Skip to content
2000
Volume 17, Issue 1
  • ISSN: 1874-4672
  • E-ISSN: 1874-4702

Abstract

Post-surgical peritoneal adhesions are a serious problem causing complications, such as bowel obstruction, infertility, and pain. There are currently no effective ways of preventing post-surgical adhesions. Excess secretion of proinflammatory cytokines and profibrotic molecules by immune cells and adherent fibroblasts are the main mechanism that promotes post-operative fibrotic scars. Although many studies have been conducted on the pathological causes of this disorder, there are still many unknown facts in this matter, so assessment of the role of different molecules in causing inflammation and adhesion can lead to the creation of new treatment methods. Connexins are a group of proteins related to gap junctions that have a role in cell communication and transmitted signaling between adjacent cells. Between different types of connexin protein isoforms, connexin43 is known to be involved in pathological conditions related to inflammation and fibrosis. Recent studies have reported that inhibition of connexin43 has the potential to reduce inflammation and fibrosis by reducing the expression of molecules like α-SMA and plasminogen activator inhibitor (PAI) that are involved in the early stages of adhesion formation. As well as, inhibition of connexin43 may have therapeutic potential as a target to prevent post-surgical peritoneal adhesions.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/cmp/10.2174/0118761429302171240621101944
2024-01-01
2025-05-06
The full text of this item is not currently available.

References

  1. diZeregaG.S. CampeauJ.D. Peritoneal repair and post-surgical adhesion formation.Hum. Reprod. Update20017654755510.1093/humupd/7.6.54711727863
    [Google Scholar]
  2. SandovalP. Jiménez-HeffernanJ.A. Guerra-AzconaG. Pérez-LozanoM.L. Rynne-VidalÁ. Albar-VizcaínoP. Gil-VeraF. MartínP. CoronadoM.J. BarcenaC. DotorJ. MajanoP.L. PeraltaA.A. López-CabreraM. Mesothelial-to-mesenchymal transition in the pathogenesis of post-surgical peritoneal adhesions.J. Pathol.20162391485910.1002/path.469527071481
    [Google Scholar]
  3. KimS.G. SongK.Y. LeeH.H. KimE.Y. LeeJ.H. JeonH.M. JeonK.H. JinH.M. KimD.J. KimW. YooH.M. KimJ.G. ParkC.H. Efficacy of an antiadhesive agent for the prevention of intra-abdominal adhesions after radical gastrectomy.Medicine20199819e1514110.1097/MD.000000000001514131083151
    [Google Scholar]
  4. BrüggmannD. TchartchianG. WallwienerM. MünstedtK. TinnebergH-R. HackethalA. Intra-abdominal adhesions: Definition, origin, significance in surgical practice, and treatment options.Dtsch. Arztebl. Int.20101074476977521116396
    [Google Scholar]
  5. ColemanM.G. McLainA.D. MoranB.J. Impact of previous surgery on time taken for incision and division of adhesions during laparotomy.Dis. Colon Rectum20004391297129910.1007/BF0223744111005501
    [Google Scholar]
  6. ImaiA. SuzukiN. Topical non-barrier agents for postoperative adhesion prevention in animal models.Eur. J. Obstet. Gynecol. Reprod. Biol.2010149213113510.1016/j.ejogrb.2009.12.02620074848
    [Google Scholar]
  7. WuW. ChengR. Advances in biomaterials for preventing tissue adhesion.J. Control. Release201726131833610.1016/j.jconrel.2017.06.02028652071
    [Google Scholar]
  8. CogliatiB. MennecierG. WillebrordsJ. Da SilvaT.C. MaesM. PereiraI.V.A. Crespo YanguasS. Hernandez-BlazquezF.J. DagliM.L.Z. VinkenM. Connexins, pannexins, and their channels in fibroproliferative diseases.J. Membr. Biol.2016249319921310.1007/s00232‑016‑9881‑626914707
    [Google Scholar]
  9. ChansonM. DerouetteJ.P. RothI. FogliaB. ScerriI. DudezT. KwakB.R. Gap junctional communication in tissue inflammation and repair.Biochim. Biophys. Acta Biomembr.20051711219720710.1016/j.bbamem.2004.10.005
    [Google Scholar]
  10. WangX. MaA. ZhuW. ZhuL. ZhaoY. XiJ. ZhangX. ZhaoB. BeckerD.L. The role of connexin 43 and hemichannels correlated with the astrocytic death following ischemia/reperfusion insult.Cell. Mol. Neurobiol.201333340141010.1007/s10571‑013‑9906‑y23328809
    [Google Scholar]
  11. LuF. GaoJ. OgawaR. HyakusokuH. Variations in gap junctional intercellular communication and connexin expression in fibroblasts derived from keloid and hypertrophic scars.Plast. Reconstr. Surg.2007119384485110.1097/01.prs.0000255539.99698.f417312486
    [Google Scholar]
  12. GoodenoughD.A. PaulD.L. Gap Junctions.Cold Spring Harb. Perspect. Biol.200911a00257610.1101/cshperspect.a00257620066080
    [Google Scholar]
  13. CottrellG.T. BurtJ.M. Functional consequences of heterogeneous gap junction channel formation and its influence in health and disease.Biochim. Biophys. Acta Biomembr.20051711212614110.1016/j.bbamem.2004.11.01315955298
    [Google Scholar]
  14. IacobasDA Urban-MaldonadoM IacobasS ScemesE Array analysis of gene expression in connexin-43 null astrocytes.Physiol Genomics2003153177190
    [Google Scholar]
  15. OlkS TurchinovichA GrzendowskiM StühlerK MeyerHE ZoidlG Proteomic analysis of astroglial connexin43 silencing uncovers a cytoskeletal platform involved in process formation and migration.Glia201058449450510.1002/glia.20942
    [Google Scholar]
  16. AbedA. ToubasJ. KavvadasP. AuthierF. CathelinD. AlfieriC. BoffaJ.J. DussauleJ.C. ChatziantoniouC. ChadjichristosC.E. Targeting connexin 43 protects against the progression of experimental chronic kidney disease in mice.Kidney Int.201486476877910.1038/ki.2014.10824850151
    [Google Scholar]
  17. ChuaJ.W. ThangavelooM. LimD.X.E. MaddenL.E. PhillipsA.R.J. BeckerD.L. Connexin43 in post-surgical peritoneal adhesion formation.Life20221211173410.3390/life1211173436362888
    [Google Scholar]
  18. DonnezJ. BindaM.M. DonnezO. DolmansM.M. Oxidative stress in the pelvic cavity and its role in the pathogenesis of endometriosis.Fertil. Steril.201610651011101710.1016/j.fertnstert.2016.07.107527521769
    [Google Scholar]
  19. López-NovoaJ.M. NietoM.A. Inflammation and EMT: An alliance towards organ fibrosis and cancer progression.EMBO Mol. Med.200916-730331410.1002/emmm.20090004320049734
    [Google Scholar]
  20. CheongY.C. LairdS.M. LiT.C. SheltonJ.B. LedgerW.L. CookeI.D. Peritoneal healing and adhesion formation/reformation.Hum. Reprod. Update20017655656610.1093/humupd/7.6.55611727864
    [Google Scholar]
  21. WaismanA. LiblauR.S. BecherB. Innate and adaptive immune responses in the CNS.Lancet Neurol.201514994595510.1016/S1474‑4422(15)00141‑626293566
    [Google Scholar]
  22. LiakakosT. ThomakosN. FineP.M. DervenisC. YoungR.L. Peritoneal adhesions: Etiology, pathophysiology, and clinical significance. Recent advances in prevention and management.Dig. Surg.200118426027310.1159/00005014911528133
    [Google Scholar]
  23. BrissetA.C. IsaksonB.E. KwakB.R. Connexins in vascular physiology and pathology.Antioxid. Redox Signal.200911226728210.1089/ars.2008.211518834327
    [Google Scholar]
  24. MeensM.J. KwakB.R. DuffyH.S. Role of connexins and pannexins in cardiovascular physiology.Cell. Mol. Life Sci.201572152779279210.1007/s00018‑015‑1959‑226091747
    [Google Scholar]
  25. PfennigerA. ChansonM. KwakB.R. Connexins in atherosclerosis.Biochim. Biophys. Acta Biomembr.20131828115716610.1016/j.bbamem.2012.05.011
    [Google Scholar]
  26. KwakB.R. MulhauptF. VeillardN. GrosD.B. MachF. Altered pattern of vascular connexin expression in atherosclerotic plaques.Arterioscler. Thromb. Vasc. Biol.200222222523010.1161/hq0102.10412511834520
    [Google Scholar]
  27. HouC.J.Y. TsaiC-H. YehH-I. Endothelial connexins are down-regulated by atherogenic factors.Front. Biosci.2008Volume133549355710.2741/294818508454
    [Google Scholar]
  28. FrimmelK. VlkovicovaJ. SotnikovaR. NavarovaJ. BernatovaI. OkruhlicovaL. The effect of omega-3 fatty acids on expression of connexin-40 in Wistar rat aorta after lipopolysaccharide administration.J. Physiol. Pharmacol.2014651839424622833
    [Google Scholar]
  29. EugenínE.A. GonzálezH.E. SánchezH.A. BrañesM.C. SáezJ.C. Inflammatory conditions induce gap junctional communication between rat Kupffer cells both in vivo and in vitro.Cell. Immunol.2007247210311010.1016/j.cellimm.2007.08.00117900549
    [Google Scholar]
  30. Hernández-GuerraM. González-MéndezY. de GanzoZ.A. SalidoE. García-PagánJ.C. AbranteB. MalagónA.M. BoschJ. QuinteroE. Role of gap junctions modulating hepatic vascular tone in cirrhosis.Liver Int.201434685986810.1111/liv.1244624350605
    [Google Scholar]
  31. MaesM. McGillM.R. da SilvaT.C. AbelsC. LebofskyM. Maria Monteiro de AraújoC. TiburcioT. Veloso Alves PereiraI. WillebrordsJ. Crespo YanguasS. FarhoodA. BeschinA. Van GinderachterJ.A. Zaidan DagliM.L. JaeschkeH. CogliatiB. VinkenM. Involvement of connexin43 in acetaminophen-induced liver injury.Biochim. Biophys. Acta Mol. Basis Dis.2016186261111112110.1016/j.bbadis.2016.02.007
    [Google Scholar]
  32. MaesM. Crespo YanguasS. WillebrordsJ. CogliatiB. VinkenM. Connexin and pannexin signaling in gastrointestinal and liver disease.Transl. Res.2015166433234310.1016/j.trsl.2015.05.00526051630
    [Google Scholar]
  33. Al-GhadbanS. KaissiS. HomaidanF.R. NaimH.Y. El-SabbanM.E. Cross-talk between intestinal epithelial cells and immune cells in inflammatory bowel disease.Sci. Rep.2016612978310.1038/srep2978327417573
    [Google Scholar]
  34. HanY ZhangPJ ChenT YumSW PashaT FurthEE Connexin43 expression increases in the epithelium and stroma along the colonic neoplastic progression pathway: implications for its oncogenic role.Gastroenterol Res Pract2011201156171910.1155/2011/561719
    [Google Scholar]
  35. TittarelliA. Connexin channels modulation in pathophysiology and treatment of immune and inflammatory disorders.Biochim. Biophys. Acta Mol. Basis Dis.202118671216625810.1016/j.bbadis.2021.16625834450245
    [Google Scholar]
  36. QinX.H. MaX. FangS.F. ZhangZ.Z. LuJ.M. IL-17 produced by Th17 cells alleviates the severity of fungal keratitis by suppressing CX43 expression in corneal peripheral vascular endothelial cells.Cell Cycle201918327428710.1080/15384101.2018.155605930661459
    [Google Scholar]
  37. VélizL.P. GonzálezF.G. DulingB.R. SáezJ.C. BoricM.P. Functional role of gap junctions in cytokine-induced leukocyte adhesion to endothelium in vivo.Am. J. Physiol. Heart Circ. Physiol.20082953H1056H106610.1152/ajpheart.00266.200818599597
    [Google Scholar]
  38. SarieddineM.Z.R. ScheckenbachK.E.L. FogliaB. MaassK. GarciaI. KwakB.R. ChansonM. Connexin43 modulates neutrophil recruitment to the lung.J. Cell. Mol. Med.20091311-124560457010.1111/j.1582‑4934.2008.00654.x19166484
    [Google Scholar]
  39. RobertsonJ. LangS. LambertP.A. MartinP.E. Peptidoglycan derived from Staphylococcus epidermidis induces Connexin43 hemichannel activity with consequences on the innate immune response in endothelial cells.Biochem. J.2010432113314310.1042/BJ2009175320815816
    [Google Scholar]
  40. NeubA. HoudekP. OhnemusU. MollI. BrandnerJ.M. Biphasic regulation of AP-1 subunits during human epidermal wound healing.J. Invest. Dermatol.2007127102453246210.1038/sj.jid.570086417495958
    [Google Scholar]
  41. VickersN.J. Animal communication: When i’m calling you, will you answer too?Curr. Biol.20172714R713R71510.1016/j.cub.2017.05.06428743020
    [Google Scholar]
  42. ToubasJ. BeckS. PageaudA.L. HubyA.C. Mael-AininM. DussauleJ.C. ChatziantoniouC. ChadjichristosC.E. Alteration of connexin expression is an early signal for chronic kidney disease.Am. J. Physiol. Renal Physiol.20113011F24F3210.1152/ajprenal.00255.201021429966
    [Google Scholar]
  43. LiJ.Y. LaiY.J. YehH.I. ChenC.L. SunS. WuS.J. LinF.Y. Atrial gap junctions, NF-kappaB and fibrosis in patients undergoing coronary artery bypass surgery: the relationship with postoperative atrial fibrillation.Cardiology20091122818810.1159/00014101218580064
    [Google Scholar]
  44. WynnT.A. Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases.J. Clin. Invest.2007117352452910.1172/JCI3148717332879
    [Google Scholar]
  45. FriedmanS.L. Mechanisms of Disease: Mechanisms of hepatic fibrosis and therapeutic implications.Nat. Clin. Pract. Gastroenterol. Hepatol.2004129810510.1038/ncpgasthep005516265071
    [Google Scholar]
  46. SinghR.K. BajpaiS. ShuklaV.K. TripathiK. SrikrishnaS. Targeting connexin 43 in diabetic wound healing: Future perspectives.J. Postgrad. Med.200955214314910.4103/0022‑3859.4878619550065
    [Google Scholar]
  47. WangN. De VuystE. PonsaertsR. BoenglerK. Palacios-PradoN. WaumanJ. LaiC.P. De BockM. DecrockE. BolM. VinkenM. RogiersV. TavernierJ. EvansW.H. NausC.C. BukauskasF.F. SipidoK.R. HeuschG. SchulzR. BultynckG. LeybaertL. Selective inhibition of Cx43 hemichannels by Gap19 and its impact on myocardial ischemia/reperfusion injury.Basic Res. Cardiol.2013108130910.1007/s00395‑012‑0309‑x23184389
    [Google Scholar]
  48. VergaraL. BaoX. Bello-ReussE. ReussL. Do connexin 43 gap‐junctional hemichannels activate and cause cell damage during ATP depletion of renal‐tubule cells?Acta Physiol. Scand.20031791333810.1046/j.1365‑201X.2003.01198.x12940936
    [Google Scholar]
  49. CroninM. AndersonP.N. CookJ.E. GreenC.R. BeckerD.L. Blocking connexin43 expression reduces inflammation and improves functional recovery after spinal cord injury.Mol. Cell. Neurosci.200839215216010.1016/j.mcn.2008.06.00518617007
    [Google Scholar]
  50. Asazuma-NakamuraY. DaiP. HaradaY. JiangY. HamaokaK. TakamatsuT. Cx43 contributes to TGF-β signaling to regulate differentiation of cardiac fibroblasts into myofibroblasts.Exp. Cell Res.200931571190119910.1016/j.yexcr.2008.12.02119162006
    [Google Scholar]
  51. DaiP. NakagamiT. TanakaH. HitomiT. TakamatsuT. Cx43 mediates TGF-β signaling through competitive Smads binding to microtubules.Mol. Biol. Cell20071862264227310.1091/mbc.e06‑12‑106417429065
    [Google Scholar]
  52. MoriR. PowerK.T. WangC.M. MartinP. BeckerD.L. Acute downregulation of connexin43 at wound sites leads to a reduced inflammatory response, enhanced keratinocyte proliferation and wound fibroblast migration.J. Cell Sci.2006119245193520310.1242/jcs.0332017158921
    [Google Scholar]
  53. QiuC. CoutinhoP. FrankS. FrankeS. LawL. MartinP. GreenC.R. BeckerD.L. Targeting connexin43 expression accelerates the rate of wound repair.Curr. Biol.200313191697170310.1016/j.cub.2003.09.00714521835
    [Google Scholar]
  54. EltzschigH.K. EckleT. MagerA. KüperN. KarcherC. WeissmüllerT. BoenglerK. SchulzR. RobsonS.C. ColganS.P. ATP release from activated neutrophils occurs via connexin 43 and modulates adenosine-dependent endothelial cell function.Circ. Res.200699101100110810.1161/01.RES.0000250174.31269.7017038639
    [Google Scholar]
  55. Fernandez-CoboM. GingalewskiC. DrujanD. De MaioA. Downregulation of connexin 43 gene expression in rat heart during inflammation. The role of tumour necrosis factor.Cytokine199911321622410.1006/cyto.1998.042210209069
    [Google Scholar]
  56. WaghabiM.C. Coutinho-SilvaR. FeigeJ.J. HiguchiM.L. BeckerD. BurnstockG. Araújo-JorgeT.C. Gap junction reduction in cardiomyocytes following transforming growth factor-β treatment and Trypanosoma cruzi infection.Mem. Inst. Oswaldo Cruz200910481083109010.1590/S0074‑0276200900080000420140368
    [Google Scholar]
  57. SedhomM.A.K. PicheryM. MurdochJ.R. FolignéB. OrtegaN. NormandS. MertzK. SanmugalingamD. BraultL. GrandjeanT. LefrancaisE. FallonP.G. QuesniauxV. Peyrin-BirouletL. CathomasG. JuntT. ChamaillardM. GirardJ.P. RyffelB. Neutralisation of the interleukin-33/ST2 pathway ameliorates experimental colitis through enhancement of mucosal healing in mice.Gut201362121714172310.1136/gutjnl‑2011‑30178523172891
    [Google Scholar]
  58. BeckerD.L. ThrasivoulouC. PhillipsA.R.J. Connexins in wound healing; perspectives in diabetic patients.Biochim. Biophys. Acta Biomembr.2012181882068207510.1016/j.bbamem.2011.11.017
    [Google Scholar]
  59. KwakB.R. PepperM.S. GrosD.B. MedaP. Inhibition of endothelial wound repair by dominant negative connexin inhibitors.Mol. Biol. Cell200112483184510.1091/mbc.12.4.83111294890
    [Google Scholar]
  60. YasuiK. KadaK. HojoM. LeeJ-K. KamiyaK. ToyamaJ. OpthofT. KodamaI. Cell-to-cell interaction prevents cell death in cultured neonatal rat ventricular myocytes.Cardiovasc. Res.2000481687610.1016/S0008‑6363(00)00145‑011033109
    [Google Scholar]
  61. YehH.I. LupuF. DupontE. SeversN.J. Upregulation of connexin43 gap junctions between smooth muscle cells after balloon catheter injury in the rat carotid artery.Arterioscler. Thromb. Vasc. Biol.199717113174318410.1161/01.ATV.17.11.31749409308
    [Google Scholar]
  62. TonkinR.S. MaoY. O’CarrollS.J. NicholsonL.F. GreenC.R. GorrieC.A. Moalem-TaylorG. Gap junction proteins and their role in spinal cord injury.Front. Mol. Neurosci.2015710210.3389/fnmol.2014.0010225610368
    [Google Scholar]
  63. PrakouraN. KavvadasP. ChadjichristosC.E. Connexin 43: A new therapeutic target against chronic kidney disease.Cell. Physiol. Biochem.2018493998100910.1159/00049323030196298
    [Google Scholar]
  64. MaesM. Crespo YanguasS. WillebrordsJ. WeemhoffJ.L. da SilvaT.C. DecrockE. LebofskyM. PereiraI.V.A. LeybaertL. FarhoodA. JaeschkeH. CogliatiB. VinkenM. Connexin hemichannel inhibition reduces acetaminophen-induced liver injury in mice.Toxicol. Lett.2017278303710.1016/j.toxlet.2017.07.00728687253
    [Google Scholar]
  65. LiW. BaoG. ChenW. QiangX. ZhuS. WangS. HeM. MaG. OchaniM. Al-AbedY. YangH. TraceyK.J. WangP. D’AngeloJ. WangH. Connexin 43 hemichannel as a novel mediator of sterile and infectious inflammatory diseases.Sci. Rep.20188116610.1038/s41598‑017‑18452‑129317708
    [Google Scholar]
  66. KimY. GriffinJ.M. HarrisP.W.R. ChanS.H.C. NicholsonL.F.B. BrimbleM.A. O’CarrollS.J. GreenC.R. Characterizing the mode of action of extracellular Connexin43 channel blocking mimetic peptides in an in vitro ischemia injury model.Biochim. Biophys. Acta, Gen. Subj.201718612687810.1016/j.bbagen.2016.11.00127816754
    [Google Scholar]
  67. ElbadawyH.M. MirabelliP. XeroudakiM. ParekhM. BertolinM. BredaC. CaginiC. PonzinD. LagaliN. FerrariS. Effect of connexin 43 inhibition by the mimetic peptide Gap27 on corneal wound healing, inflammation and neovascularization.Br. J. Pharmacol.2016173192880289310.1111/bph.1356827472295
    [Google Scholar]
/content/journals/cmp/10.2174/0118761429302171240621101944
Loading
/content/journals/cmp/10.2174/0118761429302171240621101944
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Connexins; Fibrosis; Gap junction; GJ blockers; Inflammation; Post-surgical adhesion
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test