atm‑20‑529333708834
    [Google Scholar]
  31. ZhaoY. ChenX. CaiL. YangY. SuiG. FuS. Angiotensin II/angiotensin II type I receptor (AT1R) signaling promotes MCF‐7 breast cancer cells survival via PI3‐kinase/Akt pathway.J. Cell. Physiol.2010225116817310.1002/jcp.2220920458733
    [Google Scholar]
  32. KaurK.K. AllahbadiaG.J.A.i.R.S. An update on pathophysiology and medical management of endometriosis.Adv. Reprod. Sci.201642537310.4236/arsci.2016.42008
    [Google Scholar]
  33. ZellerJ.M. HenigI. RadwanskaE. DmowskiW.P. Enhancement of human monocyte and peritoneal macrophage chemiluminescence activities in women with endometriosis.Am. J. Reprod. Immunol. Microbiol.1987133788210.1111/j.1600‑0897.1987.tb00097.x3605484
    [Google Scholar]
  34. ViatourP. MervilleM.P. BoursV. ChariotA. Phosphorylation of NF-κB and IκB proteins: Implications in cancer and inflammation.Trends Biochem. Sci.2005301435210.1016/j.tibs.2004.11.00915653325
    [Google Scholar]
  35. LebovicD.I. MuellerM.D. TaylorR.N. Immunobiology of endometriosis.Fertil. Steril.200175111010.1016/S0015‑0282(00)01630‑711163805
    [Google Scholar]
  36. González-RamosR. DonnezJ. DefrèreS. LeclercqI. SquiffletJ. LousseJ.C. Van LangendoncktA. Nuclear factor-kappa B is constitutively activated in peritoneal endometriosis.Mol. Hum. Reprod.200713750350910.1093/molehr/gam03317483545
    [Google Scholar]
  37. GriendlingK.K. MinieriC.A. OllerenshawJ.D. AlexanderR.W. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells.Circ. Res.19947461141114810.1161/01.RES.74.6.11418187280
    [Google Scholar]
  38. LaursenJ.B. RajagopalanS. GalisZ. TarpeyM. FreemanB.A. HarrisonD.G. Role of superoxide in angiotensin II-induced but not catecholamine-induced hypertension.Circulation199795358859310.1161/01.CIR.95.3.5889024144
    [Google Scholar]
  39. DikalovS.I. NazarewiczR.R. BikineyevaA. HilenskiL. LassègueB. GriendlingK.K. HarrisonD.G. DikalovaA.E. Nox2-induced production of mitochondrial superoxide in angiotensin II-mediated endothelial oxidative stress and hypertension.Antioxid. Redox Signal.201420228129410.1089/ars.2012.491824053613
    [Google Scholar]
  40. SharmaP. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions.J. Bot.2012201210.1155/2012/217037
    [Google Scholar]
  41. BatallerR. SchwabeR.F. ChoiY.H. YangL. PaikY.H. LindquistJ. QianT. SchoonhovenR. HagedornC.H. LemastersJ.J. BrennerD.A. NADPH oxidase signal transduces angiotensin II in hepatic stellate cells and is critical in hepatic fibrosis.J. Clin. Invest.200311291383139410.1172/JCI1821214597764
    [Google Scholar]
  42. DikalovaA.E. ItaniH.A. NazarewiczR.R. McMasterW.G. FlynnC.R. UzhachenkoR. FesselJ.P. GamboaJ.L. HarrisonD.G. DikalovS.I. Sirt3 impairment and SOD2 hyperacetylation in vascular oxidative stress and hypertension.Circ. Res.2017121556457410.1161/CIRCRESAHA.117.31093328684630
    [Google Scholar]
  43. HendersonN.C. RiederF. WynnT.A. Fibrosis: From mechanisms to medicines.Nature2020587783555556610.1038/s41586‑020‑2938‑933239795
    [Google Scholar]
  44. EmingS.A. MartinP. Tomic-CanicM. Wound repair and regeneration: Mechanisms, signaling, and translation.Sci. Transl. Med.20146265265sr610.1126/scitranslmed.300933725473038
    [Google Scholar]
  45. HuH.H. ChenD.Q. WangY.N. FengY.L. CaoG. VaziriN.D. ZhaoY.Y. New insights into TGF-β/Smad signaling in tissue fibrosis.Chem. Biol. Interact.2018292768310.1016/j.cbi.2018.07.00830017632
    [Google Scholar]
  46. YoungV.J. BrownJ.K. MaybinJ. SaundersP.T.K. DuncanW.C. HorneA.W. Transforming growth factor-β induced Warburg-like metabolic reprogramming may underpin the development of peritoneal endometriosis.J. Clin. Endocrinol. Metab.20149993450345910.1210/jc.2014‑102624796928
    [Google Scholar]
  47. ZhangQ. DuanJ. LiuX. GuoS.W. Platelets drive smooth muscle metaplasia and fibrogenesis in endometriosis through epithelial–mesenchymal transition and fibroblast-to-myofibroblast transdifferentiation.Mol. Cell. Endocrinol.201642811610.1016/j.mce.2016.03.01526992563
    [Google Scholar]
  48. GuoS.W. DingD. GengJ.G. WangL. LiuX. P-selectin as a potential therapeutic target for endometriosis.Fertil. Steril.201510349901000.e810.1016/j.fertnstert.2015.01.00125681855
    [Google Scholar]
  49. DobaczewskiM. ChenW. FrangogiannisN.G. Transforming growth factor (TGF)-β signaling in cardiac remodeling.J. Mol. Cell. Cardiol.201151460060610.1016/j.yjmcc.2010.10.03321059352
    [Google Scholar]
  50. SchultzJ.E.J. TGF-beta1 mediates the hypertrophic cardiomyocyte growth induced by angiotensin II.J. Clin. Invest.20021096787796
    [Google Scholar]
  51. MurphyA.M. WongA.L. BezuhlyM. Modulation of angiotensin II signaling in the prevention of fibrosis.Fibrogenesis Tissue Repair201581710.1186/s13069‑015‑0023‑z25949522
    [Google Scholar]
  52. EverettA.D. Tufro-McReddieA. FisherA. GomezR.A. Angiotensin receptor regulates cardiac hypertrophy and transforming growth factor-beta 1 expression.Hypertension199423558759210.1161/01.HYP.23.5.5878175166
    [Google Scholar]
  53. IchiharaS. SenbonmatsuT. PriceE.Jr IchikiT. GaffneyF.A. InagamiT. Angiotensin II type 2 receptor is essential for left ventricular hypertrophy and cardiac fibrosis in chronic angiotensin II-induced hypertension.Circulation2001104334635110.1161/01.CIR.104.3.34611457756
    [Google Scholar]
  54. KupfahlC. PinkD. FriedrichK. ZurbrüggH.R. NeussM. WarneckeC. FielitzJ. GrafK. FleckE. Regitz-ZagrosekV. Angiotensin II directly increases transforming growth factor β1 and osteopontin and indirectly affects collagen mRNA expression in the human heart.Cardiovasc. Res.200046346347510.1016/S0008‑6363(00)00037‑710912457
    [Google Scholar]
  55. LinS.L. ChenR.H. ChenY.M. ChiangW.C. LaiC.F. WuK.D. TsaiT.J. Pentoxifylline attenuates tubulointerstitial fibrosis by blocking Smad3/4-activated transcription and profibrogenic effects of connective tissue growth factor.J. Am. Soc. Nephrol.20051692702271310.1681/ASN.200504043515987746
    [Google Scholar]
  56. ZhuoJ.L. KoboriH. LiX.C. SatouR. KatsuradaA. NavarL.G. Augmentation of angiotensinogen expression in the proximal tubule by intracellular angiotensin II via AT 1a /MAPK/NF-кB signaling pathways.Am. J. Physiol. Renal Physiol.201631010F1103F111210.1152/ajprenal.00350.201526864937
    [Google Scholar]
  57. CarvajalG. Angiotensin II activates the Smad pathway during epithelial mesenchymal transdifferentiation.Kidney Int.200874558559510.1038/ki.2008.213
    [Google Scholar]
  58. LiuH.W. ChengB. YuW.L. SunR.X. ZengD. WangJ. LiaoY.X. FuX.B. Angiotensin II regulates phosphoinositide 3 kinase/Akt cascade via a negative crosstalk between AT1 and AT2 receptors in skin fibroblasts of human hypertrophic scars.Life Sci.200679547548310.1016/j.lfs.2006.01.03116522324
    [Google Scholar]
  59. FangQ.Q. WangX.F. ZhaoW.Y. DingS.L. ShiB.H. XiaY. YangH. WuL.H. LiC.Y. TanW.Q. Angiotensin-converting enzyme inhibitor reduces scar formation by inhibiting both canonical and noncanonical TGF-β1 pathways.Sci. Rep.201881333210.1038/s41598‑018‑21600‑w29463869
    [Google Scholar]
  60. QueisserN. HappK. LinkS. JahnD. ZimnolA. GeierA. SchuppN. Aldosterone induces fibrosis, oxidative stress and DNA damage in livers of male rats independent of blood pressure changes.Toxicol. Appl. Pharmacol.2014280339940710.1016/j.taap.2014.08.02925204689
    [Google Scholar]
  61. ZhangY.-Y. Antifibrotic roles of RAAS blockers: Update.Adv. Exp. Med. Biol.2019116567169110.1007/978‑981‑13‑8871‑2_33
    [Google Scholar]
  62. AlQudahM. HaleT.M. CzubrytM.P.J.M.B. Targeting the renin-angiotensin-aldosterone system in fibrosis.Matrix Biol.202091-929210810.1016/j.matbio.2020.04.005
    [Google Scholar]
  63. TaguchiI. ToyodaS. TakanoK. ArikawaT. KikuchiM. OgawaM. AbeS. NodeK. InoueT. Irbesartan, an angiotensin receptor blocker, exhibits metabolic, anti-inflammatory and antioxidative effects in patients with high-risk hypertension.Hypertens. Res.201336760861310.1038/hr.2013.323425956
    [Google Scholar]
  64. AliqueM. Sánchez-LópezE. Rayego-MateosS. EgidoJ. OrtizA. Ruiz-OrtegaM. Angiotensin II, via angiotensin receptor type 1/nuclear factor-κB activation, causes a synergistic effect on interleukin-1-β-induced inflammatory responses in cultured mesangial cells.J. Renin Angiotensin Aldosterone Syst.2015161233210.1177/147032031455156425354522
    [Google Scholar]
  65. ArjmandM.H. Zahedi-AvvalF. BarnehF. MousaviS.H. AsgharzadehF. HashemzehiM. SoleimaniA. AvanA. FakhraieM. NasiriS.N. MehrabanS. FernsG.A. RyzhikovM. JafariM. KhazaeiM. HassanianS.M. Intraperitoneal administration of telmisartan prevents postsurgical adhesion band formation.J. Surg. Res.202024817118110.1016/j.jss.2019.10.02931923833
    [Google Scholar]
  66. CandanB. Irbesartan restored aquaporin-1 levels via inhibition of NF-kB expression in acute kidney injury model.Nefrología202344211931210.1016/j.nefro.2023.11.005
    [Google Scholar]
  67. CakmakB. CavusogluT. AtesU. MeralA. NacarM.C. ErbaşO. Regression of experimental endometriotic implants in a rat model with the angiotensin II receptor blocker losartan.J. Obstet. Gynaecol. Res.201541460160710.1111/jog.1255825302540
    [Google Scholar]
  68. NenicuA. KörbelC. GuY. MengerM.D. LaschkeM.W. Combined blockade of angiotensin II type 1 receptor and activation of peroxisome proliferator-activated receptor- by telmisartan effectively inhibits vascularization and growth of murine endometriosis-like lesions.Hum. Reprod.20142951011102410.1093/humrep/deu03524578472
    [Google Scholar]
  69. WangX. ChenX. HuangW. ZhangP. GuoY. KörnerH. WuH. WeiW. Losartan suppresses the inflammatory response in collagen-induced arthritis by inhibiting the MAPK and NF-κB pathways in B and T cells.Inflammopharmacology201927348750210.1007/s10787‑018‑0545‑230426454
    [Google Scholar]
  70. PriceA. LockhartJ.C. FerrellW.R. GsellW. McLeanS. SturrockR.D. Angiotensin II type 1 receptor as a novel therapeutic target in rheumatoid arthritis: In vivo analyses in rodent models of arthritis and ex vivo analyses in human inflammatory synovitis.Arthritis Rheum.200756244144710.1002/art.2233517265479
    [Google Scholar]
  71. PerryM.E. CheeM.M. FerrellW.R. LockhartJ.C. SturrockR.D. Angiotensin receptor blockers reduce erythrocyte sedimentation rate levels in patients with rheumatoid arthritis.Ann. Rheum. Dis.200867111646164710.1136/ard.2007.08291718854516
    [Google Scholar]
  72. KolesnykI. NoordzijM. DekkerF.W. BoeschotenE.W. KredietR.T. A positive effect of AII inhibitors on peritoneal membrane function in long-term PD patients.Nephrol. Dial. Transplant.200824127227710.1093/ndt/gfn42118676349
    [Google Scholar]
  73. WengrowerD. ZanninelliG. LatellaG. NecozioneS. MetanesI. IsraeliE. LysyJ. PinesM. PapoO. GoldinE. Losartan reduces trinitrobenzene sulphonic acid-induced colorectal fibrosis in rats.Can. J. Gastroenterol.2012261333910.1155/2012/62826822288068
    [Google Scholar]
  74. YoshijiH. NoguchiR. KojimaH. IkenakaY. KitadeM. KajiK. UemuraM. YamaoJ. FujimotoM. YamazakiM. ToyoharaM. MitoroA. FukuiH. Interferon augments the anti-fibrotic activity of an angiotensin-converting enzyme inhibitor in patients with refractory chronic hepatitis C.World J. Gastroenterol.200612426786679110.3748/wjg.v12.i42.678617106926
    [Google Scholar]
  75. LiJ.J. XueX.D. [Protection of captopril against chronic lung disease induced by hyperoxia in neonatal rats].Zhongguo Dang Dai Er Ke Za Zhi20079216917317448318
    [Google Scholar]
  76. ColmeneroJ. BatallerR. Sancho-BruP. DomínguezM. MorenoM. FornsX. BrugueraM. ArroyoV. BrennerD.A. GinèsP. Effects of losartan on hepatic expression of nonphagocytic NADPH oxidase and fibrogenic genes in patients with chronic hepatitis C.Am. J. Physiol. Gastrointest. Liver Physiol.20092974G726G73410.1152/ajpgi.00162.200919628656
    [Google Scholar]
/content/journals/cmp/10.2174/0118761429315431240712100124
Loading
/content/journals/cmp/10.2174/0118761429315431240712100124
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test